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Abstract

An approach is presented to match imaged trajectories of anatomical landmarks (e.g. hands, shoul-

ders and feet) using semantic correspondences between human bodies. These correspondences are used

to provide geometric constraints for matching actions observed from different viewpoints and performed

at different rates by actors of differing anthropometric proportions. The fact that the human body has

approximate anthropometric proportion allows innovative use of the machinery of epipolar geometry

to provide constraints for analyzing actions performed by people of different sizes, while ensuring

that changes in viewpoint do not affect matching. In addition, for linear time warps, a novel measure,

constructed only from image measurements of the locations of anatomical landmarks across time, is

proposed to ensure that similar actions performed at different rates are accurately matched as well. An

additional feature of this new measure is that two actions from cameras moving at constant (and possibly

different) velocities can also be matched. Finally, we describe how dynamic time warping can be used

in conjunction with the proposed measure to match actions in the presence of nonlinear time warps.

We demonstrate the versatility of our algorithm in a number of challenging sequences and applications,

and report quantitative evaluation of the matching approach presented.

Index Terms

I.4.9 Applications, H.1.2(c) Human Information Processing, I.4.8d Motion

I. INTRODUCTION

In his landmark treatise titled Human Actions, [44], Ludwig Von Mises opens his first chapter

with the statement, “Human action is purposeful behavior”. He states that actions ostensibly

reflect the actor’s intention, conscious or unconscious. It is not surprising, therefore, that visual

perception of actions is a critical cognitive function for interpreting the intention of an observed

actor and for understanding the observer’s environment. As social entities, the ability to interpret
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and predict the behavior of others is fundamental to normal human functioning. In fact, there

is a growing body of evidence that humans might actually understand the actions of another

individual in terms of the same neural code that they use to produce the same action themselves,

[27]. It is for these reasons that the analysis of human actions is a subject of interest in a number

of scientific communities such as philosophy [31], developmental psychology [55], economics

[44] and recently in cognitive neuroscience [67], [11]. It is also why developing algorithms

for action recognition must figure prominently in the pursuit of both machine intelligence and

robotics.

Developing algorithms to recognize human actions has proven to be a significant challenge

since it is a problem that combines the uncertainty associated with computational vision with

the added whimsy of human behavior. Even without these two sources of variability, the human

body has no less than 244 degrees of freedom ([74]) and modeling the dynamics of an object

with such non-rigidity is not an easy task. Further compounding the problem, recent research into

anthropology has revealed that body dynamics are far more complicated than was earlier thought,

affected by age, ethnicity, class, family tradition, gender, skill, circumstance and choice, [29].

Human actions are not merely functions of joint angles and anatomical landmark positions,

but bring with them traces of the psychology, the society and culture of the actor. Thus, the

sheer range and complexity of human actions makes developing action recognition algorithms a

daunting task. To develop computer algorithms for analyzing actions, it is important to identify

properties that are expected to vary according to a set of transformations with each observation

of an action, but which should not affect recognition:

Viewpoint Except in specific application, it is unreasonable, in general, to assume that the

viewpoint from which actions are observed would remain constant across different observations

of that action. Thus, it is important that algorithms for action recognition exhibit stability in

recognition despite large changes in viewpoint. The relationship of action recognition to object

recognition was observed by Rao and Shah in [58], and developed further by Parameswaran and

Chellappa in [52], [51], Gritai et al in [3] and by Yilmaz and Shah in [73]. In these papers, the

importance of view invariant recognition has been stressed, highlighting the fact that, as in object

recognition [68], the vantage point of the camera should not affect recognition. The projective

and affine geometry of multiple views is well-understood, see [35], and various invariants have
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been proposed. There has also been some discussion of viewpoint variance and invariance in

cognitive neuroscience in the context of both object and action recognition, [68], [23]. In the

proposed approach, accurate matching in the presence of varying viewpoint is a central problem

which we address by using geometric relationships between the two observed executions of an

action.

Anthropometry In general, an action can be executed, irrespective of the size or gender of

the actor. It is therefore important that action recognition be unaffected by “anthropometric

transformations”. Unfortunately, since anthropometric transformations do not obey any known

laws, formally characterizing invariants is impossible. However, empirical studies have shown

that these transformations are not arbitrary (see [56]). The study of human proportions has a

great tradition in science, from the ‘Golden Sections’ of ancient China, India, Egypt and Greece

down to renaissance thinkers like Leornardo Da Vinci (the Vitruvian Man) and Albrecht Durer,

with modern day applications in Ergonomics and human performance engineering. We provide

a functional definition of anthropometric transforms making implicit use of the ‘laws’ governing

human body proportions to provide geometric constraints for matching. Instead of using a single

point representation, we explore the use of several points on the actor for action recognition,

and use geometric constraints with respect to two actors performing the action instead of two

camera views. This innovative use of geometry allows two interesting results for the recognition

of actions. The first result provides a constraint to measure the dissimilarity of the posture of two

actors viewed in two images. The second result extends this first constraint to globally measure

dissimilarity between two actions.

Execution Rate With rare exceptions such as synchronized dancing or army drills, actions are

rarely executed at a precise rate. Furthermore, the cause of temporal variability can be two

fold, caused by the actor or possibly by differing camera frame-rates. It is desirable, therefore,

that action recognition algorithms remain unaffected by some set of temporal transformations.

Definition of this set of temporal transformations is dependent on application. In this paper, we

propose an approach that assumes that only linear temporal transformations in time can occur,

and performs detection under this assumption. Under this assumption we also propose a new

metric that can match a model action to a test action despite constant velocity motion of the
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Fig. 1. Trajectories of anatomical landmarks of the same action under different types of transformation. The first

row (a) presents the trajectories under different viewpoint transformations, the second row (b) under anthropometric

transformations, and the third row (c) demonstrates the same trajectories obtained with different camera velocities

along the X−direction.

camera. However, in some applications of action recognition the assumption of temporal linear

transformation might not be acceptable. To handle general non-linear temporal transformations

we utilize Dynamic Time Warping (DTW) for matching, which ensure only that the temporal

order is preserved.

In this paper, we decouple of the problem of tracking anatomical landmarks in images and the

problem of matching the trajectories generated by a tracking algorithm. Given the trajectories

of different anatomical landmarks of actors on a query (or test) action and a model (or pattern)

action, we present a novel dissimilarity measure that determines whether the trajectories in
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the query video match the model action, allowing for three sets of transformations: viewpoint

transformations, anthropometric transformations and temporal transformations. Figure 1 shows

trajectories from the same action as captured under these different transformations. The algorithm,

designed for illustration purpose, makes use of a measure that we demonstrate, both theoretically

and empirically, to be able to match actions despite changes in the viewpoint of the actors to

the camera. This measure is computed by looking at the eigenvalues of a matrix constructed

from image measurements of anatomical landmarks. We propose a functional definition of the

class of anthropometric transformations and use this definition to demonstrate that the measure

defined is also stable to changes in the anthropometry of the actors involved. This is also

demonstrated empirically during experimentation. We then use the proposed measure with DTW

to determine whether two actions are the same, except by a linear transformations of time. The

assumption of a stationary camera is then lifted, by allowing the cameras to move with constant

velocity. We define a novel measure to match actions in this scenario which inherits all the

properties of the earlier measure (stability to changes in viewpoint and anthropometry and use

for temporally invariant matching). We demonstrate the application of the proposed approach

in many diverse scenarios such as action synchronization, action recognition and gait analysis.

Using motion capture data we also quantitatively analyze the proposed measure, verifying the

properties described in the paper.

The rest of the paper is organized as follows. We situate our work in context of previous

research in Section II and describe our representation and notation in Section III. We then unfold

the three different layers of analysis successively for viewpoint transformations (Section IV), for

anthropometric transformations (Section V) and finally temporal transformations (Section VI).

Results are presented in Section VII, followed by conclusions in Section VIII.

II. LITERATURE REVIEW

Research on human action recognition through computer vision started in the late seventies,

the earliest work probably being the PhD thesis of Herman, [36]. This work used a static

representation, a stick figure in a single image, to analyze different postures of a person. The

importance of dynamics was almost immediately realized and used in a series of papers in the

the early eighties, [60], [6], [59]. Since then a large body of literature has accumulated studying

different approaches to track, reconstruct and recognize human motion. Surveys of the area have
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been regularly published including Aggarwal et al, [39] in 1994, Cedras and Shah, [22], in 1995,

Ju [41] in 1996, Aggarwal and Cai, [4] and Gavrila, [30], in 1999, Moeslund and Granum, [45],

in 2001, Buxton, [19], and Wang, [42], in 2003, and finally Aggarwal and Park, [5] in 2004.

Under Gavrila’s taxonomy of human motion analysis, methods can be roughly classified as

image-based approaches or 3D approaches, i.e. methods that perform recognition directly from

image measurements and those that try to recover and then analyze 3D information of human

postures and dynamics. Typically in 3D approaches, models of human body and human motion

are used and a projection of the model in a particular posture is then compared with each frame

of the input video to recognize the action. The advantage of these approaches is that since a 3D

model is explicitly used these methods are inherently view invariant. However, they are usually

computationally quite expensive, [37] and 3D recovery of the articulated objects is still a difficult

problem. As a result, 3D approaches are therefore usually limited in some specific applications,

such as athletic analysis and sign language recognition [20], [26].

In image-based approaches only 2D measurements, such as optical flow, spatio-temporal

gradients or point trajectories, are computed across a sequence of frames to recognize actions.

An overwhelming majority of recent work in action recognition falls in this category. The

methods proposed in this category can be further subdivided into two categories: (1) Feature

based approaches and (2) ‘Direct’ approaches.

A whole slew of different features have been proposed and used. To recognize the temporal

textures, the statistical features of optical flow such as mean flow magnitude, standard deviation,

the positive and negative curl and divergence, are used in [54]. Other features to recognize human

activities include region-based [25], [48], [54], [7], [43], temporal trajectory based [47], [72],

[58], [32], part-based [10], [15], [41] or a combination of these [9], [34]. The approaches work

based on features capturing either 2D shape or motion information. Usually, the recognition

system involves some dissimilarity or similarity measurement between the activities and the

models, such as the shape of the silhouettes, the trajectories of the moving hands, the point

clouds from the body parts. Hidden Markov models have also been a popular tool in using these

features for recognition following its success in speech recognition [71]. The earliest papers

included work by Pentland et al [66], and Yamato et al [70] . More sophisticated models, such

as Coupled Hidden Markov Model (CHHM)[50], Variable Length Markov Model (VLMM)[2],

Layered Hidden Markov Model (LHMM) [49], stochastic context free grammar (SCFG) [13],
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and Hierarchical Hidden markov model (HHMM) [46], [61], have been proposed for efficiently

representing and recognizing activities from one or more persons. However these method require

training data, and generally lack the capability of explaining the actions semantically.

Most recently, approaches loosely applying the paradigm of ‘direct’ methods proposed by Horn

and Weldon in [38] which utilize the spatio-temporal information directly for motion analysis,

have started to appear. The difference from feature based approaches is that image measurables

are directly used for recognition. An approach based on the statistical features of spatio-temporal

gradient direction is used for classifying human activities, e.g. walking, running, and jumping

[21]. In [75], an action recognition system is proposed by matching the histogram of the optical

flow generated by different actions. This approach is extended in [64], so that the spatio-temporal

volumes of actions are exploited, and a correlation measure is computed for recognizing the

same action from different video. The spatio-temporal information of actions is further used

for detecting irregularities in images and in video [14]. In this work, a statistical framework is

proposed for matching the patches containing actions in the video. In [69], Ke at al proposed

using boosted classifiers to detect action events from the video from simple spatiotemporal

filters. In [12] the silhouettes of the moving subjects are used in addition to the spatio-temporal

information of the pixels. The method utilizes properties of the solution to the Poisson equation to

extract space-time features such as local space-time saliency, action dynamics, shape structure and

orientation, furthermore, these features are used for action recognition, detection and clustering.

The fundamental drawback of using such 2D image-based approaches, direct approaches in

particular, is that they are viewpoint dependent. An intermediate category of approaches, includ-

ing this paper, use image measurements, but exploit 3D constraint by exploiting the geometry

of multiple views. Seitz and Dyer [63] used view-invariant measurement to find the repeating

pose of walking people and the reoccurrence of position of turning points. Laptev [1] proposed

using spatio-temporal points from the video to compute the fundamental matrix/homography,

which are in temporal matrix format, and to detect the periodic motion once the transformation

between video clips are obtained. Parameswaran and Chellappa proposed to use the 2D view

invariant values, namely the cross ratio values, as the measure for matching the human actions

from different viewing directions [53]. The multiple trajectories from the joints of a person are

recorded, the pose during the action is matched with a canonical body pose, and the matching

coefficients are used for representing the action, and the temporal variance of the actions is
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Fig. 2. Point-based representation. Johansson’s experiments in [40] demonstrate that point-based representations contains

sufficient information for action recognition, and figure illustrates the landmark positions in these experiments.

compensated using DTW. Finally, the actions are matched by comparing the coefficients of the

actions.

III. NOTATION

In this section we discuss our representation of actions and propose a novel matching scheme

based on semantic correspondences between humans. Geometric constraints on these correspon-

dences are used to analyze actions as they occur. The main concern in our work is the recognition

of human activity performed by different people at varying rates in different environments or

viewpoints.

A. Representation of actors and actions
The model of a moving body as a point is ubiquitous in the computer vision community. In our

work, the input is the 2D motion of a set of 13 anatomical landmarks, L = {1, 2, · · · 13}, as

viewed from a camera, see Figure 2. In [40], Johansson demonstrated that a simple point-based

model of the human body contained sufficient information for the recognition of actions. Relying

on this result, we represent the current pose and posture of an actor in terms of a set of points in

3D-space X̂ = {X1,X2 . . .Xn}, where Xi = (Xi, Yi, Zi, Λ)> are homogenous coordinates and

n ∈ L. A posture is a stance that an actor has at a certain time instant, not to be confused with

the actor’s pose, which refers to position and orientation (in a rigid sense). Each point represents

the spatial coordinate of an anatomical landmark (see [16]) on the human body as shown in
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Fig. 3. Frames corresponding to ‘picking up’ in four sequences. The left-most frame corresponds to the model sequence, and

the rest correspond to the test sequences. In each sequence, the actors are in markedly different orientations with respect to the

camera, but in the same posture.

Figure 2. For the ith frame of the kth camera, the imaged pose and posture are represented by

Ûk = {ûk
1, û

k
2 . . . ûk

m}, where ûk
i = {uk

(i,1),u
k
(i,2) . . .uk

(i,n)}, uk
(i,j) = (u(i,j), v(i,j), λ)> and m is the

number of frames. X̂ and uk are related by a 4×3 projection matrix Ck, i.e. uk = CkX̂. As will

be seen presently, nine imaged points on human body are required in each frame of video and,

at least, one of them must correspond to the body part directly involving in action. We refer to

each entity involved in an action as an actor. An action element, ût, is the portion of an action

that is performed in the interval between frames t and t+1. Each action is represented as the set

of action elements. For a comparison of other representations to this one the reader is referred

to [30].

IV. VIEWPOINT TRANSFORMATIONS

Figure 3 shows the same action (‘picking up a book’) from 4 different points of view. Although

the same action is being performed the distribution of points on the image differs significantly.

As has been observed previously for object recognition, it is usually unreasonable to place

restrictions on the possible viewpoint of the camera, and action recognition algorithms should

therefore demonstrate invariance to changes in viewpoint. Invariants are properties of geometric

configurations that are unaffected under a certain class of transformations. It is known that view-

invariants do not exist for general 3D point sets, [18]. However, there are useful properties that

are not strictly invariant, but remain stable over most transformations. We now describe a measure

to match actions that is based on one such property. Assuming two frames are temporally aligned

(until Section VI), the labels associated with each anatomical landmark provide point-to-point
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correspondence between the two postures. The constraint we use is that if the two imaged point

sets match they are projections of the same structure in 3D. In [58], a rank constraint based

dissimilarity measure was described that was stable to camera viewpoint changes. The main

drawback of this dissimilarity measure was the assumption of affine cameras. To remove this

assumption, instead of using this factorization based rank constraint, we use a constraint derived

from epipolar geometry. For the projective camera model, the fundamental matrix (a 3×3 matrix

of rank 2), F, is defined between corresponding points by



u

v

1




T

F




u′

v′

1


 = 0, (1)

for the pair of matching points (u, v) ↔ (u′, v′) in trajectories, observed from two different

viewpoints. Clearly, given a fundamental matrix, we can use Equation 1 to measure the dis-

similarity between two trajectories, so that the squared residual for all points is minimized. By

rearranging Equation 1 a dissimilarity measure can also be defined directly from the trajectory

values themselves (without explicitly computing F). Given at least 9 point matches, we have,

Af =




u′1u1 u′1v1 u′1 v′1u1 v′1v1 u′1 u1 v1 1
...

...
...

...
...

...
...

...
...

u′tut u′tvt u′t v′tut v′tvt u′t ut vt 1


 f = 0, (2)

where f =
[

f11 f12 f13 f21 f22 f23 f31 f32 f33

]T

is the fundamental matrix vector-

ized in row-major order. We refer to A as the observation matrix, which is constructed using

only the coordinates of points of corresponding 2D trajectories. Since Equation 2 is homogenous,

for a solution of f to exist, matrix A must have rank at most eight, and this fact can be exploited

to measure dissimilarity. Of course, due to the noise or the matching error, the rank of matrix

A may not be exactly eight. The condition number of A, i.e. the ratio of the smallest singular

value, σ9, to the largest singular value, σ1, of A provides the algebraic error of corresponding

points in matrix A. This ratio can be used to measure the match of two trajectories,

κ =
σ9

σ1

. (3)

It should be noted that the observation matrix A, and therefore this dissimilarity metric, is

constructed only from measured image position. In addition to viewpoint changes caused by
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different camera locations, anthropometric transformations are also expected, caused by different

actors, which is discussed next.

V. ANTHROPOMETRIC TRANSFORMATIONS

Both body size and proportion vary greatly between different races and age groups and between

both sexes. However, while human dimensional variability is substantial, several anthropometric

studies (see [28], [17], [8]) empirically demonstrate that it is not arbitrary. These studies have

tabulated various percentiles of the dimensions of several human anatomical landmarks. In this

paper, we conjecture that for a large majority of the human population the proportion between

human body parts coupled with a rigid transformation in 3D space can be captured by a projective

transformation of P3, projective 3-space [35].

Conjecture 1 Suppose the set of points describing actor A1 is X̂ and the set of points describing

actor A2 is Ŷ. The relationship between these two sets can be described by a matrix M such

that

Xi = MYi (4)

where i = 1, 2 . . . n and M is a 4× 4 non-singular matrix.

This was empirically supported using the quite representative data in [16] (Table 5-1 and 5-2

which record the body dimensions of male and female workers between the ages of 18 and 45).

For the most extreme case, between the dimensions of the ‘5th percentile woman’ and the ‘95th

percentile man’, where a mean error of 227.37 mm was found before transformation, a mean

error of 23.87 mm was found after applying an appropriate transformation. Using this property,

geometric constraints can be used between the imaged points, x̂ and ŷ of the two actors. The

transformation M simultaneously captures the different pose of each actor (with respect to a

world coordinate frame) as well as the difference in size/proportions of the two actors.

A. Postural Constraint

If two actors are performing the same action, the postures of each actor at a corresponding

time instant with respect to the action time coordinate should be similar. Thus an action can be
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recognized by measuring the dissimilarity of posture at each corresponding time instant.

Proposition 1 If x̂t and ŷt describe the imaged posture of two actors at time t, a matrix F can

be uniquely associated with (x̂t, ŷt) if the two actors are in the same posture.

It is known (pg. 247 Section 9.2, [35]) that for uncalibrated cameras the ambiguity of structure

is expressed by such an arbitrary non-singular projective matrix. If two actors are in the same

posture, the only difference between their point-sets is a projective relationship (Conjecture 1).

Thus, if an invertible matrix P exists between X and Y, i.e. Y = PX, a fundamental matrix is

uniquely determined by x>Fy = 0 (Theorem 9.1 [35]).1 It is important to note that the matrix

F does not capture only the relative positions of the cameras as does the fundamental matrix

F, but instead the relative poses of the actors and the relative anthropometric transformation

between the actors.

Since the labels of each point are assumed known, semantic correspondences (i.e. the left

shoulder of A1 corresponds to the left shoulder of A2) between the set of points are also known.

Proposition 1 states that the matrix computed using these semantic correspondences between

actors inherently captures the difference in anthropometric dimensions and the difference in

pose. This point is illustrated in Figure 4. The matrix F , computed between the actors, captured

an anatomical relationship between the actors as well as the different views of the actors. The

result is that the dissimilarity measure, described in Section IV, remains stable despite changes

in anthropometry of the actors. Since the anthropometric proportions of actor can be expected

to remain the same over short periods of time this fact can be used to provide an even stronger

constraint which we now describe.

B. Action Constraint

Along with the frame-wise measurement of postural dissimilarity, it is observed here that

a strong global constraint can be imposed on the point sets describing two actors if they are

performing the same action.

1Points that lie on the line joining the principal points are excluded.
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Fig. 4. The matrix F can capture the relationship between body landmarks of two different actors of different height, weight,

etc. but in the same posture. It captures the variability in proportion as well as the change in viewpoint. a) Actor 1 in two

frames of the model video. b) Actor 2 in the corresponding frames of the test video. The landmark correspondences in first

frames of model and test video (the first row) were used to compute the matrix F . The image on right in (b) shows epipolar

lines corresponding to landmarks in the image on right in (a). It is clear that the landmarks in the test video lie close to the

corresponding epipolar lines; in particular, the epipolar lines pass close to their corresponding landmarks 9 and 11 after the right

hand of the Actor 2 was moved.

Proposition 2 For an action-element ût, the fundamental matrices associated with (x̂t, ŷt) and

(x̂t+1, ŷt+1) are the same if both actors perform the action element defined by ût.

Based on Conjecture 1, we can say that M remains the same between time t and t+1. In other

words, M determines Y with respect to X and does not depend on the motion of X. Since M
is the same then the matrices, Ft and Ft+1, corresponding to (x̂t, ŷt) and (x̂t+1, ŷt+1) are the

same (p.235 Result 8.8, [35]).

What this means is that if both individuals perform the same action-element between frame ft

and frame ft+1, the transformation that captured the difference in pose and dimension between the
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two actors remains the same. As a direct consequence, the subspace spanned by the measurement

matrix A also remains the same and this suggests that if a measurement matrix were constructed

using all the corresponding points over the entire action Â = [A1, A2, . . . Ak], κÂ can be used as a

global measure of action dissimilarity. The second row of Figure 4 illustrates this. Both actors of

clearly different anatomical proportion perform the same action element (they moved their right

foot back and raised their right hand). The matrix F computed between the actor in their original

postures was used to compute epipolar lines after the execution of the action element. Clearly, to

the extent that the same action element was performed, the geometric relationship is preserved.

Thus, instead of considering the action as the successive motion of 13 points over n frames, each

action is considered to be a cloud of 13n points, each point having a unique spatio-temporal

index (see Figure 1). However, the analysis thus far has assumed that temporal transformations

had been accounted for. In practice, temporal transformations, small or large, always exist. We

now describe how to compensate for these transformations during action analysis.

VI. TEMPORAL TRANSFORMATIONS

While invariance to change in viewpoint is required in action analysis due to the imaging

process, invariance to temporal transformations is needed due to the nominal uniqueness of each

actor’s execution of an action. In this paper, we describe matching algorithms that are stable

under two types of transformations. First, we describe a new metric that can match actions

despite linear transformation in time (scaling and shifts). We show that this metric can also

match actions despite constant velocity motion of the camera. This model works effectively for

many applications, particularly when the pattern is of a short duration. It was found that the

use of a linear model is also appropriate for coarse matching and synchronization. Second, we

describe a more general approach, where the temporal transformation may be highly nonlinear,

using DTW to compensate for temporal transformations. In this case, there is no clearly defined

class of temporal transformations, except that temporal order must be preserved during the

transformation.

A. Linear transformation and Constant Velocity

A linear transformation of time can be expressed as,

t′ = a1t + a2, (5)
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where a1 is a scaling and a2 is a shift in time. Given a model action and a test action, if we wish

to deduce whether the actions observed in both sequences were equivalent up to a linear temporal

transformation. In addition to differing rates of action execution, it is important to note that two

cameras might have a different frame rate, and the starting points of the video in two cameras

might also be shifted relatively in time. Furthermore, to remain stable despite constant velocity

motion of the camera, we use the fundamental constraint of linear motion [65] between cameras

moving independently with constant velocity. As shown in [65], the relationship between points

from the two sequences can be expressed as,

ATf =




u′1t1 u′1u1 u′1v1 u′1t1v1 u′1t1u1 u′1 v′1t1 v′1u1 v′1v1

...
...

...
...

...
...

...
...

...

u′ntn u′nun u′nvn u′ntnvn u′ntnun u′n v′ntn v′nun v′nvn

v′1t1v1 v′1t1u1 v′1 t1 u1 v1 t1v1 t1u1 1
...

...
...

...
...

...
...

...
...

v′ntnvn v′ntnun v′n tn un vn tnvn tnun 1


 f = 0, (6)

where f is a 18-dimensional vector and AT is a matrix constructed from time-space image

coordinates of the corresponding points. If points exactly correspond to each other, then the

rank of AT is 17, otherwise, the 18th singular value will be non zero. Thus instead of estimating

κ from the observation matrix associated with the original fundamental matrix, we construct

this new observation matrix and use the condition number of this matrix as our measure of

dissimilarity. Thus to determine if the temporal transformation between the two observations is

linear, despite constant velocity motion of the camera, κ can be used.

B. Non-linear Transformation

Finally, we describe the use of DTW to compensate for non-linear temporal transformations.

Dynamic Time Warping is a widely used method for warping two temporal signals [62]. It

uses an optimum time expansion/compression function to perform a non-linear time alignment.

The applications include speech recognition, gesture recognition [24], signature verification and

for video alignment [57]. DTW is particularly suited to action recognition, since it is expected

that different actors may perform some portions of an action at different rates, relatively. The

use of DTW is not trivial in this case since both the local (postural) constraint and the global
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(action) constraint need to be incorporated in computation of the dissimilarity measure. Applying

a temporal window (k frames before and after the current one) for computation of dissimilarity

measure between two agents provided a marked improvement.

To synchronize two signals I and J by DTW, a distance, E, is computed to measure the

misalignment between two temporal signals, where E(i, j) represents the error of aligning signals

(distance measure) up to the time instants ti and tj respectively. The error of alignment is

computed incrementally using the formula:

E(i, j) = dist(i, j) + e, (7)

where

e = min {E(i− 1, j),E(i− 1, j − 1),E(i, j − 1)} .

Here dist(i, j) captures the cost of making time instants ti and tj correspond to each other. The

best alignment is then found by keeping track of the elements that contribute to the minimal

alignment error at each time step and backward following a path from element E(i, j) to E(1, 1).

Similar to [57], in our framework I and J are trajectories representing similar or different

actions observed from distinct viewpoints, and by introducing κ(i, j) as the dist(i, j), the

standard DTW becomes appropriate for action recognition and robust to view, anthropometric

and temporal transformations.

VII. EXPERIMENTAL RESULTS

To demonstrate the performance of the approach in this paper, we performed experiments both

qualitatively in several challenging scenarios and quantitatively using motion capture data. All

data used during recognition was in the form of image measurements from uncalibrated cameras.

In the qualitative experiments we demonstrate the versatility of the proposed approach in solving

a variety of problems including action recognition, video synchronization and gait analysis. We

designed our experiments to test each ‘layer’ of analysis in isolation as well as experiments that

demonstrate efficacy under all sources of variability.

A. Qualitative Results

In this set of experiments, trajectories from an exemplar action were matched against trajec-

tories from a longer test sequence. To match we manually marked the landmarks and computed
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(a) (b)

Fig. 5. Viewing spheres. (a) The action ‘getting up’ is viewed at regular intervals on a sphere around the action.

(b) The action ’Sit Down’ is viewed at regular intervals on a sphere around the action.

κ at each frame number between the exemplar trajectories and an equally sized trajectory set

(through temporal windowing) from the longer test sequence, centered around that frame number.

1) Trajectory Matching: In this experiment, actors performed a sequence of three actions:

walking, picking up an object, and walking away. Videos were taken of two different actors as

they performed this sequence with different orientations relative to the camera. The action of

picking up an object was detected in each video by matching an exemplar sequence containing

only the ‘picking up an object’ action. Figure 6 shows plots of the matching score against frame

number. The value at each time location in the plots were obtained by matching the temporal

neighborhood against the exemplar sequence. It can be seen that a distinct minimum occurs at

the temporal location where the best match occurs. The corresponding frames at these minima

are also shown in the figure.

The sensitivity of matching was also tested in a sequence containing four individuals walking.

A test pattern of a single cycle of the distinctive ‘Egyptian’ gait was compared to each actor’s

motion and the variation of the smallest singular value over time for each of the four actors

is shown in Figure 7 (the odd-one-out is the third actor from the left). There are two points
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Fig. 6. Action matching from multiple views. Plots of the matching score against the frame number for four videos. Frames

corresponding to the minima are shown for each video.

of interesting in this figure. First, since the posture involved in the ‘Egyptian’ gait is relatively

distinct from the usual human gait the smallest singular value for the third actor is consistently

larger and distinct from the other actors. Second, the sinusoidal nature of the plot clearly shows

the periodicity that is associated with walking. In order to generate the plots, a cycle of one gait

was matched against all other gait sequences.

2) Video Synchronization: Three actors jumped asynchronously in the field of view of a

stationary camera. The objective in this experiment was to align the actors jumps and twists

so that a new synchronized sequence could be rendered. The temporal transformation between

actors was highly nonlinear, and DTW, with a 10-frame window around the current frame and κ

as the distance measure, was used. Accurate synchronization was achieved and Figure 8 shows

the result of synchronization with respect to the left-most actor using the proposed approach.

The top row shows the original sequence and the bottom row shows the rendered sequence. The

January 26, 2009 DRAFT



INTERNATIONAL JOURNAL OF COMPUTER VISIONL 19

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FRAMES

k

 

 

Actor1

Actor2

Actor3

Actor4

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FRAMES

 

 

Actor1

Actor2

Actor3

Actor4

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

FRAMES

 

 

Actor1

Actor2

Actor3

Actor4

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

FRAMES

 

 

Actor1

Actor2

Actor3

Actor4

Fig. 7. Odd One Out. Actor three, the third figure from the left, corresponds to the actor performing the ‘Egyptian’ gait.
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Fig. 8. Following the leader (the left-most actor). The top row shows four frames, 22, 25, 27, and 29 before synchronization.

Notice the difference in postures of each actor within each single view. The bottom row shows corresponding frames (to the

top row) from the rendered sequence after synchronization.

application of this sort of rendering includes post-processing of dance or exercise videos.

3) Gait Analysis: Videos of three actors were captured walking from two different viewpoints

using two cameras, and, on average, each video was more than 200 frames in length. Six feature

points, hands, knees and feet, were tracked. A short fragment (40 frames) was extracted from

each video. The goal of this experiment was determining if the extracted fragment could be

found in the video by computing the smallest singular value as the best dissimilarity measure.
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Fig. 9. Confusion Matrix for Gait Analysis. In the table the first and second columns correspond to the first actor in the first

and second view respectively, and so on. The notation 1-1 refers to ‘Actor 1, View 1’ etc. Lower values correspond to the same

actor’s gaits in different views (1-1 matches best with 1-2, 2-1 with 2-2, 3-1 with 3-2)

The table of Figure 9 shows the confusion matrix of each gait in each view. In the table the first

and second columns correspond to the first actor in the first and second view respectively, and

so on. The block-diagonal nature of the confusion matrix indicates that the distance between the

gait of an actor in first view and in the second view is always lower than the gait of other actors

in any view.

B. Trajectory matching with Real Tracking Noise

In this experiment the landmarks tracks were generated using an improved version of body

joints tracking algorithm [33]. In addition, we also manually marked the correct landmark

positions to estimate the error of the joints tracking algorithm. The goal was to analyze the

performance of the proposed method in a presence of the noise (detection error) with uncontrolled

statistical parameters. The model action was 50 frames long and observed from the frontal view.

The test actions were performed by four actors with anthropometric proportion significantly

different from the actor who performed the model action. All test sequences consisted of the

same set of actions, one of which was identical to the model action. The test actions 1, 2, 3 and

4 were 450, 524, 463 and 471 frames long, respectively. For each test action, all clips, starting

from frame 1 and consisting of 50 consecutive frames, were compared to the model action. The

first row of Figure 10 shows the results of detecting model action in the test actions. In order to

demonstrate the error in these clips, the detection error of the selected landmarks in each frame
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Fig. 10. The first row of the figure shows the results of detecting model action in the test video. The model action was detected

around frame 150, 180, 160 and 150 of the test video 1, 2, 3 and 4, respectively. The second row shows the euclidian error of

detecting landmarks on the left and right shoulders, elbows and wrists in each frame of the test video. The third row shows the

minimal, average and maximal euclidian error of detecting all 13 landmarks in each frame of the test video.

was summed up and averaged over 50 frames. The second row of Figure 10 shows the average

detection error of the landmarks selected on the left and right shoulders, elbows and wrists. The

third row of Figure 10 shows the detection error averaged over 13 detected landmarks, smallest

and largest detection error in each clip among 13 landmarks. In the presence of significant error

in landmark detection in each frame and successful correct action detection, we see that proposed

method is indeed robust to noise introduced by real body tracking algorithms.

C. Quantitative Results

The following experiments quantitatively demonstrate that the proposed method is stable

to changes in viewpoint, anthropometry and temporal behavior. A set of experiments were
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performed to evaluate each of these three properties in isolation, followed by experiments

evaluating performance under all three transformations simultaneously. Motion capture data

was used to provide 3D data which was projected and used in all experiments. Since the

3D coordinates of the points were known, 2D image coordinates were obtained by generating

projection matrices around a viewing sphere as shown in Figure 5. In all the experiments, actions

were observed from 360 different locations in upper hemisphere, which means the elevation and

azimuth were changed from 0 to 90 and from 0 to 350 degrees respectively at ten degree

increments. Thus, a pair of angles, elevation and azimuth, corresponds to any of 360 possible

camera locations2.

1) Viewpoint: In this experiment we tested the performance of the system with respect to

changes in viewpoint. We demonstrated that the dissimilarity measure allows sufficient discrim-

ination between matches and mismatches, despite different viewpoints. The first row of Figure 1

shows the input point cloud, representing the ‘getting up’ action, under different view projective

transformations. The experimental performance is also tested with respect to increasing noise in

the measurements.

We first experimented with noiseless data obtained through motion capture equipment and

rendered data at regular intervals over the described viewing sphere. To demonstrate the robust-

ness to changes in viewpoint we recorded the log of the condition number of AT and the log

of the ratio of the second smallest singular value to the largest singular value in Figure 11 (a).

This figure shows that regardless of view angles the dissimilarity measure (left half of the matrix

or first 360 values on the horizontal axis) is very close to zero and significantly lower than the

ratio of the second smallest singular value to the largest singular value (right half of the matrix).

From the illustration, one can notice that the diagonal elements are especially low. The diagonal

entities correspond to the case when both camera views are exact the same.

Within this matrix, there are blocks of low values, the indices of both axes are between 325

and 360. These values correspond to the case when elevation angles of both cameras, facing to

the ground, are 90 degrees, and is a special case. From our experiment, in this case the values

of the two ratios are approximately 4.3× 10−22 and 1.3× 10−20, while in all other matches the

2The elevation and azimuth corresponding to some camera location n, where n = 1, . . . , 360, was calculated as floor((n−
1)/36)× 10 and mod((n− 1)/36)× 10 respectively, e.g., if n = 239, then the elevation and azimuth are 60 and 220 degrees

respectively.
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Fig. 11. Four different actions were compared to itself. The pattern (exemplar) and test actions were observed from any

angle of the upper hemisphere. The left-most figure shows a significant drop between two ratios σ9/σ1(blue) and σ8/σ1(red),

thus σ9/σ1 can be considered as a dissimilarity measure. There are small rectangle areas of very low values corresponding to

both ratios and lying between 325 and 350 indices. It occurs when both cameras has the elevation angle of 90 degrees, which

corresponds to the upper point of hemisphere. Since at the upper point of hemisphere camera centers coincide, it becomes a

degenerate case. The right-most figure shows the change of σ9/σ1, when under different view-projective transformations, four

different actions were compared to each other. The low diagonal values of the proposed dissimilarity measure demonstrate the

correct discrimination among actions.

mean of the dissimilarity measure is 1.4× 10−16 and the mean of the other ratio is 5.4× 10−4.

Figure 11 (b) shows a confusion matrix using log κ in a second series of experiments, where

different actions were compared to each other. Four actions (‘ballet’, ‘standing up’, ’sitting down’

and ‘walking’) were rendered from 360 different viewpoints and the block diagonal structure

of the confusion matrix shows the discrimination achieved using the proposed measure. It is

important to note that even in the special case mentioned above κ provides ample discrimination

between different actions.

On these four actions, ‘ballet’, ‘standing up’, ‘sitting down’ and ‘walking’, we also tested the

sensitivity of the metric with respect to noise and its behavior with respect to an increase in

number of frames. The experimental results are presented in Figure 12. The pattern actions

were all observed from a fixed viewpoint - the azimuth and elevation were 30 and 25 degrees

respectively. The test actions were observed from a significantly distinct view angle, the azimuth
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Fig. 12. The measure is robust to changes in viewpoint (different markers differentiate the different noise levels). This figure

shows how the proposed dissimilarity measure changes with respect to the level of noise and the view angle. Patterns of four

actions were captured at the same view point, azimuth= 30 and elevation= 25 degrees, and test actions were observed by the

stationary camera at view point corresponding to the azimuth= 130 and elevation= 45 degrees. Six levels of noise, sampled

from zero mean normal distribution with σ varying from 0.6 to 3.6, were added to the 2D image coordinates. Regardless of the

action, when the length of the action increases, the dissimilarity measure approaches zero. The X− axis shows the number of

frames, and the Y−axis shows the values of κ.

and elevation were 130 and 45 degrees respectively. Six levels of noise, sampled from a zero-mean

normal distribution with σ varying from 0.6 to 3.6, were added to the test actions. Twenty five

samples were generated from at each noise strength and the mean error at each noise level was

recorded. As expected estimates of κ become more reliable as the number of frames increases,

and the number of frames after which κ is stable, varies from action to action, depending largely

on the ‘content’ of the action.

2) Anthropometry: In this experiment we examined the performance of κ with respect to

change in the anthropometry of the actor. The second row of the Figure 1 shows the ‘getting

up’ action under different anthropometric transformations. Figure 13 presents the experimental

results. The pattern action was observed from a view point with a fixed elevation of 60 degrees,

while the azimuth was changed from 0 to 350 degrees. Similarly, the test action was observed

from a view point with a fixed elevation of 30 degrees, while the azimuth was changed from 0 to

350 degrees. A 4× 4 matrix M was randomly generated, and the whole action was transformed

by M. After 3D projective transformation, 3D points were projected onto image plane and

distorted by six different levels of noise. Noise parameters were the same as in the previous set

of experiments. The results showed κ to be robust to noise, and estimates of κ became more

reliable as the number of frames were increased. As in the previous experiment, the number of

frames after which κ stabilized, varied from action to action and depended on the action.
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Fig. 13. Stability with respect to anthropometric transformation. The figure shows how κ changes with respect to the level

of noise and the length of the action. Exemplars of four actions were captured at the same view point, azimuth= 30 and

elevation= 25 degrees, and test actions were observed by the moving camera at the different view point, azimuth= 130 and

elevation= 25 degrees. Six different levels of noise, sampled from a zero-mean normal distribution with σ varying from 0.6 to

3.6, were added to the 2D image coordinates. Regardless of the action, when the length of the action increases, the dissimilarity

measure approaches zero.
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Fig. 14. The proposed dissimilarity measure is stable to temporal distortion. The figure shows how the proposed dissimilarity

measure changes with respect to the level of noise and the length of the action. Patterns of four actions were captured at the same

view point, azimuth= 30 and elevation= 25 degrees, and test actions were observed by the moving camera at the different view

point, azimuth= 130 and elevation= 25 degrees. Six different levels of noise, sampled from a zero-mean normal distribution

with σ varying from 0.6 to 3.6, were added to the 2D image coordinates. Regardless of the action, when the length of the action

increases, the dissimilarity measure is approaching to zero.

3) Execution Rate: This set of experiments demonstrates the robustness to temporal trans-

formation of actions. Figure 14 shows the results. Exemplars of four actions were observed

from a constant viewpoint - the azimuth and elevation were 30 and 25 degrees respectively. Test

actions were observed at different view angle corresponding to the azimuth 130 and elevation

45 degrees. The test actions were distorted temporally by generating a pair (a1, a2) and by the

same six levels of noise specified earlier. Once again we note that the longer the greater the

distinctive content the action the more robust the matching.
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Fig. 15. The dissimilarity measure is robust to temporal, anthropometric and view distortion. This figure shows how the

dissimilarity changes with respect to the level of noise and the length of the action. From left to right, four figures correspond

to ‘ballet’, ‘standing up’, ‘sitting down’ and ‘walking actions’. Patterns of four actions were captured by the moving camera

with a fixed orientation, azimuth= 30 and elevation= 45 degrees, and test actions were observed by the stationary camera at the

view point with azimuth= 130 and elevation= 10 degrees. Six different levels of noise, sampled from the normal distribution

with means from 0.6 to 3.6 and σ = 1, were added to the 2D image coordinates. When the length of the action increases, the

dissimilarity approaches zero. The X−axis shows the number of frames, and the Y−axis shows the values of κ.

4) Simultaneous Distortion of Temporal Index, Viewpoint and Anthropometry: The last series

of experiments was performed both on rendered motion capture data and real imaged data. In

these experiments we aimed to analyze the performance of κ for application in action recognition.

The first set of experiments performed on the synthetic data. The results presented in Figure

15 demonstrate the behavior of the dissimilarity measure, κ, with respect to all three types

of transformations. Exemplars of the four actions (‘ballet’, ‘standing up’, ‘sitting down’ and

‘walking’) were captured by a virtual camera moving at constant velocity but a fixed orientation,

azimuth= 30 and elevation= 45 degrees. Test actions were captured by the virtual stationary

camera at the view point with azimuth= 130 and elevation= 10 degrees. Similar to the previous

experiments, six different levels of noise sampled from the normal distribution with means from

0.6 to 3.6 and σ = 1 were added to the image coordinates. All results show robustness of κ

with respect to noise.

The second set of experiments was performed on trajectories generated by the walking action.

One cycle of the walking action, performed by Actor 1, was a pattern action and was captured

outdoors by a stationary camera. The model action was 42 frames long. It is important to

note that during the action, the pose of the actor was changing relative to the camera position.

Since we consider points on the actor’s body only, the stationary camera can be interpreted

as a moving camera, and moving actor can be considered stationary. The first test clip (570
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frames) was chosen from a motion capture data set. We synthesized a camera, virtually moving

in 3D, and projected original data on the image plane of that camera. The second and third

clips depicted Actors 2 and 3 performing ”walking action” on a treadmill, and the fourth clip

depicted the Actor 3 performing ”bicycling action” on a recumbent bicycle. The test actions,

two walking and bicycling actions, were 374, 202 and 212 frames, respectively. The goal of

the experiments was to determine whether the query actions, captured by moving and stationary

cameras, contain the pattern action, captured by stationary camera. The results are presented in

Figure 16. The leftmost image of the first row shows Actor 1 performing the pattern action. The

remain three images of the first row correspond to the query actions performed by Actors 2 and

3, respectively. The second row shows the variation of κ as the pattern action was shifted in time

over the duration of the test actions. The left-most figure shows the result of pattern detection in

the clip from Motion capture data set, and other three figures show the results of pattern detection

in second, third and fourth clips, respectively. The rightmost figure shows results of a video that

did not contain any walking actions. Since that video depicted the bicycling action, we do observe

some periodicity. However, the values corresponded to each potential action occurrences (local

minima) were greater than values corresponded to action occurrences in video depicted walking

action (see central figures).

While the above experiments determined only the location of action in test video (time trans-

lation), the final set of experiments determined the scale of temporal transformation. From all

action occurrences in the previous experiment, only one occurrence was chosen in each video.

Figure 17 demonstrates the results. The leftmost figure from the top row shows the result obtained

on synthetic video. The best match was detected when the scale of temporal transformation was

one, and this coincides with the ground truth. The other two figures from the top row show

the results obtained on real video. Compared to the model action, in both test videos, actors

were walking slightly faster, which was captured by the scale factor. In order to get the best

match, actions from the test video were scaled to match the model action. Analyzing results

from both synthetic and real video, it is easy to see that the global minima in the left-most

figure is more distinct when compared to the other two. This is attributed to noise, the length

of the model action and our assumption, which is that we know the beginning point of action

and do not know where action ends. As soon as a test fragment contains the action, κ becomes

less sensitive to increase in scale. This effect is still observable in synthetic video but to a lesser
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Fig. 16. The first row shows images from real video. The left-most image corresponds to the model action, and the remaining

three correspond to the test actions. The second row shows results of pattern detection. The left-most figure corresponds to

recognition in synthetic video. The length of the model and test video was 70 and 564 frames respectively. Two central figures

shows detection of walking in real video containing walking actions. The model, and two test video were 42, 374 and 202

frames respectively. In model and test video points on bodies were marked in each third frame. The right-most figure shows

the result of detection of walking action in real video that did not contain any walking actions. The test video was 212 frames

long. The values of local minima in the right-most figure are greater than ones in two central figures.

degree. The remaining three rows show the corresponding frames after synchronization between

model action and test fragments.

VIII. CONCLUSION

In this paper we have addressed the analysis of trajectories of anatomical landmarks in the

presence of three key sources of distortion: viewpoint of observation, anthropometric proportion

of actors, and differing rates of execution. We demonstrate, first theoretically and then empirically,

that the algorithm based on the proposed dissimilarity measure is stable with respect to changes

in all three distortions. During experimentation, we examine each source of distortion in isolation,

followed by an evaluation in the presence of simultaneous distortion and report the quantitative

performance. In addition, we provide several qualitative examples demonstrating the applicability

of the proposed approach. We show various applications of proposed approach, such as video

synchronization, computer aided training, and human action recognition.
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Fig. 17. The top row shows the results of temporal scale detection. The left-most figure shows the result of detection in

synthetic video. The best match corresponds to the point where the scale is one. The remain two figures show results of scale

detection in real video. Since both actors were walking faster than in the model, the best matchings correspond to the scales,

which are slightly greater than one. The remaining rows show the corresponding frames after synchronization. The second-top

row shows frames from the model video, and others show frames from the test video.
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