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Regularized Loss Minimization

Generic form for many ML problems:

min
w

f (w) + λ · h(w), where

f is the loss function;

h is the regularizer;

Assuming f and h to be convex/smooth

Interior point method;

Mirror descent / Proximal gradient;

Averaging gradient;

Conditional gradient.
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Machine Learning Examples

Example (Matrix Completion)

min
X∈Rm×n

1
2

∑
ij∈O(Xij − Zij)

2 + λ · ‖X‖tr

Netflix problem;

Covariance matrix estimation; etc.

Example (Group Lasso)

min
w∈Rd

1
2‖Aw − b‖2

2 + λ ·∑g∈G ‖w‖g

Statistical estimation;

Inverse problem;

Denoising; etc.

Interesting case: m, n or d are extremely large.
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Conditional gradient (Frank-Wolfe’56)

Consider min
x∈C

f (x),

C : compact convex;

f : smooth convex.

1 yt ∈ argmin
x∈C

〈x ,∇f (xt)〉;

2 xt+1 = (1− η)xt + ηyt .

(Frank-Wolfe’56; Canon-Cullum’68) proved that CG converges at Θ(1/t).

Gained much recent attention due to

its simplicity;

the greedy nature in step 1.

Refs: (Zhang’03; Clarkson’10; Hazan’08; Jaggi-Sulovsky’10; Bach’12; etc.)
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An Example

min
a,b

a2 + (b + 1)2, s.t. |a| ≤ 1, 2 ≥ b ≥ 0

Can show f (xk)− f (x?) = 4/k + o(1/k).

Projected gradient converges in two iterations.

Refs: (Levtin-Polyak’66; Polyak’87; Beck-Teboulle’04) for faster rates.
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The revival of CG: sparsity!

The revived popularity of conditional gradient is due to (Clarkson’10;
Shalev-Shwartz-Srebro-Zhang’10), both focusing on

min
x : ‖x‖1≤1

f (x).

1 yt ← argmin
‖y‖1≤1

〈y ;∇f (xt)〉, card(yt) = 1;

2 xt+1←(1−η)xt + ηyt , card(xt+1)≤card(xt) + 1.

Explicit control of the sparsity. 1/ε vs. 1/
√
ε.

Sparsity, more generally structure, is the key to the success of ML.
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Generalized conditional gradient

Consider min
x

f (x) + λ · κ(x),

f : smooth convex;

κ: gauge (not necessarily smooth).

Important distinction:

composite, with a non-smooth term;

unconstrained, hence unbounded domain.

1 Polar operator: yt ∈ argmin
x :κ(x)≤1

〈x ,∇f (xt)〉;

2 line search: st ∈ argmin
s≥0

f ((1− η)xt + ηsyt) + ληs;

3 xt+1 = (1− η)xt + ηstyt .
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Convergence Rate

min
x

f (x) + λ · κ(x)

Theorem (Zhang-Y-Schuurmans’12)

If f and κ have bounded level sets and f ∈ C1, then GCG converges at
rate O(1/t), where the constant is independent of λ.

Proof is simple: Line search is as good as knowing κ(x∗);

Note that we upper bound κ((1− η)xt + ηsyt) ≤ (1− η)κ(xt) + ηs;

Still too slow!
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Local improvement

Assume some procedure (say BFGS) that can locally minimize the
nonsmooth problem minx f (x) + λ · κ(x), or some variation of it.

Combine this local procedure with some globally convergent routine?

Two conditions:

The local procedure cannot incur big overhead;

Cannot ruin the globally convergent routine.

Both are met by the GCG.

Refs: (Burer-Monteiro’05; Mishra et al’11; Laue’12)
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Case study: Matrix completion with trace norm

Consider min
X

1
2

∑
ij∈O

(Xij − Zij)
2 + λ · ‖X‖tr.

‖ · ‖tr is the convex hull of rank on the unit ball {X : ‖X‖sp ≤ 1}.

The only nontrivial step in GCG:

Polar operator: Yt ∈ argmin
‖Y ‖tr≤1

〈Y ,Gt〉, amounts to the dominating

singular vectors of −Gt .

In contrast, popular gradient methods need the full SVD of −Gt .

Variation: 1
2 min
U,V

∑
ij∈O

((UV )ij − Zij)
2 + λ · (‖U‖2

F + ‖V ‖2
F ).

Not jointly convex in U and V ;

But smooth in U and V ;

Yt in GCG is rank-1 hence Xt = UV is of rank at most t.
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Case study: Experiment
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Interpretation

Dictionary learning problem:

min
D∈Rm×r ,Φ∈Rr×n

L(X ,DΦ).

Many applications: NMF, sparse coding, topic model...

Not jointly convex, in fact NP-hard for fixed r ;

Convexify by not constraining the rank explicitly: relax r !

Refs: (Bengio et al’05; Bach-Mairal-Ponce’08; Zhang-Y-White-Sch’10)
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Convexification

min
D,Φ

L(X ,DΦ) + λ · Ω(Φ).

Let D:i have unit norm (say `2);

Put row-wise norm on Φ: implicitly
constraining the rank;

Rewrite X̂ := DΦ =
∑

i ‖Φi :‖ · D:i
Φi :
‖Φi :‖ ;

Reformulate

min
X̂

L(X , X̂ ) + λ · κ(X̂ ) where

κ(X ) = inf{∑i σi : X =
∑

i σi · D:i
Φi :
‖Φi :‖};

Can apply GCG now, PO: min
d,φ

d>Gt
φ
‖φ‖ .

Setting both norms to `2, we recover the matrix completion example.

Y-L. Yu (UofA) GCG and Its Apps. UBC – Kelowna, 04/18/13 16 / 25



Table of Contents

1 Introduction

2 Generalized Conditional Gradient

3 Polar Operator

4 Conclusions

Y-L. Yu (UofA) GCG and Its Apps. UBC – Kelowna, 04/18/13 17 / 25



Computing the Polar

The complexity of GCG is packed into the PO:{
min

x :κ(x)≤1
〈g , x〉

}
= −κ◦(−g).

Recall that in the dictionary learning problem:{
min
d,φ

d>G
φ

‖φ‖

}
= −

{
max
d
‖G>d‖◦

}
Can easily become computationally intractable!
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Multi-view Learning

Partition d =

[
b
w

]
and constrain their norms respectively.

Harder than single-view, but still doable (White-Y-Zhang-Sch’12):

max
‖b‖=1,‖w‖=1

[
b> w>

]
GG>

[
b
w

]
= tr

(
GG>

[
b
w

] [
b> w>

])
2(2+1)

2 > 2.
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Reducing PO to Proximal

Consider the group regularizer:

Ψ(w) =
∑

g
‖w‖g .

Its polar

Ψ◦(u) = inf
{

max
g
‖zg‖◦g :

∑
g
zg = u

}
does not seem to be easy to compute.

Theorem

For any gauge Ω, its polar Ω◦(y) equals the smallest ζ ≥ 0 s.t.{
min

Ω◦(x)≤ζ
‖y − x‖2

2

}
= ‖y‖2

2 − 2 · proxζΩ(y) = 0,

where proxf (y) = minx
1
2‖x− y‖2

2 + f (x) and Proxf (y) denotes the
(unique) minimizer.
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Proximal Gradient

Consider
min
x∈C

f (x), where f ∈ C1
L.

xt+1 = argmin
x∈C

f (xt) + 〈x − xt ,∇f (xt)〉+ L
2‖x − xt‖2

2.

More generally
min
x∈C

f (x) + g(x), where f ∈ C1
L.

xt+1 = argmin
x∈C

f (xt) + 〈x − xt ,∇f (xt)〉+ L
2‖x − xt‖2

2 + g(x)

= argmin
x∈C

g(x) + L
2‖x − (xt − 1

L∇f (xt))‖2
2
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Decomposing the Proximal

How to compute the proximal operator for Ψ(w) =
∑

g ‖w‖g?

Theorem (NEW?)

ProxΩ+Φ = ProxΦ ◦ProxΩ for all gauges Ω iff Φ = c‖ · ‖2 for some c ≥ 0.

Corollary (Jenatton et al’11)

Let G be a collection of tree-structured groups, that
is, either g ⊆ g ′ or g ′ ⊆ g or g ∩ g ′ = ∅. Then

Prox∑
i ‖·‖gi = Prox‖·‖g1

◦ · · · ◦ Prox‖·‖gm ,

where we arrange the groups so that

gi ⊂ gj =⇒ i > j .

Prox2Ω = ProxΩ ◦ ProxΩ? More generally ProxΩ+Φ = f (ProxΩ,ProxΦ)?
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Conclusions

We have

introduced the GCG;

discussed efficient computations of PO;

applied to matrix completion, group Lasso, etc.

Further questions

when the PO is “hard”?

nonsmooth loss?

online? stochastic?
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Thank you !
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