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Regularized Loss Minimization

Generic form for many ML problems:
min f(w) + XA - h(w), where

@ f is the loss function;

@ h is the regularizer;

Assuming f and h to be convex/smooth
@ Interior point method;
@ Mirror descent / Proximal gradient;
o Averaging gradient;
o Conditional gradient.
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Machine Learning Examples

Example (Matrix Completion)

min 35 eo(Xy = Z3)? + A Xl

@ Netflix problem;

@ Covariance matrix estimation; etc.

Example (Group Lasso)
Ll 2
min 3Aw = I3+ A+ X cq Wil

@ Statistical estimation:
@ Inverse problem;

@ Denoising; etc.

Interesting case: m, n or d are extremely large.
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Conditional gradient (Frank-Wolfe'56)

Consider min f(x),
xeC

o C: compact convex;

@ f: smooth convex.

Q y: € argmin (x, VI(xt));
xeC

Q xey1 = (1 —n)xt +ny:.

(Frank-Wolfe'56; Canon-Cullum'68) proved that CG converges at ©(1/t).

Gained much recent attention due to
@ its simplicity;
@ the greedy nature in step 1.

Refs: (Zhang'03; Clarkson'10; Hazan'08; Jaggi-Sulovsky'10; Bach'12; etc.)
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An Example

mibnaz—l—(b+1)2, st.la] <1,2>b>0
a

’

‘ ' ' ' " [—conditional gradient]
4.5- —1/(k+2)

xr] = (17 1)

_,.f: 3 2

Y= -(,170) y2 = (1,0) 0 5 10 15 20 25 30 35 40
Can show f(xx) — f(x*) = 4/k + o(1/k).

Projected gradient converges in two iterations.
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Can show f(xx) — f(x*) = 4/k + o(1/k).
Projected gradient converges in two iterations.

Refs: (Levtin-Polyak'66; Polyak’'87; Beck-Teboulle’04) for faster rates.
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The revival of CG: sparsity!

The revived popularity of conditional gradient is due to (Clarkson'10;
Shalev-Shwartz-Srebro-Zhang'10), both focusing on

min  f(x).
x: [Ix[l1<1 ()

Q y: + argmin (y; VF(x)), card(y:) = 1;

lyll<1
Q xty14(1—n)xt +nyr, card(xq41)<card(x:)+ 1.

Explicit control of the sparsity. 1/e vs. 1//e.

Sparsity, more generally structure, is the key to the success of ML.
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Generalized conditional gradient

Consider min f(x) 4+ X - k(x),
@ f: smooth convex;

e r: gauge (not necessarily smooth).

Important distinction:
@ composite, with a non-smooth term;

@ unconstrained, hence unbounded domain.

@ Polar operator: y; € argmin (x, VI (xt));
x:k(x)<1

@ line search: s; € argmin f((1 — n)x; + nsyt) + Ans;
s>0

Q xey1 = (1 —n)xt +nStyr.
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Convergence Rate

min f(x)+ A k(x)

Theorem (Zhang-Y-Schuurmans'12)

If f and K have bounded level sets and f € Ct, then GCG converges at
rate O(1/t), where the constant is independent of \.

@ Proof is simple: Line search is as good as knowing x(x*);

o Note that we upper bound k((1 — n)xt + nsy:) < (1 — n)k(x¢) + ns;
@ Still too slow!
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Local improvement

Assume some procedure (say BFGS) that can locally minimize the
nonsmooth problem min, f(x) + A - k(x), or some variation of it.

Combine this local procedure with some globally convergent routine?

Two conditions:
@ The local procedure cannot incur big overhead;

@ Cannot ruin the globally convergent routine.

Both are met by the GCG.

Refs: (Burer-Monteiro'05; Mishra et al'11; Laue'12)
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Case study: Matrix completion with trace norm
Consider min 3 > (Xy — Zi)? + A | X |-
X " jeo
@ || - [|tr is the convex hull of rank on the unit ball {X : || X||sp < 1}.

The only nontrivial step in GCG:

@ Polar operator: Y; € argmin (Y, G;), amounts to the dominating
Yller<1
singular vectors of —G;.

In contrast, popular gradient methods need the full SVD of —G;.

Variation: 3 min 3 ((UV); = Zj)* + A~ (IUIIE + [ VII7).
VijeO

@ Not jointly convex in U and V;
@ But smooth in U and V;,
@ Y: in GCG is rank-1 hence X; = UV is of rank at most t.

Y-L. Yu (UofA) GCG and Its Apps. UBC — Kelowna, 04/18/13 13 /25



Case study: Experiment
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Interpretation

Dictionary learning problem:

min L(X,Do®).
DERMXr GERr*n

@ Many applications: NMF, sparse coding, topic model...

@ Not jointly convex, in fact NP-hard for fixed r;
Convexify by not constraining the rank explicitly: relax r!

Refs: (Bengio et al’'05; Bach-Mairal-Ponce'08; Zhang-Y-White-Sch'10)
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Convexification

rB’lg L(X,D®) + X - Q(P).

Let D.; have unit norm (say ¢2);

@ Put row-wise norm on ®: implicitly I 1
constraining the rank; | |

Rewrite X 1= D® = >oill®ill- D
Reformulate
min L(X, X) + A #(X) where
X

|
H(X):inf{Z-a;:X:Z-a,-'D,ch ”} |

@ Can apply GCG now, PO: miir; dTGtW.

<I)i: .
! |¢i:||,

Setting both norms to /5, we recover the matrix completion example.
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Computing the Polar

The complexity of GCG is packed into the PO:

{Xifg?xi?gl g:x) } =—r"(-g).

Recall that in the dictionary learning problem:

{mln chﬁ} {max Tark }

Can easily become computationally intractable!

Y-L. Yu (UofA) GCG and Its Apps. UBC — Kelowna, 04/18/13 18 / 25



Multi-view Learning

latent representation

b -
reconstruction reconstruction
features / yures w
~ | X=Bo Wo=V | ~ v
i - 1: happy
reconstruction reconstruction -1: angry
View 1 View 2

. b : . :
Partition d = [W] and constrain their norms respectively.

Harder than single-view, but still doable (White-Y-Zhang-Sch'12):

b" w']GGT m = tr (GGT [5’1] b’ wT]>

2(2+1)
=5 > 2
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Reducing PO to Proximal

Consider the group regularizer:

ww) =" fwll,
Its polar
\Uou:inf{max 28 zg:u}
(u) ax 250>
does not seem to be easy to compute.

Theorem
For any gauge , its polar Q°(y) equals the smallest { > 0 s.t.

{min_lly = xI3} = I¥18 -2 proxca(s) =0,

where prox,(y) = miny 1||x — y||3 + f(x) and Prox¢(y) denotes the
(unique) minimizer.
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Proximal Gradient

Consider

in f here f €Cj.
min (x), where fe(Cj

Xey1 = argnrclin f(xt) + (x — x¢, VI(xt)) + é||x — Xt||%.
x€

More generally
mig f(x) 4+ g(x), where feC(j.
S

Xep1 = argrrclin f(xt) + (x — x¢, VF(xt)) + %Hx - xt||% + g(x)
xe

= argnéing(X) +5lx = (xe = $VF(x0)II3
x€
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Decomposing the Proximal

How to compute the proximal operator for W(w) = 3" [|w||g?

Theorem (NEW?)

Proxq e = Proxe o Proxq for all gauges Q iff ® = c|| - ||2 for some ¢ > 0.

Corollary (Jenatton et al'11)

Let G be a collection of tree-structured groups, that
is, eitherg C g’ org’ Cgorgng =0. Then

Proxs~ 1|5, = Proxj., o---oProx .,

where we arrange the groups so that
g Cg = >}

L eEEEEE NS,
. .
v

Proxpq = Proxq o Proxq? More generally Proxg, ¢ = f(Proxg, Proxe)?
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Conclusions

We have
@ introduced the GCG;
o discussed efficient computations of PO,;

@ applied to matrix completion, group Lasso, etc.

Further questions
@ when the PO is “hard"?
@ nonsmooth loss?

@ online? stochastic?
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