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Abstract

A representational gap exists between low-level mea-
surements (segmentation, object classification, track-
ing) and high-level understanding of video sequences.
In this paper, we propose a novel representation of
events in videos to bridge this gap, based on theCASE

representation of natural languages. The proposed rep-
resentation has three significant contributions over ex-
isting frameworks. First, we recognize the importance
of causal and temporal relationships between sub-events
and extendCASE to allow the representation of tempo-
ral structure and causality between sub-events. Second,
in order to capture both multi-agent and multi-threaded
events, we introduce a hierarchicalCASE representation
of events in terms of sub-events and case-lists. Last, for
purposes of implementation we present the concept of a
temporal event-tree, and pose the problem of event de-
tection as subtree pattern matching. By extendingCASE,
a natural language representation, for the representa-
tion of events, the proposed work allows a plausible
means of interface between users and the computer. We
show two important applications of the proposed event
representation for the automated annotation of standard
meeting video sequences, and for event detection in ex-
tended videos of railroad crossings.

Introduction
Human community and society are built upon the ability
to share experiences of events. Hence, in the enterprize of
machine vision, the ability to represent and share observed
events must be one of the ultimate, if most abstract, goals.
With computer vision techniques maturing sufficiently to
provide reliable low-level descriptions of scenes, the neces-
sity of developing semantically meaningful descriptions of
these low-level descriptors is becoming increasingly press-
ing. In this work, one primary objective is to present a co-
herent representation of events, as a means to encode the
relationships between agents and objects participating in an
event. We also emphasize, in particular, a representation that
allows computers to share observations with other comput-
ers and also with humans, in terms of events. Aneventis
defined as a collection of actions performed by one or more
agents.Agentsare animates that can perform actions inde-
pendently or dependently (e.g. people or robots). The practi-
cal need for formal representation of events is best illustrated
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through possible applications. These applications include:
(1) Surveillance: By definition, surveillance applications re-
quire the detection of peculiar events. Event representations
can be used for prior definition of what constitutes an in-
teresting event in any given domain, allowing automation
of area surveillance, (2)Video Indexing and Event Brows-
ing: Given a query for a certain event (defined in terms of
an event representation), similar instances can be retrieved
from a database of annotated clips, (3)Annotation: In the
spirit of MPEG-7, video sequences may be annotated au-
tonomously based on their content, (4)Domain Understand-
ing: It is noted that causality is an abstract that cannot be
directly inferred from a single video sequence. Through the
use of event representations, causality can be inferred be-
tween events in a single domain (e.g. surveillance of air-
ports) across several extended video sequences for domain
understanding.

In literature, a variety of approaches have been proposed
for the detection of events in video sequences. Most of
these approaches can be arranged into two categories based
on the semantic significance of their representations. This
distinction is important, since it determines whether hu-
mans can exploit the representation for communication. Ap-
proaches where representations do not take on semantic
meaning include Causal events (Brand 1997), Force dynam-
ics (Siskind 2000), Stochastic Context Free Grammars (Bo-
bick and Ivanov 1998), Spatio-temporal Derivatives (Zelnik-
Manor and Irani 2001), and geometric properties and ap-
pearance (Malliot, Thonnat, and Boucher 2003). While they
differ in approaches, the representations they employ do not
lend themselves directly to interpretation or interface to hu-
mans. Learning methods such as Bayesian Networks and
Hidden Markov Models (Ivanov and Bobick 2000) have
been widely used in the area of activity recognition. A
known drawback of learning methods is that they usually re-
quire large training sets of events and variation in data may
require complete re-training. Similarly, there is no straight-
forward method of expanding the domain, once training has
been completed. On the other hand, semantically signif-
icant approaches like the state machines (Koller, Heinze,
and Nagel 1991), and PNF Networks (Pinhanez and Bobick
1998) provide varying degrees of representation to the ac-
tions and agents involved in the events.

What is missing in these representations is coherence in
describing low-level measurements as ‘events’. Can these
representations be used to share knowledge between two



systems? Can events be compared on the basis of these
representations? How are these representations related to
human understanding of events? Can a human communi-
cate his or her observation of an event to a computer or vice
versa? By extending automatic generation of a natural lan-
guage ontology to event representation of a video, a plausi-
ble interface between the human and the computer is facili-
tated. One such natural language representation calledCASE

was proposed by Fillmore (Fillmore 1968) for language un-
derstanding. The basic unit of this representation is a case-
frame that has several elementary cases, such as an agen-
tive, an instrumental, and a predicate. Using these case-
frames Fillmore analyzed languages, treatingall languages
generically. However,CASE was primarily used for syntac-
tic analysis of natural languages, and while it provides a
promising foundation for event representation it has several
limitations for that end. Firstly, since events are typically
made up of a hierarchy of sub-events it is impossible to de-
scribe them as a succession of case-frames. Second, these
sub-events often have temporal and causal relationships be-
tween them, andCASE provides no mechanisms to represent
these relationships. Furthermore, there might be simulta-
neous dependent or independent sub-events with multiple
agentives, and change of location and instrumentals during
events. CASE was first investigated for event representation
(Neumann 1989), but the author did not investigate the tem-
poral structure of events as the author was not concerned
with eventdetection. More recently (Kojima, Tamura, and
Fukunaga 2001) addressed some shortcomings inCASE for
single person event detection with,SO- (source prefixed to
case),GO- (goal prefixed to case) andSUB (child frame de-
scribing a sub-event).SO- and GO- are prefixed to theLOC

(locative) case mostly describing the source and destina-
tion locations of the agent in the event. A concept hier-
archy of action rules (case-frames) was used to determine
an action grammar (ontology) for the sequence of events.
Also, using case-frames based on events, they reconstructed
the event sequence in the form of sentences. Their method
worked well for single person action analysis using theCASE

representation. However, this work did not address impor-
tant issues of temporal and causal relationships. Moreover,
no mechanisms were proposed for multiple-agents or multi-
threaded events.

We propose three critical extensions toCASE for the repre-
sentation of events: (1) accommodating multiple agents and
multi-threaded event, (2) supporting the inclusion of tem-
poral information ortemporal logicinto the representation,
and (3) supporting the inclusion ofcausalrelationships be-
tween events as well. We also propose a novel event-tree
representation, based on temporal relationships, for the de-
tection of events in video sequences. Hence, unlike almost
all previous work, we use both temporal structure and an en-
vironment descriptor simultaneously to represent an event.

The Extended CASE framework: CASEE

In this section, the three extensions to theCASE framework
are presented. Firstly, in order to capture both multi-agent
and multi-thread events, we introduce a hierarchicalCASE

representation of events in terms of sub-events and case-

lists. Secondly, since the temporal structure of events is
critical to understanding and hence representing events,
we introduce temporal logic into theCASE representation
based on the interval algebra in (Allen and Ferguson
1994). Lastly, we recognize the importance of causal
relationships between sub events and extendCASE to al-
low the representation of such causality between sub-events.

Multi-Agent, Multi-Thread Representation
Except in constrained domains, events typically involve
multiple agents engaged in several dependent or indepen-
dent actions. Thus any representation of events must be able
to capture the composite nature ofreal events. To represent
multiple objects, we introduce the idea of case-lists of ele-
ments for a particular case. For example, if there are more
than one agents involved in an event we add both in a case-
list within AG,

[ PRED: move,AG:{ person1, person2}, ...]

As in (Kojima, Tamura, and Fukunaga 2001), we useSUB to
represent a sub-event that occurs during an event. However,
this representation offers no means to representseveralsub-
events or multiple threads. To represent multiple threads we
add them to a list of sub-events in theSUB case. An example
is shown below,

“While Jack stole from the cashier, Bonnie robbed from the
bank as Clyde was talking to the cashier”

[ PRED: steal,AG: Jack,D: cashier,SUB:{
[ PRED: rob,AG: Bonnie,OBJ: bank ],

[ PRED: talk, AG: { Clyde, cashier} ] }
]

It should be immediately evident to the reader that the
above event representation is ambiguous as temporal
relations have not been defined. When did Clyde talk to the
cashier? Was it before, during or after the steal event. In
order to have an unambiguous representation, we need to
incorporate temporal relations in our representation. The
temporal relations are based on temporal logic, which is
described in the next section.

Temporal Logic
The temporal structure of events is critical to understanding
and hence representing events. Events are rarely instan-
taneous and often largely defined by the temporal order
and relationship of their sub-events. In order to represent
temporal relationships of sub-events, we introduce temporal
logic into the CASE representation based on the interval
algebra of (Allen and Ferguson 1994). We use this algebra
to represent seven temporal relationships1. This interval
temporal logic is shown in Fig. 1. Since temporal relation-
ship exist between sub-events, the temporal case is always
used in conjunction withSUB. The temporal case (e.g.
AFTER) assumes the value of the predicate of the case-frame
with which the temporal relationship exists. Consider, once
again, the above example of the bank robbery by Bonnie and

1A minor modification was made whereBEFORE was replaced
by AFTER with respective modification in the parameters for ease
of use inCASE



Figure 1: Allen’s interval algebra describing temporal logic be-
tween durationsT1 andT2.

Clyde, the case-frames with the temporal logic incorporated
are,

[ PRED: steal,AG: Jack,D: cashier,SUB:{
[ PRED: rob,AG: Bonnie,OBJ: bank,DURING : steal ],

[ PRED: talk, AG: { Clyde, cashier}, OVERLAP : steal ]}
]

The entire list of temporal cases, for two durationsT1 and
T2 is as follows,

AFTER : T start
2 > T end

1

MEETS : T end
1 = T start

2

DURING : (T start
1 < T start

2 ) ∧ (T end
1 > T end

2 )
FINISHES : (T end

1 = T end
2 ) ∧ (T start

1 < T start
2 )

OVERLAPS : (T start
1 < T start

2 ) ∧ (T end
1 > T start

2 ) ∧ (T end
1 < T end

2 )
EQUAL : (T start

1 = T start
2 ) ∧ (T end

1 = T end
2 )

STARTS : (T start
1 = T start

2 ) ∧ (T end
1 6= T end

2 )

It is ensured that each temporal case is unique. A little
thought should convince the reader that temporal relation-
ships between more than two events are also possible within
this scheme.

There is still a requirement for representing thedepen-
dencyof events. Some events require a causal relationship,
i.e. they will not occur independently and are conditional
upon other events. The representation so far does not
have the capability to codify causal relationships, which is
addressed in the next section.

Causality
In understanding the nature of events, the causal relation-
ships between the constituent sub-events are indispensable.
Some events might not occur if certain conditions were not
satisfied, while some events may be dependent on other
events. In order to explain this concept we show a simplistic
example below,

“Caravaggio pulled the chair therefore Michelangelo fell
down.”

[ PRED: pull, AG: Caravaggio,OBJ: chair,CAUSE:

[ PRED: fall, D: Michelangelo,FAC: down] ]

In the above example, Michelangelo would not have fallen
down if Caravaggio had not pulled the chair. Therefore the
‘fall’ and ‘pull’ event have a causal relationship. It should
be noted that only definite causal relations are represented

by theCAUSE case, instead of usingSUB. While the proposed
extension allows the representation of causal relationships,
it is noted that causal relationships cannot be inferred from
video measurements alone. In other words, it is impossi-
ble to make a distinction between two successive events,
and two causal events without some reasoning. Thus, from
the point of view of on-line processing of measurements,
videos are represented in terms of atemporal representation.
Events and sub-events are arranged in a hierarchy according
to the order of their temporal incidence and duration. Infer-
ring causality solely from these temporal representations is
a promising future direction.

Event Detection in Videos
In this section, we address some issues of implementing the
proposed representation for event detection in videos. Video
data is available as a discrete set of images, sampled on se-
quential lattices. Letf(p, t) represent a continuous video
signal, indexed by spatial and temporal coordinates respec-
tively. By indexing on the discrete-time variablek we can
temporally represent the video signal as the set{f [x, k]}
for 1 ≤ k ≤ N , whereN is the temporal support of the
video signal, andx = (x, y) denotes the spatial coordinate
(over some support). Here it is assumed that the lower-level
tasks of object detection, classification and tracking have
been performed for a stationary camera (corresponding to
the GSD of Neumann (1989)). Each object is represented
in terms of its label and motion, e.g.{persona, ua}, where
ua = { (x1, y1), (x2, y2), . . . (xN , yN ) } is the trajectory of
persona’s centroid. It is important to note that since it is
therelativeconcept of motion that we are interested in (e.g.
where didagent1 move to with respect toobject2?), two-
dimensional projections of three-dimensional world trajec-
tories are sufficient for event representation (barring some
degenerate configurations). Particular to each domain, do-
main objects and a vocabulary of predicates can be defined.
Conceptually, these are the ‘input’ into a system that repre-
sents these inputs in terms ofCASEE . For eventdetection,
a set of events are predefined as events of interest. In or-
der to detect these events of interest within an autonomously
generated representation of events in a video sequences, we
pose the problem as a subtree isomorphism. A similarity
measure is defined to guide the search for a match.

Maximal Subtree Isomorphism

The temporal structure ofCASEE can be intuitively visualized
as a rooted tree, with each vertex corresponding to a sub-
event (case-frame), and each edge corresponding to the tem-
poral relationship between two vertices (e.g.AFTER, MEET ).
A split occurs at the simultaneous incident of multiple sub-
events or when one of several sub-event ends during a parent
event. An example sub-tree is shown in Figure 2. The prob-
lem of detecting the occurrence of a pre-defined event can be
posed as finding a maximal subtree isomorphism. Given a
video stream, a rooted tree can be continuously grown based
on temporal relations of sub-events. Each pre-defined event
itself can be represented as a tree, too. For two rooted trees,
T1 = (V1, E1), the event-tree of the pre-defined events of



Figure 2: An Event Tree. The plot shows the temporal duration
of a succession of sub-events, and to the right of it is a tree repre-
sentation. Each vertex corresponds to a sub-event, and each edge
represents the temporal relationship with the parent vertex.

interest, andT2 = (V2, E2), the video event-tree, any bi-
jection φ : H1 → H2, with H1 ⊆ V1 andH2 ⊆ V2, is
a subtree isomorphism if it preserves the adjacency and the
hierarchy between vertices and ifT1(H1) andT2(H2) are
trees too. In our implementation, we employ a naive search
for the maximal subtree isomorphism. A more sophisticated
algorithm has been proposed in (Pelillo, Siddiqi, and Zucker
1999), where it shown that there is a one-to-one correspon-
dence between the maximal subtree isomorphism problem
and the maximal clique problem and, moreover, that a con-
tinuous formulation of the maximum clique problem can be
exploited to find a solution to the original subtree matching
problem. The cost function we wish to maximize is the simi-
larity of corresponding vertices, and the number of matching
edges. To that end, a measure of similarity between case-
frames, which correspond to vertices in the event-tree, is de-
fined next.

Similarity Most pattern recognition problems are based
on feature vectors of real-valued numbers usually with a
natural measure of distance between vectors. On the other
hand, in measuring the ‘similarity’ between nominal data as
in our case there is no clear notion of similarity (or metric).
However, within acompleteevent domain, where a complete
event domain is one where the set of possible objects and vo-
cabulary isuniquelydefined, it is possible to measure sim-
ilarity between case-frames. We wish to compare a pair of
observations(C1,C2), whereCi = [ci1, ci2, . . . , cip] cor-
responds to a case-frame and each element corresponds to a
case. If a certain case does not exist (e.g. if the location is
unspecified) the value of the element is Ø. Now for a com-
plete event domain, we can defineψ(cik, cjk),

ψ(cik, cjk) =

{ ∞ if cik = cjk = Ø
1 if cik = cjk 6= Ø
0 otherwise

and similarity is measured using the Jaccard coefficient (ra-
tio of sizes of intersection and union),

ρ(Ci,Cj) =

∑p

k=1
I(ψ(cik, cjk) = 1)∑p

k=1
I(ψ(cik, cjk) = 1) +

∑p

k=1
I(ψ(cik, cjk) = 0)

(1)

whereI is an indicator function. An evaluation of the Jac-
card Coefficient is shown in Figure 3.

Experiments and Discussion
We performed two sets of experiments (corresponding to
each domain), both were implemented to run in real time (30

Figure 3: Matching using the Jaccard Coefficient. A predefined
event-tree consisting of six vertices (case-frames) is matched with
an event-tree of a video sequence consisting of 148 vertices (case-
frames). The correct match occurs at the subtree rooted at frame
12 (the similarity maximum by the dotted red line). From top-left
to bottom-right the pre-defined predicate is perturbed so that pro-
gressively greater number of case-elements within the case-frames
mismatch.

fps) on a 2.1 GHz Pentium Machine. The first experiment
set involved the standard PETS test video for hand posture
classification, as well as 11 other unconstrained sequences
of human interaction. Initial object identification and la-
belling were performed manually, and further tracking was
performed using theMEANSHIFT tracking algorithm. The
objective was to perform a real-time generation ofCASEE

representations. Figures 4 shows snapshots of individuals
interacting in an unconstrained environment and their corre-
sponding event representations.

(a)

(c)

Figure 4: On-line CASEE representation of a video sequences.
Frames during the online CASEE generation are shown, with each
agent labelled. (a) Representation at Frame 150/237 for the Rail-
road Monitoring Experiment (b) (PETS Sequence) Representation
at Frame 1446/2000.



The second set of experiments was to the application of
CASEE to the domain of monitoring a railroad intersection.
In an independent railway study of 25,000 video sequences,
ten events of interest were identified in this domain. We
encoded each of these events using theCASEE representa-
tion and includeCASEE representations of these ten events.
The encoding of human interaction domain usingCASEE is
not shown due to space limitation, butCASEE can represent
events of two very different domains. The railroad scenario
was selected since it is a closed environment suited to for-
mal representation. For this domain, theCASEE was coded
for events of interest, and as the system producedCASEE rep-
resentations for the video stream, it monitored for the in-
cidence of each pre-defined event using the algorithm previ-
ously presented. At the instance of each frame, the motion of
each agent is analyzed and used to update the currentCASEE.
Results of the event detection are shown in Figure 5. The
experimental results for the precision and recall values are
summarized in Table 1.

No. of Events Ground False Precision Recall

Frames Detected Truth Positive % %

272 18 17 1 94.44 100
311 24 27 2 91.67 81.48
330 40 36 5 87.50 97.22
161 18 16 3 83.33 93.87
187 39 32 7 82.05 100
184 13 13 1 92.03 92.03
165 18 18 0 100 100
247 40 38 4 90 94.73
342 61 51 11 81.96 98.03
2000 102 108 7 93.13 87.96
335 32 29 5 84.37 93.10
402 34 28 7 79.41 96.42
237 9 10 1 88.89 80
223 4 4 0 100 100
486 12 9 3 75 100
192 9 8 1 88.89 100

Table 1: Summary of results for the two experiment sets.

Application of CASEE Representation for
Monitoring Railroad Intersections
Domain Entities

Vehicle A vehicle in the universe
Person A person in the universe
Train A train on the tracks
Gate Gate at the railroad crossing
Signal Signal at the railroad crossing
Zone1 Zone covering the area of activation for the signal
Zone2 Zone covering a designated high-risk area
Tracks The tracks that the train travels on

Domain Predicates Moves, Enters, Exits, Switches, Signals,
Breaks, Collides, Stops.

Domain Events

1. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle stops outside Zone2

[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Stops,AG: Vehicle,LOC : Zone2,FAC: Outside,AFTER : Moves ] ] ] ]

2. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle stops inside Zone2
[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Stops,AG: Vehicle,LOC : Zone2,FAC: Inside,AFTER : Moves ] ] ] ]

3. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle breaks the gate arm while entering Zone2
[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Enters,AG: Vehicle,LOC : Zone2,DURING : Moves,SUB:

[ PRED: Breaks,AG: Vehicle,D: Gate,DURING : Enters ] ] ] ] ]

4. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle breaks the gate arm while exiting Zone2
[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Exits,AG: Vehicle,LOC : Zone2,DURING : Moves,SUB:

[ PRED: Breaks,AG: Vehicle,D: Gate,DURING : Exits ] ] ] ] ]

5. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle enters while gate is in motion
[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Enters,AG: Vehicle,LOC : Zone2,DURING : Moves ] ] ] ]

6. train approaches⇒ signal switches on⇒ gate arm moves
down⇒ vehicle exits while gate is in motion
[ PRED: Moves,AG: Train,D: Signals,LOC : Zone1,FAC: Towards,CAUSE:

[ PRED: Switches,AG: Signals,FAC: On,CAUSE:

[ PRED: Moves,AG: Gate,FAC: Down,AFTER : Switches,SUB:

[ PRED: Exits,AG: Vehicle,D: Zone2,DURING : Moves ] ] ] ]

7. Vehicle collides with train
[ PRED: Moves,AG: Train,LOC : Zone2,FAC: Inside,SUB:

[ PRED: Moves, AG: Vehicle, FAC: Inside, LOC : Zone2, DURING : Move,

CAUSE:

[ PRED: Collides,AG: { Vehicle, Train} ] ] ]

8. Person being hit by train
[ PRED: Moves,AG: Train,LOC : Zone2,FAC: Inside,SUB:

[ PRED: Moves, AG: Person,FAC: Inside, LOC : Zone2, DURING : Move,

CAUSE:

[ PRED: Collides,AG: { Person, Train} ] ] ]

9. Person enters zone2 while signal was switched on
[ PRED: Switches,AG: Signals,FAC: On,SUB:

[ PRED: Enters,AG: Person,LOC : Zone2,DURING : Switches ] ]

10. Train entering zone2 while gates are in motion
[ PRED: Moves,AG: Gates,FAC: Down,SUB:

[ PRED: Enters,AG: Train,LOC : Zone2,DURING : Moves ] ]



Figure 5:Event Detection using the Jaccard Coefficient. Sequences A23 (223 frames), A21 (237 frames), and B31 (192 frames) monitors
railroad crossings (similar to the one shown in Figure 4). All events coded in the Application of CASE, we tested on the autonomously
generated case frames and evidently Event 2 occurred at the time instant corresponding to Node Index 5 in sequence A21.

Conclusion

The problem of formally representing events occurring in a video
sequence using measurements in terms of object labels and tracks
was identified, and in order to represent events, cases were added
to the original framework of (Fillmore 1968) to support multi-
agent/thread, temporal logic and causal relationships. Experiments
were performed on real sequences, for the on-line generation of
CASEE for human interaction, and a similarity coefficient was de-
fined for the detection of pre-defined events. An instance of a com-
plete event domain (Monitoring of Railroad intersections) was also
treated. The essence of the proposition here is that based on the
temporal relationships of the agent motions and a description of its
state, it is possible to build a formal description of an event. We
are interested in several future directions of this work including the
inference of causality in video sequences, event-based retrieval of
video, and unsupervised learning of event ontologies.
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