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Learning from sample

Supervised learning
Given i.i.d. sample {(X tr

i ,Y
tr
i )}ntr

i=1 ⊆ X × Y, learn function f : X 7→ Y
that predicts the label Y “well” on the test set {X te

i ,Y
te
i }

nte
i=1.

Well-studied provided that Pte(x , y) = Ptr(x , y).

What if Pte(x , y) 6= Ptr(x , y), but nontrivially related?

Covariate Shift (Shimodaira, 2000)

Ptr(y |x) = Pte(y |x).
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Previous work

To name a few:
Huang et al. (2007): kernel mean matching;
Sugiyama et al. (2008): Kullback-Leibler importance;
Bickel et al. (2009): logistic regression;
Kanamori et al. (2012): least-squares;
Cortes et al. (2008): distributional stability;
Ben-David et al. (2007) and Blitzer et al. (2008): domain adaptation.

Two books and one monograph:
Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift

Adaptation, Masashi Sugiyama and Motoaki Kawanabe, MIT, 2012

Density Ratio Estimation in Machine Learning, Masashi Sugiyama, Taiji Suzuki and

Takafumi Kanamori, Cambridge, 2012

Dataset Shift in Machine Learning, Joaquin Quiñonero-Candela, Masashi Sugiyama,

Anton Schwaighofer and Neil D. Lawrence, MIT, 2008
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The Problem Studied

Predict the mean
Under the covariate shift assumption, construct

f̂
(
{X te

i }
nte
i=1; {(X tr

i ,Y
tr
i )}ntr

i=1

)
that approximates E(Y te) well.

How well?

Can we get a parametric rate, i.e. O
(√

1
ntr

+ 1
nte

)
?
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Why is it interesting?

Relevance
Given classifiers {fj} trained on {(X tr

i ,Z
tr
i )}, want to rank them

based on how well they do on the test set {(X te
i ,Z

te
i )}.

Fix j and let

Y tr
i = `(fj(X tr

i ),Z tr
i ), Y te

i = `(fj(X tr
i ),Z te

i ).

Model-selection/cross-validation under covariate shift.
Helps understanding the least-squares estimation problem.
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Isn’t the problem just “trivial”?

Under the covariate shift assumption, the regression function

m(x) :=

∫
Y

y Ptr(dy |x) =

∫
Y

y Pte(dy |x)

remains unchanged. Estimate m(·) on {(X tr
i ,Y

tr
i )} and “plug-in”:

ŷ =
1

nte

nte∑
i=1

m̂(X te
i ).

Theorem (Smale & Zhou, 2007; Sun & Wu, 2009)

w.p. 1− δ,
∣∣∣ 1

nte

∑nte
i=1 m̂(Y te

i )− EY te
∣∣∣ ≤√ 1

2nte
log 4

δ +
√

BC1n
− 3θ

12θ+16
tr

Dependence on ntr is not nice. Algorithm needs to know θ.
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A Naive Estimator?

Observe that

E(Y te) =

∫
X

m(x) Pte(dx) =

∫
X
β(x)m(x) Ptr(dx),

where β(x) := dPte
dPtr

(x) is the Radon-Nikodym derivative.

Estimate m(x) from {(X tr
i ,Y

tr
i )}, and estimate Ptr(x) from {X tr

i }, Pte(x)
from {X te

i } respectively. Density estimation is not easy.

Why not estimate β(x) directly? Much work is devoted into this.
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A Better Estimator?

Kernel Mean Matching (Huang et al., 2007)

β̂∗ ∈ arg min
β̂i

{
L̂(β̂) :=

∥∥∥∥∥ 1
ntr

ntr∑
i=1

β̂iΦ(X tr
i )− 1

nte

nte∑
i=1

Φ(X te
i )

∥∥∥∥∥
H

}
s.t. 0 ≤ β̂i ≤ B,

where Φ : X 7→ H denotes the canonical feature map, H is the RKHS
induced by the kernel k and ‖ · ‖H stands for the norm in H.
Standard quadratic programming.

Better?

ŷKMM :=
1

nte

nte∑
i=1

β̂∗i Y tr
i

Yu and Szepesvári Analysis of KMM under Covariate Shift
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The population version

β̂∗ ∈ arg min
β̂

∥∥∥∥∫
X

Φ(x)β̂(x)Ptr(dx)−
∫
X

Φ(x)Pte(dx)

∥∥∥∥
H

s.t. 0 ≤ β̂ ≤ B.
At optimum we always have∫

X
Φ(x)β̂∗(x)Ptr(dx) =

∫
X

Φ(x)Pte(dx).

The question is whether∫
X

m(x)β̂∗(x)Ptr(dx)
?
= EY te =

∫
X

m(x)β(x)Ptr(dx).

Yes, if
m ∈ H, or;
k is characteristic (Sriperumbudur et al., 2010).
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The empirical version

Assumption (Continuity assumption)

The Radon-Nikodym derivative β(x) := dPte
dPtr

(x) is well-defined and
bounded from above by B <∞.

Assumption (Compactness assumption)
X is a compact metrizable space, Y ⊆ [0,1], and the kernel k is
continuous, whence ‖k‖∞ ≤ C2 <∞.

Theorem
Under our assumptions, if m ∈ H, then w.p. 1− δ,∣∣∣∣∣ 1

ntr

ntr∑
i=1

β̂iY tr
i − EY te

∣∣∣∣∣ ≤ (1 + 2C‖m‖H) ·

√
2
(

B2

ntr
+

1
nte

)
log

6
δ
.

Yu and Szepesvári Analysis of KMM under Covariate Shift



Introduction
Problem setup

Main Results
Conclusion

The empirical version

Assumption (Continuity assumption)

The Radon-Nikodym derivative β(x) := dPte
dPtr

(x) is well-defined and
bounded from above by B <∞.

Assumption (Compactness assumption)
X is a compact metrizable space, Y ⊆ [0,1], and the kernel k is
continuous, whence ‖k‖∞ ≤ C2 <∞.

Theorem
Under our assumptions, if m ∈ H, then w.p. 1− δ,∣∣∣∣∣ 1

ntr

ntr∑
i=1

β̂iY tr
i − EY te

∣∣∣∣∣ ≤ (1 + 2C‖m‖H) ·

√
2
(

B2

ntr
+

1
nte

)
log

6
δ
.

Yu and Szepesvári Analysis of KMM under Covariate Shift



Introduction
Problem setup

Main Results
Conclusion

More refined result (more realistic?)

Theorem
Under our assumptions, if

A2(m,R) := inf
‖g‖H≤R

‖m − g‖L 2
Ptr
≤ C2R−θ/2,

then w.p. 1− δ,∣∣∣∣∣ 1
ntr

ntr∑
i=1

β̂iY tr
i − EY te

∣∣∣∣∣ ≤ O(n
− θ

2(θ+2)
tr + n

− θ
2(θ+2)

te ).

Remarks
As θ →∞, we recover the parametric rate;
The algorithm (KMM) does not need to know θ.
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A pessimistic result

Theorem
Under our assumptions, if

A∞(m,R) := inf
‖g‖H≤R

‖m − g‖∞ ≤ C∞(log R)−s,

then (for ntr and nte large),∣∣∣∣∣ 1
ntr

ntr∑
i=1

β̂iY tr
i − EY te

∣∣∣∣∣ ≤ O(log−s ntr · nte

ntr + nte
).

The logarithmic decay is satisfied for C∞ kernels (such as the
Gaussian kernel) when m 6∈ H, under mild conditions.

Yu and Szepesvári Analysis of KMM under Covariate Shift
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Conclusion
Summary
For the problem of predicting the mean under covariate shift,

the KMM estimator enjoys parametric rate of convergence when
m ∈ H;
more generally, the KMM estimator converges at

O(n
− θ

2(θ+2)
tr + n

− θ
2(θ+2)

te );
on the negative side, the KMM estimator converges at
O(log−s ntr·nte

ntr+nte
) if k does not interact well with m.

Future work
Lower bounds?
Extension to least-squares estimation.

Yu and Szepesvári Analysis of KMM under Covariate Shift


	Introduction
	Problem setup
	Main Results
	Conclusion

