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Coping with Hardness

Generic form for many ML problems:
min f(w) + X - h(w).
Computationally challenging if

@ the loss f is non-convex;

@ the regularizer h is non-convex.

— Zero-one loss
5 — Hinge loss
— Logistic loss
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Introduction
Problem:
@ Real-world data is never clean;
@ Even worse, often contains gross error.
Solutions:
@ Two-stage: remove outliers first and then estimate parameters;

@ One-stage: simultaneously achieve both.
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Refs: (Rousseeuw-Leroy’'87; Flores'11)
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M-estimators and robust regression

Consider the linear regression model:  y = (x,w) + €.

@ Given observations {(x;, y;)}"_;, want to estimate w.

(Regularized) M-estimator:  miny >, p(yi, (xi, w)) + Aljw]|3.

@ Much is known if the loss p is convex.

Robustness: Would like the estimate to remain “reasonable” if perturb,
say a single observation pair.

@ Estimate remains bounded and away from boundary;
@ Essentially requires nonzero breakdown point;

@ Much is known if the loss p is bounded.

Refs: (Huber-Rochetti'09; Maronna-Martin-Yohai'06; etc)

Y-L. Yu (UofA) Robust Regression and Efficient Opt. NICTA - Canberra 5/25



State of the art

Properties true or false

M-estimator 1 1 1 0 1
Consistency 1 1 0 1 1
Robustness 1 0 1 1 1
Tractability 0 1 1 1 1
Achievable? ‘ v v v ? X

We proved that
O If the loss p is convex, then ME cannot be robust;
@ If the loss p is bounded, then ME is NP-hard to find.
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Isn’t the ¢; loss robust?
Argument:

@ The median estimator is very robust;

o It minimizes the {1 loss: M € argmin,, > 7 ; |w — y;il.
Caveat:

@ x; =1 in the above example;
o Derivative of the obj: >, p/(yi, (xi, w))x; — Aw.
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Variational loss

p(x) = Ogmgglnﬁ(X) +¥(n).

@ Includes most losses, even when £ and 1) are convex.

wln) = (Vi-1) . (r)=r? Variation p(r) = 5
o) Geman-McClure
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Variational M-estimator (Y-Aslan-Schuurmans'12)

Introduce outlier indicator n:

min 0Ly —Xw)+  1T(n)  +3nllwl3
w,n€[0,1]" —_——— ——— < °
loss on inliers  penalize outliers  regularizer

ALTLL

If (xi,y;) incurs big loss, set
n;i = 0 and suffer penalty ¥(n;);

Otherwise set ; = 1 and suffer
no penalty; o e

Not jointly convex in w and n;

Alternating can be bad.
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Convex Relaxation

Reformulation:

min 1 £y — Xw) +174(n) + 3[n1]w|3

w,n€[0,1]”
= min_n Ly — Ka)+1T(n) + 3|nlhe”Ka
a,nelo,1]”
=, min max174(m) —n' (€ @) = Ay)) 55w’ (Ko (nlnly'n ") v
= min max1Ty(n) — 7 (€'(v) - Aly)w) — AT (Ko N)v,
NENn v

Relaxation: Ny ={N: N = 0,N1=mn,rank(N) = 1}
My ={M: M>0,M1=mn,tr(M)=1}
> min max1T4(n) —n' (€ (v) — Aly)v) — v (Ko M)v
MeM,, v

Round: n = M1, re-solve w.
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Properties

Theorem (Tractability)

Convex-Concave program.

Theorem (Robustness)
Assume { is Lipschitz and 1)’ is bounded. Consider perturbation of the pair
(x1,y1), the VM remains robust if either of the following holds

@ y1 is bounded;

@ Xj Is bounded;

o ((y1)/l|x1]l3 — oo.

Theorem (Consistency)

Assume { is Lipschitz and 1)’ is bounded. If the data consists of only inliers
and outliers, then VM is (risk) consistent.

v
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Some Experiment

o Seeded 5% outliers;

@ RMSE (std) on clean test set.

Methods Datasets
cal-housing abalone pumadyn bank-8fh
L2 1185 (124.59) | 7.93 (0.67) 1.24  (0.42) | 18.21 (6.57)
L1 1303 (244.85) | 7.30  (0.40) | 129 (0.42) | 6.54 (3.09)
Huber 1221 (119.18) | 7.73  (0.49) | 124 (0.42) | 7.37 (3.18)
LTS 533  (398.92) | 755.1  (126) 0.32  (0.41) | 10.96 (6.67)
GemMc 28  (88.45) | 2.30 (0.01) 0.12 (0.12) 0.93 (0.80)
AltBndL1 | 1005 (603.00) | 7.30  (0.40) | 1.29 (0.42) | 1.61 (2.51)
CvxBndL1 8  (0.28) 2.98 (0.08) 0.08  (0.07) 0.10 (0.07)
| Gap(Cvx1) [ 0.005  (0.01) [ 0.001 (0.001) [ 0.267 (0.269) | 0.011 (0.028) |
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Conclusion

We have
@ Showed the inherent dilemma between convexity and robustness;

@ Developed the variational M-estimator.

Further questions:
@ Approximation bound?
o Faster solver?
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Conditional gradient (Frank-Wolfe'56)

Consider min f(x),
xeC

@ C: compact convex;

@ f: smooth convex.

@ y: € argmin (x, Vf(x));
xeC

Q xty1 = (1 —n)xt +ny:.

(Frank-Wolfe'56; Canon-Cullum'68) proved that CG converges at ©(1/t).
Gained much recent attention due to

@ its simplicity;

@ the greedy nature in step 1.
Refs: (Zhang'03; Clarkson'10; Hazan'08; Jaggi-Sulovsky'10; Bach'12; etc.)
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An Example

mibr132-|—(b+1)2, st.]a <1,2>b>0
a,
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An Example

mibn.32+(b—|—1)2, st.]a] <1,2>b>0
a

)

‘ ' ' ' ' —conditional gradient|
4.5 —1/(k+2)

xr] = (17 1)

e T3 2

Yy = -(,17(]) Y2 = (1,0) 0 é 10 15 20 25 30 35 40
Can show f(xx) — f(x*) = 4/k + o(1/k).

Projected gradient converges in two iterations.
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An Example

mibna2+(b+1)2, st.]a] <1,2>b>0
a
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]
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Can show f(xx) — f(x*) = 4/k + o(1/k).
Projected gradient converges in two iterations.

Refs: (Levtin-Polyak'66; Polyak'87; Beck-Teboulle'04) for faster rates.
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The revival of CG: sparsity!

The revived popularity of conditional gradient is due to (Clarkson'10;
Shalev-Shwartz-Srebro-Zhang'10), both focusing on

min  f(x).
x: xfli<t
Q y: < argmin (y; VFf(xt)), card(y;) = 1;
lIylli<1
Q xtr1 ¢ (1 —n)xe + nyr, card(x¢+1) < card(x:) + 1.
Explicit control of the sparsity. 1/evs. 1/ /€.

Later on, (Hazan'08; Jaggi-Sulovsky'10) generalized the idea to SDPs.
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Generalized conditional gradient

Consider min f(x) 4+ X k(x),
@ f: smooth convex;

e r: gauge (not necessarily smooth).

Important distinction:
@ composite, with a non-smooth term;

@ unconstrained, hence unbounded domain.

@ Polar operator: y; € argmin (x, Vf(x¢));
x:k(x)<1

@ line search: s; € argmin f((1 — n)xt + nsy:) + Ans;
s>0

Q xer1 = (1 —n)xt + NStyr.
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Convergence Rate

mxin f(x)+ X k(x)

Theorem (Zhang-Y-Schuurmans’12)

If f and K have bounded level sets and f € C, then GCG converges at
rate O(1/t), where the constant is independent of \.

Moreover, if using a-approximate PO, then GCG converges at rate O(1/t)
to an a-approximate solution.

v

@ Proof is simple: Line search is as good as knowing x(x*);

o Note that we upper bound k((1 — n)xt + nsy:) < (1 — n)k(x¢) + ns;
o Still too slow!
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Local improvement

Assume some procedure (say BFGS) that can locally minimize the
nonsmooth problem min, f(x) + A - k(x), or some variation of it.

Combine this local procedure with some globally convergent routine?

Two conditions:
@ The local procedure cannot incur big overhead;

@ Cannot ruin the globally convergent routine.

Both are met by the GCG.

Refs: (Burer-Monteiro'05; Mishra et al'1l; Laue'12)
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Case study: Matrix completion with trace norm

Consider min3 > (Xj— Zj)? + A || X
(ij)eo

The only nontrivial step in GCG:
@ Polar operator: Y; € argmin (Y, G;), amounts to the dominating
Yller<1

singular vectors of —G;.

In contrast, popular gradient methods need the full SVD of —G;.

Variation (Srebro'05): %T]' S ((UV)j — Z;)? +

20 A-(IUVIE+ V).
’ 1,J)E

o Not jointly convex in U and V;
@ But smooth in U and V;

@ Y;: in GCG is rank-1 hence X; = UV is of rank at most t.
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Case study: Experiment

MovielLens-100k, A = 20 MovieLens—-1m, A = 50 MovieLens—10m, & = 50
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Interpretation

Dictionary learning problem:

min L(X, Do).
DERMXr GERr*n

@ Many applications: NMF, sparse coding ...

@ Not jointly convex, in fact NP-hard for fixed r;

Convexify by not constraining the rank explicitly: relax r!

Refs: (Bengio et al'05; Bach-Mairal-Ponce'08; Zhang-Y-White-Huang-Sch'10)
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Convexification

rB’lg L(X,D®) + X - Q(P).

Let D.; have unit norm (say ¢2);

@ Put row-wise norm on ®: implicitly I 1
constraining the rank; | |

Rewrite X 1= D® = >oill®ill- D
Reformulate
min L(X, X) + A #(X) where
X

|
H(X):inf{Z-a;:X:Z-a,-'D,ch ”} |

@ Can apply GCG now, PO: miir; dTGtW.

<I)i: .
! |¢i:||,

Setting both norms to /5, we recover the matrix completion example.
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Multiview (White-Y-Zhang-Schuurmans’12)
The complexity of GCG is packed into the PO:

{ min <g,><>}=—/€°(—g)-

x:k(x)<1

Recall that in the dictionary learning problem:

m|n d'¢ ¥ —<{max||G'd|°
[[w] d

. . .\ d; . .
In multiview learning, partition d = d and constrain their norms resp..
2

Harder than single-view, but still doable:

d d
max d/ dJ GGT[ 1} :tr<GGT[ 1] d; d )
s [|=1,]|ds || =1 i ;] d, d [ 2]

2241 o
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Conclusion

We have
@ introduced the GCG;

o discussed efficient computations of PO;
@ applied to MC, Group Lasso, etc.

Further questions
@ nonsmooth?

@ stochastic?
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Thank you !
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