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1. Introduction

With the sophistication of artificial vision systems, the need to endanger
human lives for many hazardous activities is increasingly proving to be
avoidable. From aerial reconnaissance missions to space exploration, many
projects stand to benefit, in particular, from the sophistication in tech-
niques to precisely find world positions of objects present in video data.
Unfortunately, mechanical automation of such a task is complicated by
the narrow fields of view of video data and the inaccuracy of mechanical
information available describing the position of the camera in the world.
Instead, computer vision techniques can be used to successfully align any
given video frame with pre-calibrated reference imagery. After alignment,
a video frame inherits pixel-wise calibration and as a consequence objects
in the frame are exactly placed in the world. This ability to accurately po-
sition objects like buildings, roads, landing sites and spatial landmarks in
general, facilitates precise automation of actions that previously required
human intervention. The core challenge then is to develop techniques to
autonomously align video sequences to pre-calibrated reference imagery.
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Significant research effort has been expended towards frame-to-frame
registration (the spatial alignment of successive frames of a video sequence)
and it is now largely acknowledged to be a solved problem. However, frame-
to-frame registration techniques are not easily generalized to frame-to-
reference registration (alignment of video frames with pre-calibrated refer-
ence imagery), since the reference image may be captured from a different
viewpoint, through a different modality or at a different time altogether.
As a result, the mapping between corresponding pixels in the frame and
reference is often highly complex and unmodelled. In particular, the large
duration of time that may elapse between capturing of the reference and the
video frame can produce distortions from extreme change in illumination
to the total absence of certain visual features in either one of the two im-
ages. Furthermore, inconsistencies of textured areas like forests or plateaus
may be introduced due to seasonal changes, due to changes in illumination
or simply because of intrinsic differences in cameras. Clouds, blurring, and
occlusion by vehicle parts may exacerbate these problems even further. As
these problems are not encountered in frame-to-frame registration prob-
lems, related registration techniques do not take them into consideration.
Furthermore, from a conceptual point of view, however accurate frame-to-
frame registration may be, it can only provide positional information of a
given object relative to the camera. In order to accurately recover the abso-
lute position of an object in the world (in the form of geo-coordinates or any
fixed world coordinates), some accurate standard of reference is required.

However, despite these limitations, the framework for frame-to-frame
registration is useful in approaching frame-to-reference registration as well.
Image registration, in general, can be defined as a search for the ideal spatial
transformation between two images. If I1(~x) and I2(~x) are the two image
arrays, their relationship is defined as

I1(~x) ≡ I2(f(~x)), (1)

where f(~x) is the set of allowable transforms for each image I2(~x). Within
the taxonomy of [14], parametric alignment is achieved by a search over the
transformation parameters, ~p, that would maximize some global measure
of ‘fit’ or similarity, between I1(~x) and I2(W (~x; ~p)), where W (~x; ~p) is the
set of allowable parametric transformations.

The situation addressed in this chapter is the geo-registration of an in-
coming video frame with precisely calibrated reference imagery. The video
frame is captured by a camera mounted on an aircraft and is referred to as
the Aerial Video Frame, Ivideo(~x). As shown in Figure 1, the angle at which
an aerial photograph is taken is often used to classify the photograph into
one of three types: Nadir, High Oblique and Low Oblique. Photographs are
classified as Nadir when the camera axis points directly downwards, as High
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Figure 1. Aerial Photograph Classifications. Depending on the angle of the optical axis
the aerial photograph can be classified into one of the following three categories: Nadir,
High Oblique and Low Oblique.

Oblique when the camera axis makes a large angle with the ground and Low
Oblique when the horizon is visible in the photograph. These angular differ-
ences are computed using the position and attitude of the camera relative
to a point in the real world which is detailed in the telemetry (meta-data)
accompanying each video frame. Telemetry is an automatic measurement
of data that defines the position of the camera in terms of nine parame-
ters: vehicle latitude, vehicle longitude, vehicle height, vehicle roll, vehicle
pitch, vehicle heading, camera elevation, camera scan angle and camera
focal length. This telemetry information can be used in conjunction with
a sensor model to place the video frame relative to the Reference Imagery
in a world coordinate (or vice versa). The Reference Imagery is a high-
resolution orthographic image, usually with a Ground Sampling Distance
of ∼1 (meaning a pixel corresponds to 1 m2 on ground). This Reference Im-
agery is geodetically aligned, and has an associated Digital Elevation Map
(DEM), so that each pixel of the Reference Imagery has a precise longitude,
latitude, and height associated with it. Figure 2 pictorially explains the na-
ture of the Reference Imagery available along with its associated DEM.
The Reference Imagery, which covers a substantial area, is cropped on the
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Figure 2. The Reference Imagery and its associated DEM. The Reference Imagery is
geodetically aligned, i.e. each pixel has a longitude, longitude, and elevation associated
with it. (a) The Reference Image is a high-resolution intensity array (6856 x 8292) with
each pixel corresponding to 1m2 in the real world. (b) The Digital Elevation Map (DEM)
is of lower resolution compared to the Reference Imagery but can be interpolated to
provide an elevation for each reference image pixel. Array elements of higher elevation are
shown to have brighter intensity values. (c) The 3 dimensional display of the texturized
elevation map. The axes are 102 m i.e. 1 pixel corresponds to 1m2 in the real world.

basis of the telemetry data to a smaller area corresponding to Ivideo(~x) (see
Figure 4). This Cropped Reference Image is subsequently referred to as
Iref (~x).

There are several challenges specific to Aerial Video Geo-Registration
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that can be identified individually. First, it should be noted that the two
imageries are in different projection views: Ivideo(~x) is an image of perspec-
tive projection, whereas Iref (~x) is an image of orthographic projection.
While the telemetry information can be used with a sensor model to bring
both images into a single projection view, telemetry noise present at high
altitudes can cause geo-positioning errors of up to 100m. Second, because
of the large duration of time that elapses between the capturing of the two
images, data distortions like severe lighting and atmospheric variations and
object changes in the form of forest growths or new construction cause a
high number of disjoint features (features present in one image but not in
the other). Third, it should also be noted that remotely sensed terrain im-
agery, in particular, has the property of being highly self-correlated both
as image data and elevation data. This includes first order correlations (lo-
cally similar luminance or elevation values in buildings), second order cor-
relations (edge continuations in roads, forest edges, and ridges), as well as
higher order correlations (homogeneous textures in forests and homogenous
elevations in plateaus). Therefore, a central challenge in achieving precise
geo-registration is the reliable handling of the outliers caused by the data
distortions and ambiguities that have been described in this paragraph.

The objective of this work is to recover a meaningful adjustment of
the sensor parameters based on the spatial registration of Aerial Video
Frames with Reference Imagery. Furthermore, pixel-wise assignment of pre-
cise three-dimensional locations can be computed for an incoming video
frame as it would be aligned with the geodetically calibrated Reference Im-
agery. The overlaying of a registered frame on the reference environment
is illustrated in Figure 3. Figure 4 shows the difference between the Aerial
Video Frame and the Reference Image, and successful geo-registration be-
tween the two. It can be observed that not all buildings present in the Aerial
Video Frame are present in the Reference Image and vice versa. Thus such
‘geo-registration’ can be effectively used for updating aerial maps, accu-
rate targeting and providing accurate geo-locations for objects of interest.
Geo-registration can be used for creating geo-mosaics [30] and annotation
of video data as well [25].

The remainder of this chapter is structured as follows. Section 2 reviews
and categorizes related work. Section 3 discusses procedures employed in
bringing both images into a common viewing space. Section 4 describes the
processes involved in the geo-registration of images, which is followed by a
discussion of the results and conclusion in Sections 5 and 6, respectively.
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Figure 3. Draping an Aerial Video Frame. A video frame is registered in the real world
with the reference image. As the geodetic position of each pixel in the reference image is
accurately known, the corresponding pixels in the aerial image inherit this information.

2. Related Work

In the past, substantial research has been directed towards determining the
geo-location of objects from an aerial view. Several systems such as Terrain
Contour Matching (TERCOM) [2], SITAN, Inertial Navigation/Guidance
Systems (INS/IGS), Global Positioning Systems (GPS) and most recently
Digital Scene-Matching and Area Correlation (DSMAC) have already been
deployed in applications requiring geo-location. While each of these systems
has had some degree of success, several shortcomings and deficiencies have
become increasingly apparent. By understanding the limitations of these
systems, we can acquire a better appreciation for the need of effective image-
based systems.

As the name suggests, TERCOM (Terrain Contour Matching) fixes the
position of airborne vehicles by matching elevation contours detected by
radar, with stored digital contour data. TERCOM operates on the premise
that the elevation contours of a given terrain area uniquely distinguish it
from any other. This premise is evidently violated in plateaus and wherever
terrain relief is below sensor detection capability, as well as areas containing
ridge-like relief (the aperture effect). Moreover, systems like TERCOM are
not a ‘passive’ means of geo-location as they require the emission of inter-
ceptable electromagnetic emission. One passive alternative is INS, which
is a gyroscopic-based technology that has the ability to accurately mea-
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Figure 4. Registration of the Aerial Video Frame with the Cropped Reference Image.
(a) Based on the telemetry data, that specifies the corresponding area of the Reference
Imagery the camera is capturing, the Reference Image is cropped. (b) The aerial video
frame before and (c) after geo-registration with the Cropped Reference Image. It should
be noted that the Reference Image is an Orthographic Image while the Aerial Video
Frame is a Perspective Image.
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sure telemetry information of an airborne vehicle. However, despite the
fact that this system produces only slight errors, these errors are cumula-
tive and furthermore the most accurate systems are usually too expensive
for widespread use. Global Positioning Systems are a reliable and cheaper
alternative that use the concept of trilateration to estimate the position of
a GPS receiver, however GPS systems are susceptible to interference and
may be blocked altogether.

Although the aforementioned technologies were able to revolutionize
many military and domestic functions, the problems highlighted here mo-
tivated the advent of image-matching techniques to exactly recover the
position of an airborne vehicle in the real world. Image-based geo-location
has two properties in particular that motivate its use: First, it is a passive
positioning approach, i.e. it does not rely on electromagnetic emission that
may be distorted or blocked. Second, it allows geo-positioning per frame,
so the small errors that may be incurred are not cumulative. One example
of a deployed image-based technology is DSMAC. It converts the scenes
picked up by the missile’s camera to simplistic binary images, and cannot
rotate or scale images. Due to this crudeness of the matching model this
attempt has had limited field success. It was quickly realized that even
small mechanical vibrations that are commonplace on such vehicles could
cause significant error in high altitude cameras, and therefore solving the
resulting problem of image alignment was a difficult one. As a result, many
assorted approaches of aligning images to recover geo-location information,
or ‘geo-registration’ as it is often called, have subsequently been proposed,
some strictly using computer vision concepts, and others implicitly incorpo-
rating earlier contour matching and inertial navigation concepts into their
geo-registration algorithms.

Two types of approaches can be distinguished: Elevation-Based Corre-
spondence and Image-Based Correspondence. Elevation-Based approaches
have the general drawback that they rely on the accuracy of recovered eleva-
tion from two frames, a task found to be notoriously difficult. Furthermore
the contour-based approach in [13] is unlikely to find correct matches in
areas of self-correlated elevation like plateaus and ridges when correspon-
dence is difficult to establish. On the other hand, the research literature of
image-based correspondence is quite vast; [15] is a general survey of some
of these registration techniques. However, conventional techniques are li-
able to fail because of the inherent differences between the two imageries.
‘Direct methods’ of alignment typically minimize a parametric error func-
tion specified in terms of some image measurable quality such as bright-
ness constancy (corresponding pixels will have equal intensity values as in
[14], [17]). These methods are liable to fail since many corresponding pix-
els are often dissimilar. In such a case, there is little statistical correlation
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between the imageries globally. Alignment by maximization of Mutual In-
formation [20] is another frequently used registration approach, and while
it provides high levels of robustness it also allows many false positives when
matching over a search area of the nature encountered in Geo-Registration.
Furthermore, formulating an efficient search strategy is difficult. On the
other hand, specific to geo-registration, several intensity based approaches
to geo-registration intensity have been proposed. We will investigate previ-
ous work on geo-registration subsequently, followed by a description of our
work.

2.1. ELEVATION BASED GEO-REGISTRATION

Elevation based algorithms attempt to achieve alignment by matching the
DEM with an elevation map recovered from video data. Rodrequez and Ag-
garwal in [13] perform pixel-wise stereo analysis of successive frames to yield
a recovered elevation map or REM, as the initial Data Rectification step.
Next, to bring the REM and DEM into a common representation both are
converted into ‘cliff maps’, which are the contours of zero crossings of the
elevation map after convolution with a Laplacian of Gaussian Filter. Along
these cliff contours (expressed in terms of chain code), local extrema in
curvature are detected to define critical points. To achieve correspondence,
each critical point in the REM is then compared to each critical point in the
DEM. A hypothesis/verification scheme is used, where a match is hypoth-
esized if the mean squared error between the REM and DEM critical point
neighbourhood is small. From each hypothesis instance, a transformation
between REM and DEM contours can be recovered. After transforming the
REM cliff map by this transformation, alignment verification is performed
by finding the fraction of transformed REM critical points that lie near
DEM critical points of similar orientation. While this algorithm is highly
efficient and lends itself easily to real-time implementation, it runs into
similar problems as TERCOM i.e. it is likely to fail in plateaus, ridges
and depends highly on the accurate reconstruction of the REM. Recov-
ering elevation from stereo is a challenging task and no relevant solution
was proposed. In [31], Sim and Park propose another geo-registration al-
gorithm that reconstructs a REM from stereo analysis of successive video
frames. Normalized Cross Correlation based point-matching is used to re-
cover the elevation values. Both elevation maps are rectified into a relative
elevation map with respect to a pre-defined maximal feature point. To es-
tablish correspondence, a set of sample feature points are selected along a
fixed row with equal intervals and a search area of 5x5 pixels is defined be-
tween the relative REM and DEM. For each possible match, an evaluation
of cumulative difference between the relative REM at each feature point,
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and the associated relative DEM at the search instance is computed. The
translation that minimizes this cumulative difference is then chosen to be
the correspondence between the REM and DEM. In another approach pro-
posed by the same group ([18]) a relative position estimation algorithm is
applied between two successive video frames, and their transformation is re-
covered using point-matching in stereo. As the error may accumulate while
calculating relative position between one frame and the last, an absolute
position estimation algorithm is proposed using image based registration in
unison with elevation based registration. The image based alignment uses
Hausdorff Distance Matching between edges detected in the images. The
elevation based approach estimates the absolute position, by calculating
the variance of displacements. These algorithms, while having been shown
to be highly efficient, restrict degrees of alignment to only two (translation
along x and y), and furthermore do not address the conventional issues
associated with elevation recovery from stereo.

2.2. INTENSITY BASED GEO-REGISTRATION

Intensity-based approaches to geo-registration use intensity properties of
both imageries to achieve alignment. Work has been done developing image-
based techniques towards registration of two sets of reference imageries [16],
as well as the registration of two successive video images ([14], [17]). How-
ever, it was found that for frame-to-reference registration a different set of
issues needed to be tackled. As the video data and the reference imagery
are usually in different projection views the initial view rectification module
is usually required. In [27], Cannata et al use the telemetry information to
bring a video frame into an orthographic projection view, by associating
each pixel with an elevation value from the DEM. As the telemetry infor-
mation is noisy the association of elevation is erroneous as well. However,
for aerial imagery that is taken from aircrafts of nadir orientation the rate
of change in elevation may be assumed low enough for the elevation error
to be small. By ortho-rectifying the aerial video frame, the process of align-
ment is simplified to a strict 2D registration problem. Correspondence is
achieved by taking 32 × 32 pixel patches uniformly over the aerial image
and correlating them with a larger search patch in the Reference Image,
using Normalized Cross Correlation. As the correlation surface is expected
to have a significant number of outliers, four of the strongest peaks in
each correlation surface are selected and consistency measured to find the
best subset of peaks that can be expressed by a four parameter affine trans-
form. Finally, the sensor parameters are updated using a conjugate gradient
method, or by a Kalman Filter to stress temporal continuity.

An alternate approach is presented by Kumar et al in [22] and by Wildes
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et al in [29] following up on that work , where instead of ortho-rectifying the
Aerial Video Frame, a perspective projection of the associated area of the
Reference Image is performed. This approach avoids the errors involved
in associating elevations with each aerial video pixel on the basis of the
telemetry information and therefore does not make any assumptions about
the rate of change of the elevation information. In [22], two further data
rectification steps are performed. Video frame-to-frame alignment is used to
create a mosaic providing greater context for alignment than a single image.
For data rectification, a Laplacian filter at multiple scales is then applied
to both the video mosaic and reference image. To achieve correspondence,
two stages of alignment are used: coarse followed by fine alignment. For
coarse alignment salient (feature) points are defined as the locations where
the response in both scale and space is maximum. Normalized correlation
is used as a match measure between salient points and the associated refer-
ence patch. One feature point is picked as a reference, and the correlation
surfaces for each feature point are then translated to be centered at the
reference feature point. In effect, all the correlation surfaces are superim-
posed, and for each location on the resulting superimposed surface, the top
k values (where k is a constant dependant on number of feature points) are
multiplied together to establish a consensus surface. The highest resulting
point on the correlation surface is then taken to be the true displacement.
To achieve fine alignment, a ‘direct’ method of alignment is employed, min-
imizing the SSD of user selected areas in the video and reference (filtered)
image. The plane-parallax model is employed, expressing the transforma-
tion between images in terms of 11 parameters, and optimization is achieved
iteratively using the Levenberg-Marquardt technique.

In the subsequent work, [29], the filter is modified to use the Lapla-
cian of Gaussian filter as well as it’s Hilbert Transform, in four directions
to yield four oriented energy images for each aerial video frame, and for
each perspectively projected reference image. Instead of considering video
mosaics for alignment, the authors use a mosaic of 3 ‘key-frames’ from the
data stream, each with at least 50 percent overlap. For correspondence,
once again a local-global alignment process is used. For local alignment,
individual frames are aligned using a three-stage Gaussian pyramid. Tiles
centered around feature points from the aerial video frame are correlated
with associated patches from the projected reference image. From the cor-
relation surface the dominant peak is expressed by its covariance structure.
As outliers are common, RANSAC is applied for each frame on the covari-
ance structures to detect matches consistent to the alignment model. Global
alignment is then performed using both the frame to frame correspondence
as well as the frame-to-reference correspondence, in three stages of progres-
sive alignment models. A purely translational model is used at the coarsest
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level, an affine model is then used at the intermediate level, and finally a
2D projective model is used for alignment. To estimate these parameters
an error function relating the Euclidean distances of the frame-to-frame
and frame-to-reference correspondences is minimized using the Levenberg
Marquardt Optimization.

The major limitation of the intensity based approaches are the as-
sumptions that are made. In [27] such an assumption is made implicity
through the choice of an orthographic system model, since the error of
ortho-rectification increases with the magnitude of terrain relief. While
such an error is avoided by use of perspective projection in [29], strong
assumptions of scene planarity are made during correspondence, first with
a translational local matching, followed by the progressive pyramid pro-
posed. Though these assumption may hold in many cases, and they may
simplify computation significantly, they are liable to introduce error when
scene relief increases. Furthermore, since generic transformation models are
being used, transformations that are not physically realizable (like single
dimensional shears or scalings) are included within the set of allowable
transformations that is searched.

2.3. OUR WORK

In this chapter, we outline a method to recover geodetic alignment for
a video sequence, while plausibly adjusting the sensor telemetry parame-
ters. An intensity-based approach was favored over an elevation-based one
because recovering elevation from a video sequence has proven to be unreli-
able, particularly when the scene is as highly self-correlated as aerial video
often is. A salient aspect of earlier work in intensity-based approaches was
the generation of local correlation surfaces by translating a template. In-
stead of imposing such a strict translational constraint on motion so early
on in the alignment estimation process, we propose an algorithm that com-
putes local similarity measures, and utilizes them to directly estimate global
similarity. Since we do not generate similarity surfaces, our method can
recover larger rotation, shear and scaling and does not degenerate when
higher order parametric models of motion are used or when scene relief
is high. We correct the correlation coefficient to allow coefficient addition
by the use of Fisher’s Z-transform and detail a modification of the error
function to inherently allow optimal registration in the presence of outliers
caused by disjoint features or the dissimilarity in sensors. Finally, since the
estimation procedure is performed by adjustment of the telemetry param-
eters, an update of telemetry information is output, along with pixel-wise
calibration of the aerial video image. The general workflow is diagrammat-
ically expressed in Figure 5.
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Figure 5. The Geo-registration Work-Flow. This diagram gives a general overview of
the inputs, processing and output of the proposed algorithm. δp is the iterative sensor
parameter update predicted by the optimization algorithm.

3. Rectifying the Projection View

Since the aerial video data is a sequence of perspective images and the
Reference Imagery is high-resolution orthographic image, the transforma-
tion between any arbitrary video frame and the reference image can be
quite large. As a result, robustly recovering these transformations is a dif-
ficult and unsolved task, even when the images have high visual similarity.
Fortunately, each aerial video frame is accompanied by telemetry (meta)
data detailing the position and orientation of the sensor (camera). By us-
ing the telemetry and elevation data to generate a sensor model, the two
imageries can be projected into a common projection view. Ideally, if the
telemetry data were noiseless, there would be no need for further correspon-
dence, but due to mechanical vibrations and turbulence, image rectification
using the telemetry provides only coarse alignment. While the estimate pro-
vided by the telemetry information is sufficiently close to make the problem
tractable, the visual differences between the images are still acute enough
to make the precise adjustment a challenging task. In this section we com-
pare two approaches to bringing the images into a common projection view:
ortho-rectification and perspective projection, followed by details involved
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Figure 6. Projection Views. Top Left: Original Aerial Video Image in Perspective View.
Bottom Left: An orthographic view of the Aerial Video Image. Bottom Right: Cropped
Reference Image in Orthographic View. Top Right: Perspective View of Reference Image.

in using the telemetry information to bring both image into a common view
projection (shown in Figure 6). Such projection constitutes the first module
of our geo-registration algorithm.

3.1. ORTHO-RECTIFICATION VS PERSPECTIVE PROJECTION

Image projections (transformations of the 3D world onto a 2D projection
plane) are either perspective or parallel. The distinction between these two
projections is the position of the center of projection relative to the image
plane. In perspective projection, the center of projection lies close to the
image plane and therefore the lines of projection (all of which converge at
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the center of projection) may meet the image plane at different angles (i.e.
they are not parallel). The visual manifestation of this phenomenon is per-
spective fore-shortening, where objects at larger distances appear smaller
than similar objects up close. In parallel projection views, like orthographic
projection, a line at infinity is defined, and the center of projection is said
to lie on that plane. The projection lines are therefore parallel, since they
all ‘intersect’ at the plane at infinity. Figure 7 (a) and 7 (b) illustrate
the differences between both projections. Since the aerial video data is re-
ceived from a camera mounted on an aircraft, it is a perspective image.
On the other hand, the Reference Image is a high-resolution photograph
taken from high altitude cameras, available as an orthographic image (in
parallel view). To analyze both images in a common projection view, two
options emerge: (1) An ortho-rectification of the Aerial Video Frame as in
[27], or (2) a perspective projection of the Reference Image as performed
in [13], [22], [29]. These two alternatives have already been shown in Fig-
ure 6 and the spatial relationship between them is illustrated in Figure 7
(c). Since the sensor and elevation model of the scene are available it is
possible to perform such rectification of projection. Ideally, if the telemetry
and elevation information are accurate, both these projections should be
equivalent, but noise in the telemetry brings about certain differences in
each approach.

The general importance of Orthographic Projection is that this pro-
jection preserves both distances and angles, and there is no distortion of
shape or distance in any two-dimensional transformation. For purposes of
rectification, the utility of orthographic projection lies in its independence
from depth values of pixels. If both the Aerial Video Frame and the Ref-
erence Image are projected as orthographic images, transformations can
be restricted to two-dimensions, and these transformations are easier to
estimate robustly. It is also important to note that by definition any two-
dimensional transformation of an orthographic or accurately ortho-rectified
image should not reveal hidden surfaces, nor occlude currently exposed sur-
faces. The main drawback of working exclusively in the orthographic view,
however, is that the process of ortho-rectifying the Aerial Video Frame re-
quires the elevation values corresponding to each image pixel. Since the
telemetry is noisy, a projection error results when each pixel is traced to
the Digital Elevation Map (to recover its elevation), and thus the projected
ortho-rectified image will not strictly be an accurate orthographic repre-
sentation of the Aerial Video Frame. This error can often be assumed to
be negligible if the camera is nadir or the environment is one of low eleva-
tion rate of change. However, for environments of moderately high rates of
change, and more so for low flying aircrafts, such an assumption is often
violated.
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Figure 7. Image Projections. (a) In perspective projection the projection lines converge
at the center of projection close to the image plane. (b) In Parallel projection the pro-
jection lines remain parallel and converge at infinity. (c) The relationship between the
perspective projection lines and the parallel or orthographic projection lines. To re-create
an orthographic image from a perspective view, the corresponding elevations of the per-
spective image pixels in the world are required.
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For the general case, inclusive of oblique cameras and environments of
high rate of change in elevation, this inaccuracy can be avoided altogether
if the Cropped Reference Image is instead perspectively projected. Since
both the Digital Elevation Map and the Reference Image are geodetically
co-registered, the Reference Imagery can be used to texturize the DEM
(Figure 2), effectively assigning each reference pixel an accurate elevation
value (as far as the accuracy of the DEM allows). Thus while viewing the
Reference Image from the perspective projection view, the elevation value
for each pixel is known and the view as it should appear from the camera
according to the telemetry information can be generated accurately. The
drawback involved with working in the perspective projection view mainly
pertain to an increase in complexity, since accurately aligning large displace-
ments requires the estimation of three-dimensional transformations, and
accuracy can be lost by making assumptions of scene planarity. However,
this nominal increase in complexity is outweighed by the errors avoided in
many potential situations. Therefore, in the interest of maintaining a gen-
eral framework for geo-registration, we employ a perspective projection of
the Reference Image. It should be noted that if the perspective projection
model is precisely followed any transformation may expose hidden surfaces,
or alternately occlude exposed ones.

3.2. PERSPECTIVE PROJECTION OF THE REFERENCE IMAGE

The first step in perspective projection is setting up the reference envi-
ronment. The elevation data is triangulated to form a mesh-surface, and
subsequently texturized with the Reference Imagery. In this way, each ref-
erence pixel is exactly calibrated with a latitude, longitude and elevation.
This accurate co-registration of the reference image and the elevation map
is the basis for perspective projection (which will be elaborated presently).
Using information from the telemetry, the point of intersection between the
camera projection axis and the reference surface is defined as the Reference
Origin. A world coordinate system is defined around this Reference Origin
as

~Xworld = [Xworld, Yworld, Zworld]. (2)

Next, a sensor model is defined. The sensor (camera) is mounted on an
aircraft, and Figure 9(a) shows the camera’s 3-D coordinate system. This
camera coordinate system is defined, relative to the camera’s Center of
Projection, as

~Xcamera = [Xcamera, Ycamera, Zcamera]. (3)

Telemetry information is then used to recover the position and orien-
tation of the aircraft, with respect to the world coordinate system. This
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Figure 8. Perspective Projection of the Reference Image. (a) The Aerial Video Frame
displays what the camera actually captured during the mission . (b) Orthographic Foot-
print of the Aerial Video Frame on the Reference Imagery (c) The Perspective projection
of Reference Imagery displays what the camera should have captured according to the
telemetry.

relationship is expressed as

~Xcamera = Πt
~Xworld, (4)

where the coordinate transformation matrix Πt is

Πt =




cosω 0 − sinω 0
0 1 0 0

sinω 0 cosω 0
0 0 0 1


 ·




cos τ − sin τ 0 0
sin τ cos τ 0 0

0 0 1 0
0 0 0 1



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·




cosφ 0 − sinφ 0
0 1 0 0

sinφ 0 cos φ 0
0 0 0 1


 ·




1 0 0 0
0 cosβ sinβ 0
0 − sinβ cosβ 0
0 0 0 1




·




cosα − sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1


 ·




1 0 0 ∆Tx

0 1 0 ∆Ty

0 0 1 ∆Tz

0 0 0 1


 , (5)

or more concisely,

~Xcamera = GyGzRyRxRzT ~Xworld, (6)

where Gy is a rotation matrix in terms of the camera elevation angle ω, Gz

is a rotation matrix in terms of the camera scan angle τ , Ry is a rotation
matrix in terms of the vehicle pitch angle φ, Rx is a rotation matrix in
terms of the vehicle roll angle β, Rz is a rotation matrix in terms of the ve-
hicle heading angle α, T is the translation matrix derived from the vehicle
latitude, longitude and height. The details of converting vehicle longitude
and latitude to meter distances from the given reference point can be found
using many cartographic texts and for the scope of this paper, it is assumed
that the vehicle displacements ∆Tx, ∆Ty and ∆Tz are either available or
have been computed. Figure 9(b) shows the relationship between the cam-
era and world coordinate systems. Once the camera image plane has been
placed, it is possible to establish correspondence between Aerial Image Pix-
els and elevation data (DEM) by use of a simple ray tracer. It is reiterated
here that since the telemetry data is noisy the correspondence yielded by
the ray tracer is erroneous as well.

Therefore, instead of ortho-rectifying the Aerial Image using erroneous
elevation correspondence, we perspectively project the Reference Image us-
ing the exact elevation correspondence (since it is co-registered with the
DEM). To achieve this perspective projection of reference coordinates, we
define the homogeneous reference coordinates as

~Xref
world = [Xworld, Yworld, Zelev, 1], (7)

where zelev is taken from the co-registered DEM. Furthermore, the homo-
geneous perspective coordinates are defined as

~Xref
perspective = [Xperspective, Yperspective, Zperspective, 1]. (8)

Finally to project the reference image the following camera matrix is used

~Xref
perspective = Πc

~Xref
world, (9)
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Figure 9. Coordinate Systems. (a) The aircraft coordinate system is shown here. This is
the coordinate defined relative to an origin point in the world. For clarity, the additional
coordinate system of the camera relative to the aircraft has been omitted. (b) The aircraft
coordinate system shown relative to the origin in the real world. Based on the parameters
defined by the telemetry, the aircraft coordinate system is placed in within the real world.

where Πc is the Camera Matrix. It is calculated as

Πc = PΠt, (10)

where P is the perspective matrix (defined by the focal length) and Πt is
as defined in (6). The perspectively projected image can thus be gener-
ated by matching each projected pixel to its corresponding reference pixel
using (9). The spatial relation between the projected image and the ref-
erence data is shown in Figure 10. At this point it is instructive to note
that had the telemetry information been precise, computing the geodetic
coordinates of each aerial image pixel would have been a trivial exercise
of matching Reference Values with Pixel Coordinates. However, since the
telemetry information is noisy, the elevation and positional values assigned
to each pixel may be misaligned by up to a hundred pixel elements. It is
this displacement that is compensated for using spatial registration.

4. Alignment

In the introduction various sources of visual differences between the Aerial
Video Data and the Reference Imagery were pointed out. As a result of
these differences, brightness constancy constraints are regularly violated
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Figure 10. The relationship between the camera plane and the projected area on the
reference imagery. Placing a bounding box on the extremities of the footprint creates the
cropped reference image.

and therefore conventional direct alignment techniques that globally mini-
mize the brightness constancy constraint usually meet failure. While there
may not be strong global correlation between two corresponding images,
within small patches that contain corresponding image features, statistical
correlation has been shown to be significantly higher ([23]). In this section,
we present a direct alignment technique that globally maximizes an average
measure of local similarity by searching over the parameters of the teleme-
try. We begin with a discussion of sensor model update strategy, followed
by the construction of the error function using Normalized Cross Corre-
lation and the outlier rejection mechanism. Finally, we discuss the error
minimization strategy.

4.1. SENSOR MODEL UPDATE

In section 3.2 we described the sensor model in terms of eight transforma-
tion parameters and the camera focal length. For each Aerial Video Frame,
Ivideo these parameters are approximately detailed within the associated
telemetry data. To compensate for the misalignment between Ivideo and
Iref (projected using the telemetry), we adjust these parameters directly
to maximize alignment. Since the telemetry detail includes three vehicle
translational parameters, three vehicle rotation parameters, and two cam-
era rotation parameters, each with their individual co-variance values, we
use these co-variance values to perform a weighted optimization. The trans-
formed coordinate location ~xn+1 is defined as

~xn+1 = Π( ~xn;~a, ~ϕ), (11)
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where Π is the transformation, defined with respect to the pixel location ~xt

at iteration t, the sensor parameters ~a, and the co-variance values ~ϕ.

Optimizing over the parameters of ~a has two advantages over the use
of generic parametric transformation (e.g. affine, projective). First, along
with alignment, the telemetry information is simultaneously refined as well.
Thus the system can be used not only as a means to calibrate what is be-
ing viewed but also to passively determine where the scene is being viewed
from. Second, searching over the telemetry parameters inherently excludes
physically unrealizable transformations. The set of allowable transforma-
tions within a generic transformation matrix includes transformations like
single dimensional shears and scalings that cannot be realistically achieved
by the sensor setup. Because of these advantages, the sensor parameters are
updated to optimize a measure of alignment, defined as the optimization
function, between the two images.

4.2. OPTIMIZATION FUNCTION

A pixel’s intensity, while actually a measurement of the brightness at a
certain receptor on the CCD-array, is often treated as a pixel’s identity
and is used to measure similarity. The implicit assumption of brightness
constancy approaches is that pixels can be identified on the basis of their
brightness. In practice, of course, this is not always the case as illustrated
lucidly by the so-called ‘aperture-problem’ described by Stumpf (e.g. linear
ambiguity due to linear features). Although not a complete solution to the
aperture problem (which is an inherent ambiguity), the identity of a pixel
is often more uniquely expressed by the set of pixels centered at a given
pixel coordinate rather than just the one pixel itself. It directly follows
that similarity can be measured more reliably if the pixel identities are
more unique. One simple demonstration can be made with counting rules.
If local similarity is being measured between two images, a single pixel at a
coordinate can have one of a maximum of 256 ‘identities’. By expanding the
coordinate representation to a 3× 3 patch instead, not only do the number
of possible ‘identities’ increase drastically, important structural information
is captured as well. Hence, in order to have a stronger local measure, we
compute similarity between two patches at each location rather than simply
comparing two pixels. This point can also be made in terms of solving a
system of equations. Since, two dimensional flow estimation equations are
underconstrained for a single pixel, the Lucas and Kanade optical flow
estimation technique [4] assumes that neighboring pixels in a small window
have the same flow vectors. The system is then solved as an overconstrained
system. While Lucas and Kanade estimate local motion by looking over a
pixel neighborhood, we estimate local similarity over a pixel neighborhood
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and compute global motion by maximizing the sum of local similarity.
The objective function we use is a measure of global alignment between

the current Aerial Video Frame and Reference Image. For any state of the
sensor parameters this measure of global fit is defined locally, since stronger
correlation is likely to exist locally. However, unlike previous approaches, we
do not locally convolve correlation templates to recover correlation surfaces.
The similarity measure of choice is Normalized Cross Correlation, since it is
invariant to local contrast changes and closely approximates the statistical
correlation between two patches. Between Ivideo(~x) and Iref (Π( ~xn;~a, ~ϕ))
the measure of similarity is defined as

F (~x) =
∑

i

r(~xi;~a, ~ϕ)), (12)

where r is a correlation coefficient between two patches centered at each
pixel location. In order to ensure that F is a quantity to be minimized, we
define r as 1− ‖ρ‖ (the Normalized Cross Correlation Coefficient).

However, the Normalized Cross Correlation coefficient is not a linear
function of the relational magnitude between the images [1], and as a result,
correlation coefficients cannot simply be averaged. As a statistic, the r has
a sampling distribution (if n sample pairs from two signals were correlated
over and over again the resulting r’s would form a sampling distribution).
This distribution has a negative skew (negative bias). A transformation
called Fisher’s Z-transformation converts r to a value that is normally dis-
tributed and is defined as

zi =
1
2
[ln(1 + ‖r‖)− ln(1− ‖r‖)]. (13)

As a result of having a normally distributed sampling distribution, there
is an equal probability of detecting different correlation magnitudes and
hence they can be meaningfully added.

4.2.1. Incorporating an Outlier-Rejection Mechanism
Disjoint image features, local motion and photometric ambiguity may all
contribute to causing outliers. We propose a methodology to minimize the
effect of outliers on the global average of local similarity, by making an
observation about pixel identities. Changes in pixels of high dissimilarity
are given less importance than pixels with higher similarity. We observe
that the larger the dissimilarity between two pixels, the more likely they
are to represent different artifacts (disjoint features, local motion etc). In
order to ensure that similarity variations in areas of low similarity have
less of an effect on the global similarity measure than variations in areas of
high similarity we use a sigmoid response function. Since we use gradient
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Figure 11. Rectifying the Error Function. The error response of Sum of Squared Differ-
ence (left) encourages variations in pixels of low similarity. After rectifying with a sigmoid
response (right), pixels with high similarity have a larger effect on the error function.

information during optimization, the gradient behavior of our similarity
measure is of prime importance. We therefore modify the similarity measure
to ensure that minor changes in areas of large difference are ignored. The
sigmoid correlation function is

η(~xi,~a) =
1

1 + (1−‖ri‖
1+‖ri‖)

b
2

, (14)

where b is a constant that represents sensitivity to noise. Substituting the
value of z from equation (12) gives the final similarity measurement. At
every pixel (xi, yj), a similarity score, η(~xi;~a) is calculated between two
patches of size wx × wy centered at (xi, yj). Since the similarity score is
additive, the global similarity measure F is redefined summing for all (i,j)
as

F (a) =
∑

i

η(~xi;~a, ~ϕ)). (15)

4.2.2. Optimization Strategy
Optimizations are defined in terms of an objective (error) function, system
parameters that are to be adjusted to optimize the objective function and
an exit condition to terminate the search. In order to find the optimal align-
ment between the Projected Reference Image and the Aerial Video Frame
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we directly adjust the parameters of the sensor model defined in (9). By
adjusting these parameters we try to maximize a measure of ‘goodness’ of
alignment between the two images under inspection, the objective function,
defined in (15). The search for the optimal state of the sensor parameters is
performed using Finite-Difference Quasi-Newton Optimization. This algo-
rithm iteratively builds up curvature information to formulate a quadratic
model problem. Gradient information is required, which is provided using
finite differences. This method involves perturbing each of the sensor pa-
rameters, and thus calculating the rate of change of the objective function.
The algorithm was implemented in a hierarchical fashion over a pyramid,
since this provides an escape from local extrema and also performs analysis
at multiple frequencies. Typically, three major iterations are performed at
each level of a five level pyramid. Several options for exit conditions may
be used, like number of iterations, error thresholds, but the most often
employed exit condition is fired the change in error falls below a threshold.

The steps of the algorithm may be summarized as follows:

1. For each coordinate position (i, j) calculate the local similarity η(~xi;~a)
between the two 5×5 block around Iref (Π(~xt;~a, ~ϕ)) and Ivideo(~xi) using
normalized cross correlation. Sum η(~xi;~a) for all (i, j) to evaluate the
global measure of similarity.

2. Calculate δ~a, the update for ~a, using Quasi-Newton Maximization of
objective function.

3. Update ~a′ = δ~a · ~a.
4. Return to step one and repeat until exit condition is fulfilled.

5. Results

To demonstrate the algorithm described in this chapter, experimental re-
sults are presented in this section. Despite the substantial illumination
change to the extent of contrast reversal, examination of the results shows
a precise pixel-wise alignment. Figure 13, 14, 15, and 16 show the initial
Video Frame and Reference Imagery before and after registration. Visual
inspection reveals significant misalignment after perspective projection of
the reference image using the telemetry and sensor model. Attempts at min-
imizing this misalignment using brightness consistency constraints fails, but
with the proposed algorithm proposed in this chapter, accurate alignment
is achieved.

On the first clip, a pre-registration average error of 47.68 meters with a
standard deviation of 12.47 and a post-registration average error of 4.34 me-
ters and standard deviation of 3.19 per frame was recorded. On the second
clip, a pre-registration error of 51.43 meters with a standard deviation of
14.66 and a post-registration average error of 3.46 and a standard deviation
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of 2.91 was recorded. As ground truth was not available to assess the error
automatically, manual measurement was performed per frame. The results
on the two 30 key-frame clip is shown in Figure 12. The frames in the clip
contained adequate visual context to allow single frame registration.

The portion of the image set on which the algorithm presented did not
perform accurately, were of three types. The first type was images without
any features at all, like images of textured areas of trees. Since there was
little information providing constraints for alignment, it was difficult to
judge a successful alignment. The second problem faced was the linear
aperture problem, and thus only a single dimensional constraint could be
retrieved from them. The most convincing method of addressing both these
issues is using some form of bundle adjustment, as was used in [29]. These
methods were not used in this work since only video key-frames with little
or no overlap were available. The last problem faced was that of occlusion
by vehicle parts like tires and wings. This was addressed by calculating the
fixed positions of the vehicle parts with respect to the camera in terms of
the camera parameters (camera elevation angle, camera scan angle, and
camera focal length). The portion of the image is then ignored or if it
happened to cover too much of the image space then the image is ignored.

6. Conclusion

The objective of this chapter was to present an algorithm that robustly
aligns an Aerial Video Image to an Area Reference Image while realisti-
cally updating the sensor model parameters. As input the algorithm re-
ceives Aerial Video Data, noisy telemetry information, the DEM and its
associated area reference image. The major problems tackled here were
rectifying the images to bring them into a common projection view, geode-
tic assignment for aerial video pixels, and plausible sensor model parameter
adjustment. Various forms of distortions were tackled, adjusting for illumi-
nation, compensating for texture variation, handling clouds and occlusion
by vehicle parts. The first step in the algorithm was the perspective pro-
jection of the Reference Image using telemetry, elevation information, and
the sensor model to bring both images into a common projection view.
Alignment was then performed directly using normalized cross-correlation
without the use of a translating template. Instead local correlation val-
ues were summed to calculate an estimate of global similarity, a measure
then minimized using Quasi-Newton Minimization by Finite-Differences.
Instead of relying on planar transformation models, we perform per iter-
ation rendering to compute updates of the original telemetry parameters.
To compensate for the significant number of outliers, an intuitive outlier
rejection mechanism was used to reject outlying information directly. It is
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Figure 12. Misalignment errors. (a) Clip One: The pre-alignment and post-alignment
errors for 30 frames. A pre-registration average error of 47.68 meters with a standard devi-
ation of 12.47 and a post-registration average error of 4.34 meters and standard deviation
of 3.19 per frame was recorded. (b) Clip Two: The pre-alignment and post-alignment er-
rors for 30 frames. A pre-registration error of 51.43 meters with a standard deviation of
14.66 and a post-registration average error of 3.46 and a standard deviation of 2.91 was
recorded.

to be expected that the sensor data will improve with the forward march of
technology, bringing with it the possibilities of more sophisticated models
for the geo-registration problem. Any improvement in the accuracy of eleva-
tion data in particular would allow more confident use of three-dimensional
information and matching. Future directions of the work include solving the
initial alignment robustly in the perspective viewing space using more real-
istic rendering, and performing registration without continuous telemetry
information.
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