Analysis of Kernel Mean Matching under Covariate Shift

Yao-Liang Yu and Csaba Szepesvári University of Alberta

ICML 2012, Edingburgh

June 29, 2012

Supervised learning

Given *i.i.d.* sample $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}_{i=1}^{n_{\text{tr}}} \subseteq \mathcal{X} \times \mathcal{Y}$, learn function $f: \mathcal{X} \mapsto \mathcal{Y}$ that predicts the label Y "well" on the test set $\{X_i^{\text{te}}, Y_i^{\text{te}}\}_{i=1}^{n_{\text{te}}}$.

Supervised learning

Given *i.i.d.* sample $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}_{i=1}^{n_{\text{tr}}} \subseteq \mathcal{X} \times \mathcal{Y}$, learn function $f : \mathcal{X} \mapsto \mathcal{Y}$ that predicts the label Y "well" on the test set $\{X_i^{\text{te}}, Y_i^{\text{te}}\}_{i=1}^{n_{\text{te}}}$.

Well-studied provided that $P_{te}(x, y) = P_{tr}(x, y)$.

Supervised learning

Given *i.i.d.* sample $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}_{i=1}^{n_{\text{tr}}} \subseteq \mathcal{X} \times \mathcal{Y}$, learn function $f : \mathcal{X} \mapsto \mathcal{Y}$ that predicts the label Y "well" on the test set $\{X_i^{\text{te}}, Y_i^{\text{te}}\}_{i=1}^{n_{\text{te}}}$.

Well-studied provided that $P_{te}(x, y) = P_{tr}(x, y)$.

What if $P_{te}(x, y) \neq P_{tr}(x, y)$, but nontrivially related?

Supervised learning

Given *i.i.d.* sample $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}_{i=1}^{n_{\text{tr}}} \subseteq \mathcal{X} \times \mathcal{Y}$, learn function $f : \mathcal{X} \mapsto \mathcal{Y}$ that predicts the label Y "well" on the test set $\{X_i^{\text{te}}, Y_i^{\text{te}}\}_{i=1}^{n_{\text{te}}}$.

Well-studied provided that $P_{te}(x, y) = P_{tr}(x, y)$.

What if $P_{te}(x, y) \neq P_{tr}(x, y)$, but nontrivially related?

Covariate Shift (Shimodaira, 2000)

$$P_{tr}(y|x) = P_{te}(y|x).$$

Previous work

To name a few:

- Huang et al. (2007): kernel mean matching;
- Sugiyama et al. (2008): Kullback-Leibler importance;
- Bickel et al. (2009): logistic regression;
- Kanamori et al. (2012): least-squares;
- Cortes et al. (2008): distributional stability;
- Ben-David et al. (2007) and Blitzer et al. (2008): domain adaptation.

Two books and one monograph:

- Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation, Masashi Sugiyama and Motoaki Kawanabe, MIT, 2012
- Density Ratio Estimation in Machine Learning, Masashi Sugiyama, Taiji Suzuki and Takafumi Kanamori, Cambridge, 2012
- Dataset Shift in Machine Learning, Joaquin Quiñonero-Candela, Masashi Sugiyama,
 Anton Schwaighofer and Neil D. Lawrence, MIT, 2008

The Problem Studied

Predict the mean

Under the covariate shift assumption, construct

$$\hat{f}\left(\{X_{i}^{\text{te}}\}_{i=1}^{n_{\text{te}}};\{(X_{i}^{\text{tr}},Y_{i}^{\text{tr}})\}_{i=1}^{n_{\text{tr}}}\right)$$

that approximates $\mathbb{E}(Y^{te})$ well.

How well?

Can we get a parametric rate, i.e. $\mathcal{O}\left(\sqrt{\frac{1}{n_{tr}} + \frac{1}{n_{te}}}\right)$?

Why is it interesting?

Relevance

Given classifiers {f_j} trained on {(X_i^{tr}, Z_i^{tr})}, want to rank them based on how well they do on the test set {(X_i^{te}, Z_i^{te})}.
 Fix j and let

$$Y_i^{\mathrm{tr}} = \ell(f_j(X_i^{\mathrm{tr}}), Z_i^{\mathrm{tr}}), \ Y_i^{\mathrm{te}} = \ell(f_j(X_i^{\mathrm{tr}}), Z_i^{\mathrm{te}}).$$

- Model-selection/cross-validation under covariate shift.
- Helps understanding the least-squares estimation problem.

Isn't the problem just "trivial"?

Under the covariate shift assumption, the regression function

$$m(x) := \int_{\mathcal{Y}} y \, P_{tr}(dy|x) = \int_{\mathcal{Y}} y \, P_{te}(dy|x)$$

remains unchanged. Estimate $m(\cdot)$ on $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}$ and "plug-in":

$$\hat{y} = \frac{1}{n_{\text{te}}} \sum_{i=1}^{n_{\text{te}}} \hat{m}(X_i^{\text{te}}).$$

Isn't the problem just "trivial"?

Under the covariate shift assumption, the regression function

$$m(x) := \int_{\mathcal{Y}} y \, P_{tr}(dy|x) = \int_{\mathcal{Y}} y \, P_{te}(dy|x)$$

remains unchanged. Estimate $m(\cdot)$ on $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}$ and "plug-in":

$$\hat{y} = \frac{1}{n_{\text{te}}} \sum_{i=1}^{n_{\text{te}}} \hat{m}(X_i^{\text{te}}).$$

Theorem (Smale & Zhou, 2007; Sun & Wu, 2009)

w.p.
$$1 - \delta$$
, $\left| \frac{1}{n_{\text{te}}} \sum_{i=1}^{n_{\text{te}}} \hat{m}(Y_i^{\text{te}}) - \mathbb{E}Y^{\text{te}} \right| \leq \sqrt{\frac{1}{2n_{\text{te}}} \log \frac{4}{\delta}} + \sqrt{B}C_1 n_{\text{tr}}^{-\frac{3\theta}{12\theta+16}}$

Dependence on $n_{\rm tr}$ is not nice. Algorithm needs to know θ .

A Naive Estimator?

Observe that

$$\mathbb{E}(Y^{\text{te}}) = \int_{\mathcal{X}} m(x) \, P_{\text{te}}(dx) = \int_{\mathcal{X}} \beta(x) m(x) \, P_{\text{tr}}(dx),$$

where $\beta(x) := \frac{dP_{te}}{dP_{te}}(x)$ is the Radon-Nikodym derivative.

A Naive Estimator?

Observe that

$$\mathbb{E}(Y^{\text{te}}) = \int_{\mathcal{X}} m(x) \, P_{\text{te}}(dx) = \int_{\mathcal{X}} \beta(x) m(x) \, P_{\text{tr}}(dx),$$

where $\beta(x) := \frac{dP_{te}}{dP_{tr}}(x)$ is the Radon-Nikodym derivative.

Estimate m(x) from $\{(X_i^{\text{tr}}, Y_i^{\text{tr}})\}$, and estimate $P_{\text{tr}}(x)$ from $\{X_i^{\text{tr}}\}$, $P_{\text{te}}(x)$ from $\{X_i^{\text{te}}\}$ respectively. Density estimation is not easy.

A Naive Estimator?

Observe that

$$\mathbb{E}(Y^{\text{te}}) = \int_{\mathcal{X}} m(x) \, P_{\text{te}}(dx) = \int_{\mathcal{X}} \beta(x) m(x) \, P_{\text{tr}}(dx),$$

where $\beta(x) := \frac{dP_{te}}{dP_{tr}}(x)$ is the Radon-Nikodym derivative.

Estimate m(x) from $\{(X_i^{\rm tr}, Y_i^{\rm tr})\}$, and estimate $P_{\rm tr}(x)$ from $\{X_i^{\rm tr}\}$, $P_{\rm te}(x)$ from $\{X_i^{\rm te}\}$ respectively. Density estimation is not easy.

Why not estimate $\beta(x)$ directly? Much work is devoted into this.

A Better Estimator?

Kernel Mean Matching (Huang et al., 2007)

$$\hat{\beta}^* \in \arg\min_{\hat{\beta}_i} \left\{ \hat{L}(\hat{\beta}) := \left\| \frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \hat{\beta}_i \Phi(X_i^{\text{tr}}) - \frac{1}{n_{\text{te}}} \sum_{i=1}^{n_{\text{te}}} \Phi(X_i^{\text{te}}) \right\|_{\mathcal{H}} \right\}$$
s.t. $0 < \hat{\beta}_i < B$,

where $\Phi: \mathcal{X} \mapsto \mathcal{H}$ denotes the *canonical* feature map, \mathcal{H} is the RKHS induced by the kernel k and $\|\cdot\|_{\mathcal{H}}$ stands for the norm in \mathcal{H} . Standard quadratic programming.

Better?

$$\hat{y}_{KMM} := \frac{1}{n_{te}} \sum_{i=1}^{n_{te}} \hat{\beta}_i^* Y_i^{tr}$$

The population version

$$\hat{\beta}^* \in \arg\min_{\hat{\beta}} \left\| \int_{\mathcal{X}} \Phi(x) \hat{\beta}(x) P_{tr}(dx) - \int_{\mathcal{X}} \Phi(x) P_{te}(dx) \right\|_{\mathcal{H}}$$

s.t. $0 < \hat{\beta} < B$.

At optimum we always have

$$\int_{\mathcal{X}} \Phi(x) \hat{\beta}^*(x) P_{tr}(dx) = \int_{\mathcal{X}} \Phi(x) P_{te}(dx).$$

The question is whether

$$\int_{\mathcal{X}} m(x) \hat{\beta}^*(x) P_{tr}(dx) \stackrel{?}{=} \mathbb{E} Y^{te} = \int_{\mathcal{X}} m(x) \beta(x) P_{tr}(dx).$$

The population version

$$\hat{eta}^* \in \arg\min_{\hat{eta}} \left\| \int_{\mathcal{X}} \Phi(x) \hat{eta}(x) \mathrm{P}_{\mathrm{tr}}(\mathrm{d}x) - \int_{\mathcal{X}} \Phi(x) \mathrm{P}_{\mathrm{te}}(\mathrm{d}x) \right\|_{\mathcal{H}}$$
 s.t. $0 \leq \hat{eta} \leq B$.

At optimum we always have

$$\int_{\mathcal{X}} \Phi(x) \hat{\beta}^*(x) P_{tr}(dx) = \int_{\mathcal{X}} \Phi(x) P_{te}(dx).$$

The question is whether

$$\int_{\mathcal{X}} m(x) \hat{\beta}^*(x) P_{tr}(\mathrm{d}x) \stackrel{?}{=} \mathbb{E} Y^{te} = \int_{\mathcal{X}} m(x) \beta(x) P_{tr}(\mathrm{d}x).$$

Yes, if

- $m \in \mathcal{H}$, or;
- *k* is characteristic (Sriperumbudur et al., 2010).

The empirical version

Assumption (Continuity assumption)

The Radon-Nikodym derivative $\beta(x) := \frac{dP_{te}}{dP_{tr}}(x)$ is well-defined and bounded from above by $B < \infty$.

Assumption (Compactness assumption)

 \mathcal{X} is a compact metrizable space, $\mathcal{Y} \subseteq [0,1]$, and the kernel k is continuous, whence $||k||_{\infty} \leq C^2 < \infty$.

The empirical version

Assumption (Continuity assumption)

The Radon-Nikodym derivative $\beta(x) := \frac{dP_{te}}{dP_{tr}}(x)$ is well-defined and bounded from above by $B < \infty$.

Assumption (Compactness assumption)

 \mathcal{X} is a compact metrizable space, $\mathcal{Y} \subseteq [0,1]$, and the kernel k is continuous, whence $||k||_{\infty} \leq C^2 < \infty$.

Theorem

Under our assumptions, if $m \in \mathcal{H}$, then w.p. $1 - \delta$,

$$\left|\frac{1}{n_{\mathrm{tr}}}\sum_{i=1}^{n_{\mathrm{tr}}}\hat{\beta}_{i}Y_{i}^{\mathrm{tr}} - \mathbb{E}Y^{\mathrm{te}}\right| \leq \left(1 + 2C\|m\|_{\mathcal{H}}\right) \cdot \sqrt{2\left(\frac{B^{2}}{n_{\mathrm{tr}}} + \frac{1}{n_{\mathrm{te}}}\right)\log\frac{6}{\delta}}.$$

More refined result (more realistic?)

Theorem

Under our assumptions, if

$$A_2(m,R) := \inf_{\|g\|_{\mathcal{H}} < R} \|m - g\|_{\mathscr{L}^2_{P_{tr}}} \le C_2 R^{-\theta/2},$$

then w.p. $1 - \delta$,

$$\left|\frac{1}{n_{\mathrm{tr}}}\sum_{i=1}^{n_{\mathrm{tr}}}\hat{\beta}_{i}Y_{i}^{\mathrm{tr}}-\mathbb{E}Y^{\mathrm{te}}\right|\leq\mathcal{O}(n_{\mathrm{tr}}^{-\frac{\theta}{2(\theta+2)}}+n_{\mathrm{te}}^{-\frac{\theta}{2(\theta+2)}}).$$

Remarks

- As $\theta \to \infty$, we recover the parametric rate;
- The algorithm (KMM) does not need to know θ .

A pessimistic result

Theorem

Under our assumptions, if

$$\mathcal{A}_{\infty}(m,R) := \inf_{\|g\|_{\mathcal{H}} < R} \|m - g\|_{\infty} \le C_{\infty}(\log R)^{-s},$$

then (for n_{tr} and n_{te} large),

$$\left|\frac{1}{n_{\mathrm{tr}}}\sum_{i=1}^{n_{\mathrm{tr}}}\hat{\beta}_{i}Y_{i}^{\mathrm{tr}}-\mathbb{E}Y^{\mathrm{te}}\right|\leq\mathcal{O}(\mathsf{log^{-s}}\,\frac{n_{\mathrm{tr}}\cdot n_{\mathrm{te}}}{n_{\mathrm{tr}}+n_{\mathrm{te}}}).$$

The logarithmic decay is satisfied for C^{∞} kernels (such as the Gaussian kernel) when $m \notin \mathcal{H}$, under mild conditions.

Conclusion

Summary

For the problem of predicting the mean under covariate shift,

- the KMM estimator enjoys parametric rate of convergence when m ∈ H;
- more generally, the KMM estimator converges at

$$\mathcal{O}(n_{\rm tr}^{-\frac{\theta}{2(\theta+2)}}+n_{\rm te}^{-\frac{\theta}{2(\theta+2)}});$$

• on the negative side, the KMM estimator converges at $\mathcal{O}(\log^{-s} \frac{n_{tr} \cdot n_{te}}{n_{tr} + n_{te}})$ if k does not interact well with m.

Future work

- Lower bounds?
- Extension to least-squares estimation.

