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Abstract

One of the fundamental challenges of recognizing actions is ac-
counting for the variability that arises when arbitrary cameras
capture humans performing actions. In this paper, we explicitly
identify three important sources of variability: (1) viewpoint, (2)
execution rate, and (3) anthropometry of actors, and propose a
model of human actions that allows us to investigate all three. Our
hypothesis is that the variability associated with the execution of
an action can be closely approximated by a linear combination
of action bases in joint spatio-temporal space. We demonstrate
that such a model bounds the rank of a matrix of image measure-
ments and that this bound can be used to achieve recognition of
actions based only on imaged data. A test employing principal
angles between subspaces that is robust to statistical fluctuations
in measurement data is presented to find the membership of an in-
stance of an action. The algorithm is applied to recognize several
actions, and promising results have been obtained.

1. Introduction
Developing algorithms to recognize humans actions has proven to
be an immense challenge since it is a problem that combines the
uncertainty associated with computational vision with the added
whimsy of human behavior. Even without these two sources of
variability, the human body has no less than 244 degrees of free-
dom ([19]) and modeling the dynamics of an object with such non-
rigidity is no mean feat. Further compounding the problem, recent
research into anthropology has revealed that body dynamics are
far more complicated than was earlier thought, affected by age,
ethnicity, class, family tradition, gender, sexual orientation, skill,
circumstance and choice, [4]. Human actions are not merely func-
tions of joint angles and anatomical landmark positions, but bring
with them traces of the psychology, the society and culture of the
actor. Thus, the sheer range and complexity of human actions
makes developing action recognition algorithms a daunting task.
So how does one appropriately model the non-rigidity of human
motion? How do we account for the personal styles (or motion
signatures, [17]) while recognizing actions? How do we account
for the diverse shapes and sizes of different people? In this paper,
we consider some of these questions while developing a model
of human actions that approaches these issues. To begin with, it is
important to identify properties that are expected to vary with each
observation of an action, but which should not affect recognition:

Viewpoint The relationship of action recognition to object recog-
nition was observed by Rao and Shah in [13], and developed fur-
ther by Parameswaran and Chellappa in [9], [10] and Gritaiet al in
[6]. In these papers, the importance of view invariant recognition
has been stressed, highlighting the fact that, as in object recogni-
tion, the vantage point of the camera should not affect recogni-
tion. The projective and affine geometry of multiple views is well-
understood, see [7], and various invariants have been proposed.

Anthropometry In general, an action can be executed, irrespec-
tive of the size or gender of the actor. It is therefore important
that action recognition be unaffected by so-called “anthropomet-
ric transformations”. Unfortunately, since anthropometric trans-
formations do not obey any known laws, formally characterizing
invariants is impossible. However, empirical studies have shown
that these transformations are notarbitrary (see [3]). This issue
has previously been addressed by Gritaiet al. in [6].

Execution RateWith rare exceptions such as synchronized danc-
ing or army drills, actions are rarely executed at a precise rate. It
is desirable, therefore, that action recognition algorithms remain
unaffected by some set of temporal transformations. The cause
of temporal variability can be two fold, caused by the actor or by
differing camera frame-rates. Dynamic time warping has been a
popular approach to account for highly non-linear transformations,
[13].

Recognition presumes some manner of grouping and the ques-
tion of what constitutes an action is a matter of perceptual group-
ing. It is difficult to quantify exactly, for instance, whether “walk-
ing quickly” should be grouped together with “walking” or with
“running”, or for that matter whether walking and running should
be defined as a single action or not. Thus grouping can be done
at different levels of abstraction and, more often than not, depends
on circumstance and context. In this paper, rather than arbitrar-
ily defining some measure of similarity between actions, we al-
low membership to be defined through exemplars of a group. Our
hypothesis is that the variability associated with the execution of
an action can be closely approximated by a linear combination
of action bases in joint spatio-temporal space. We demonstrate
that such a model bounds the rank of a matrix of image measure-
ments and that this bound can be used to achieve recognition of
actions based only on imaged data. A test employing principal
angles between subspaces that is robust to statistical fluctuations
in measurement data is presented to find the membership of an
instance of an action. The algorithm is applied to recognize sev-
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eral actions, and promising results have been obtained. As in [9]
and [6], we do not address lower-level processing tasks such as
shot segmentation, object detection, and body-joint detection. In-
stead, we assume the image-positions of anatomical landmarks on
the body are provided, and concentrate on how best to model and
use this data to recognize actions. Johansson demonstrated that
point-based representations of human actions were sufficient for
the recognition of actions, [8]. In our work, the input is the 2D
motion of a set of 13 anatomical landmarks,L = {1, 2, · · · 13},
as viewed from a camera.

The rest of the paper is organized as follows. We situate our
work in context of previous research in Section 2. In Section 3,
we present our model of human actions and discuss some proper-
ties of the proposed framework, followed by the development of a
matching algorithm in Section 4. Results are presented in Section
5, followed by conclusions in Section 6.

2 Previous Work

Action recognition has been an active area of research in the vi-
sion community since the early 90s. A survey of action recog-
nition research by Gavrila, in [5], classifies different approaches
into three categories: (1) 2D approaches without shape models,
(2) 2D approach with shape models and (3) 3D approaches. Since
the publication of this survey, a newer approach to action recogni-
tion has emerged: 2D approaches based on 3D constraints, which
maintain invariance to viewpoint, while avoiding difficulties of 3D
reconstruction of non-rigid motion. The first approach to use 3D
constraints on 2D measurements was proposed by Seitz and Dyer
in [14], where sufficient conditions for determining whether mea-
surements were 2D affine projections of 3D cyclic motion were
presented. Rao and Shah extended this idea in [13], to recognize
non-cyclic actions as well, proposing a representation of action us-
ing dynamic instances and intevals and proposing a view invariant
measure of similarity. Syeda-Mahmood and Vasilescu proposed a
view invariant method of concurrently estimating the fundamental
matrix and recognizing actions in [15]. In [9], Parameswaran and
Chellappa use 2D measurements to match against candidate action
volumes, utilizing 3-D model based invariants. In addition to view
invariance, Gritaiet al. proposed a method that was invariant to
changes in the anthropometric proportions of actors. As in [13]
and [9], they ignored time and treated each action as an object in
3D.

3 The Space of an Action

By marginalizing time, several papers have represented actions es-
sentially as objects in 3D ([13], [6] and [9]). While some suc-
cess has been achieved, ignoring temporal information in this
way and focussing only on order, makes modeling of temporal
transformations impossible. Instead, since an action is a func-
tion of time, in this work an instance of an action is modeled as a
spatio-temporal construct, a set of points,A = [X1,X2, . . .Xp],
whereXi = (Xj

Ti
, Y j

Ti
, Zj

Ti
, Ti)

ᵀ andj ∈ L (see Figure 1) and

p = 13n, for n recorded postures of that action1. An instanceof
an action is defined as a linear combination of a set ofaction-basis

1The construction ofA must respect the ordering ofL.
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Figure 1: Representation of an action in 4-space. (a) Action in
XY Z space, (b) Action inXY T space. The actor is shown at
frame 1, 50 and 126.

A1,A2, . . .Ak. Consequently, any instance of an action can be
expressed as,

A′ =

kX
i=1

aiAi, (1)

whereai ∈ R is the coefficient associated with the action-basis
Ai ∈ R4×p. The space of an action,A is the span of all its ac-
tion bases. By allowing actions to be defined in this way by action
bases we do not impose arbitrary definitions on what an actions
is. The action is defined entirely by the constituents of its action
bases. The variance captured by the action bases can include dif-
ferent (possibly non-linearly transformed) execution rates of the
same action, different individual styles of performance as well as
the anthropometric transformations of different actors (see Figure
2). In general, the number of samples per execution of an action
will not necessarily be the same. In order to construct the bases,
the entire duration of each action is sampled the same number of
times.

3.1 Action Projection

When change in depth of a scene is small compared to the dis-
tance between the camera and the scene, affine projection models
can be used to approximate the process of imaging. In this paper,
we assume a special case of affine projection - weak-perspective
projection. Weak-perspective projection is effectively composed
of two steps. The world point is first projected under orthogra-
phy, followed by a scaling of the image coordinates. This can be
written as,

�
x
y

�
=

�
αxr

1 ᵀ

αyr
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@

X
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Z

1
A+ D (2)

whereriᵀ is thei-th row of the rotation matrixR, αi is a constant
scaling factor andD is the displacement vector. Here, a fixed cam-
era is observing the execution of an action across time. For our
purposes we find it convenient to define a canonical world time
coordinateT , where the imaged time coordinate is related to the
world time coordinatet by a linear relationship,t = αtT + dt

whereαt is temporal scaling factor anddt is a temporal displace-
ment. This transformation in time can occur because of varying
frame rates, because the world action and the imaged action are
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separated in time or because of linear changes in the speed of ex-
ecution of an action.If two actions differ only by a linear trans-
formation in execution rate, we consider them equivalent.We can
define a space-time projection matrixbR3×4 that projects a point
(X, Y, Z, T )ᵀ to it’s image(x, y, t),

0
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or
x = bRX + bD.

As in [2] and [16], we can eliminatebD by subtracting the mean
of all imaged points. Thus, in our setup, where each instance of
an action,Ai, is being observed by a stationary camera, we have
ai = bRAi. Available data is usually in terms of these imaged
position of the landmarks across time. A matrixW can be con-
structed from these measurements as,

W =

2
4

x1,1 x1,2 · · · x1,n

y1,1 y1,2 · · · y1,n

t1,1 t1,2 · · · t1,n

3
5 . (3)

We now show that simply given sufficientimaged exemplars
of an action in the form ofW, a new action,W can be recognized.

Proposition 1 If W is constructed of images of several instances
of an action that span the space of that action, andW′ is another
instance of that action, then

rank(W) = rank([W W′]).

Under projection, we have,

W = RA = R

kX
i=1

aiAi = [a1R · · · akR]| {z }
4k

2
6664

A1

A2

...
Ak

3
7775 (4)

When several observations are available,

W =

2
6664

W1

W2

...
Wn

3
7775 =

2
64

a1,1R1 · · · ak,1R1

...
...

a1,nRn · · · ak,nRn

3
75

2
6664

A1

A2

...
Ak

3
7775

(5)
Since the columns ofW are spanned byA, the rank ofW is at

most4k. Now if an observed actionA′ is an instance of the same
action, then it too should be expressible as a linear combination
(Equation 1) ofAi, and therefore the the rank of[W W′] should
remain4k. If it is not the same action, i.e. that is not expressible
as a linear combination, then the rank should increase.

An important consequence of Proposition 1 is that we do not
need to explicitly compute either the action bases or the space-time
projection matrix. In the next section, we show how membership
can be tested using only imaged measurements.

Figure 2:Different postures associated with sitting. Our hypoth-
esis is that there exists a set of action-basis that can compactly
describe different styles and rates of execution of an action.

4 Recognizing an Action Using the
Angle between Subspaces

Given a matrixW′ containing measurements of the imaged po-
sition of the anatomical landmarks of an actore, we wish to find
which of c possible actions was performed. The measured image
positions are described in terms of the true positions,W̄ with in-
dependent normally distributed measurement noise,µ = 0 and
varianceσ2, that is

W′ = W̄′ + ε, ε ∼ N (0, σ). (6)

Our objective is to find the Maximum Likelihood estimate ofj∗

such that,
j∗ = arg max

j∈c
p(Aj |W′). (7)

Because of Proposition 1, we do not need to have the actual
action bases to evaluatep(Aj |W′). Instead, each action is defined
by a set of imaged exemplars, that describe the possible variation
in the execution of that action. This variation may arise from any
one of the many reasons discussed in the introduction. Thus for
each actionAj we have a set of exemplars of that action,Wj =
[Wj,1,Wj,2 · · ·Wj,n], wheren ≥ k anddim(Aj) = k.

Now, W and W′ are matrices defining two subspaces, and
without loss of generality assume that,dim(W) ≥ dim(W′) ≥
1. The smallest angleθ1 ∈ [0, π/2] betweenW andW′ is,

cos θ1 = max
u∈W

max
v∈W′

uᵀv, (8)

where‖u‖2 = 1, ‖v‖2 = 1. It was shown by Wedin in [11] that
the angle betweenW andW′ gives an estimate of the amount
of new information afforded by the second matrix not associated
with measurement noise. They show that for two matricesA and
B, whereB is a perturbation ofA, i.e. if A = B + ε, the subspace
angle betweenrange(B) andrange(A) is bounded as,

sin(θ) ≤ ‖ε‖2
σr(A)

,

whereσr(A) is ther-th eigenvalue ofA. The stability to mea-
surement error makes the angle between subspaces an attractive
alternative to standard re-projection errors. Thus,

p(Aj |W) = L(W|Wj) ∝ cos θ1. (9)

whereL is the likelihood function. The recognition algorithm,
along with the algorithm described by Björk and Golub in [1] for
the numerically stable computation of the angle between the sub-
spaces, is given in Figure .
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Figure 3: Change in Subspace angles as number of action exemplars are increased. We incrementally added positive examples to the
training set and as the span of the action bases increased the angle associated with the positive examples decreased much more than that of
the negative examples.
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Figure 4:ROC Curves for four actions. The dotted diagonal line shows the random prediction. (a) ROC Curve for Standing. The area
under the ROC curve is 0.9842. (b) ROC Curve for Running. The area under the ROC Curve is 0.9231. (c) ROC Curve for Walking. The
area under the ROC Curve is 0.9573. (d) ROC Curve for Sitting. The area under the ROC Curve is 0.9660.

Objective
Given a matrixW′ corresponding to the projection of an action instance, and matricesW1,W2, · · ·WN each modeling theN different
actions, find which action was mostly likely executed.

Algorithm
For each actionAi, i ∈ 1, 2, · · ·N do,

1. Normalization: Compute a similarity transform, transforming the mean of the points to the origin and making the average distance
of the points from the origin equal to

√
2. This should be done separately for each action instance.

2. Compute Subspace Angle betweenW andWi:

• Compute Orthogonal Bases: Use SVD to reliably compute orthonormal bases ofW′ andWi, fW′ andfWi.

• Compute Projection: Using the iterative procedure described in [1], forj ∈ 1, · · · p

W′
i+1 = W′

i −WWᵀW′
i

• Find Angle: Computeθ = arcsin
�
min(1, ‖W′

p‖2)
�
.

Selecti∗ = arg maxi∈{1,··· ,N} cos(θ1).

Figure 5: Algorithm for Action Recognition

5 Results

During experimentation our goal was to verify the claims in this
paper, namely that the proposed algorithm can recognize actions
despite changes in viewpoint, anthropometry and execution rate.
Furthermore, through experimentation, we validate our conjecture
that an action can be described by a set of exemplars of that ac-

tions. In our experiments, we used a number of complex sequences
which were a mix of real motion capture data2 and also direct
video measurements, performed by different actors in many dif-
ferent ways. The test data included the following actions: Sitting,
Standing, Falling, Walking, Dancing and Running. In addition
to differences in anthropometry and the execution rates, we also

2We did not use anyZ information while testing the recognition.
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Figure 6:Reconstructing an action in XYZT. We do not require
such reconstruction in our recognition algorithm. In this figure,
we are simply demonstrating the validity of our hypothesis. (a)
Accurate reconstruction. The last frame of an instance of “Sit-
ting” is shown. The blue-markered skeleton represents the orig-
inal measurements, the red-markered skeleton represents the re-
construction after projection on the “Sitting” action basis. (b)
The 32th frame of an instance of “Running” is shown. The blue-
markered skeleton represents the original measurements and the
red-markered skeleton represents the reconstruction after projec-
tion onto the “Walking” action basis.

generated different views by changing projection matrices for the
motion-captured data. For the imaged data, too, we captured the
sequences from several different views. Figure 5(a) shows some
examples of “Sitting” while Figure 5(b) shows some examples of
“Walking”.

5.1 Action Recognition Results

The set of action exemplars for each action is composed by adding
exemplars iteratively until these sufficiently span the action space.
To achieve this using the minimum number of training samples,
we iteratively picked the action sequence from the corpus of that
action which has the maximum angle between it and the action
subspace (at that point) and continue until the rank of the action
subspace is unaffected by additions of further exemplars from the
corpus. This greedy method allows us to minimize the number
of training samples required to span the action space instead of
just selecting an arbitrary number of exemplars. The effect of in-
creasing the number of exemplars in this way is shown in Figure
3. Clearly, the angles of the positive exemplars are ultimately sig-
nificantly lower than those of the negative exemplars. To test our
approach, for each action, we take all the instances of that action
in the corpus as positive sequences and the sequences for all the
other actions as negative sequences. Table 1 shows the number of
training and testing sequences that were eventually used to obtain
the final results. For each action in our testing set, we computed
the angle between the action space and the subspace spanned by
that action instance. This result is thresholded to give the final bi-
nary classification. The ROC curves based on this classification
for “Walking”, “Sitting”, “Standing” and “Running” are shown in
Figure 4. As can be seen from the area under these ROC curves,
using our approach we have been able to correctly classify most of
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Figure 8:Action reprojection of “Sitting” inxyt space. The red
points show the original action inxyt and the blue points show
close reconstruction after projection onto the action bases of sit-
ting. Note this is based on imaged exemplars only.

Action Exemplars # of Positive # of Negative
Sitting 11 230 127

Standing 12 120 138
Running 17 290 121
Walking 11 450 105

Table 1:Number of training and testing samples for each of the
four actions recognized during the experiments.

the actions. These figures also show that ”Standing” and ”Sitting”
are better classified than ”Walking” and ”Running”. As discussed
earlier in Section 1, this is because ”Walking” and ”Running” are
similar actions and it is comparatively difficult to distinguish be-
tween them, although our method is still able to distinguish be-
tween these to a large extent. Reconstruction of an imaged action
after projection onto the action basis for “Sitting” is shown, along
with its coefficients for each of its 11 basis is shown in Figure 8.

6 Summary and Conclusions

In this paper we have developed a framework for learning the vari-
ability in the execution of human actions that is unaffected by the
changes. Our hypothesis is that any instance of an action can be
expressed as a linear combination of spatio-temporal action basis,
capturing different personal styles of execution of an action, dif-
ferent sizes and shapes of people, and different rates of execution.
We demonstrate that using sufficientimagedexemplars of actions,
an action as view from a camera can be recognized using the an-
gle between the subspace of the exemplars and the subspace of the
inspection instance. This concept is related to earlier factoriza-
tion approaches proposed by (among others) Tomasi and Kanade
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Figure 7:Video sequences used in the experiments. Actors of both genders, and of different body proportions were observed performing
actions in different styles. (a) Sitting sequences. Clearly, each actor sits in a unique way, with legs apart, or one leg crossed over the other.
(b) Walking sequences. Sources of variability include arm swing, speed, and stride length.

in [16], and Bregleret al. in [2]. In particular in [2], non-rigid
motion viewed by a single camera over time was modeled as a
linear combination 3D shape basis. However, rather than factor-
izing measurement matrices constructed from a single camera, in
the case of objects, we factorize measurement matrices captured
across multiple cameras. In this work, we are not interested in ex-
plicitly recovering the actual three (or four) dimensional actions
or action bases, but instead to use the constraints they provide to
perform recognition. Future directions could involve recovering
the 4D structure of an action explicitly, aided by action bases.
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