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A bit of motivation

Linear programming (Kantorovich, 1939)

min
x
〈c , x〉 , s.t. x ≥ 0,Ax = b

The simplex algorithm (Dantzig, 1947)

You know what it is. Famous story happened in 1939.

What next?

Quadratic programming:

min
x

〈
x , 12Px + c

〉
, s.t. x ≥ 0,Ax = b

How would you solve it?
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A bit of history

“(Bob) Dorfman (at the time with UC Berkeley) used the then very new
Kuhn-Tucker theory ... if you wrote the Kuhn-Tucker conditions ... you
had a big set of linear equations that looked like a simplex method
tableau ... you could show that the solution of the quadratic problem was
an extreme point of this tableau problem.”

We submitted to the Naval Research Logistics Quarterly. Alan Hoffman
was an editor ... he received a manuscript from Harry Markowitz on
portfolio selection by parametric quadratic minimization .... he sent the
Markowitz manuscript to me and our manuscript to Markowitz to referee.
Talking to Harry much later, I found that we did the same sort of thing:
looked at the other’s paper, couldn’t understand it very well, but it
sounded like competent mathematics. So we turned in our reports saying
‘publish this.’ ” — Philip Wolfe
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Conditional gradient (Frank-Wolfe, 1956)

Convex program

min
x∈Q

f (x),

where Q is convex (bounded), f is convex.

Smoothness assumption

∃Cf ≥ 0,∀x , y ∈ Q,∀η ∈ (0, 1)

f (x + η(y − x)) ≤ f (x) + η 〈y − x ,∇f (x)〉+ Cf
2 η

2.

Note that: Cf ≤ L · ‖y − x‖2, if f ∈ C1L.

The power of linearization

Step 1 is a linear program if Q is polyhedra.

1 yk ∈ arg min
y∈Q
〈y ,∇f (xk)〉;

2 choose ηk ∈ [0, 1];

3 xk+1 ← (1− ηk)xk + ηkyk .
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Convergence rate

f (xk+1)− f (x∗) = f ((1− ηk)xk + ηkyk)− f (x∗)

≤ f (xk)− f (x∗) + ηk 〈yk − xk ,∇f (xk)〉+ Cf
2 η

2
k

≤ f (xk)− f (x∗) + ηk 〈x∗ − xk ,∇f (xk)〉+ Cf
2 η

2
k

≤ (1− ηk)(f (xk)− f (x∗)) + Cf
2 η

2
k .

Choose ηk = 2
k+2 and use induction proves

f (xk)− f (x∗) ≤ Cf

k + 2
.

Note: (Dem’yanov and Rubinov, 1963) independently discovered the
conditional gradient (although without rates).

What about f is additionally strongly convex?

Will we get linear rate, after all that is what we get for gradient methods?
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A bit of digestion

Adavantage

Simple; ideal for infinite-dim.

Disadvantage

Not very fast; hard to apply in nonsmooth/stochastic settings.

Exact 1/k rate (Polyak, 1987)

min
a,b

a2 + (b + 1)2, s.t. |a| ≤ 1, b ≥ 0

Step 1 yields yk = (−sign(ak), 0);

Step 2 chooses η optimally: ηk =
|ak |+bk+a2k+b2k
(|ak |+1)2+b2k

∧ 1;

For k large, ηk < 1 and fk+1 = fk − 1
4‖xk − yk‖2(fk − f ∗)2. Since

‖xk − yk‖2 → 1 we obtain fk − f ∗ = 4/k + o(1/k).
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Slow rate (Canon and Cullum, 1968)

Consider the QP

min
x

〈
x , 12Px + c

〉
, s.t. x ∈ Q := conv{z1, . . . , zm}, where P � 0

Theorem (For the usual conditional gradient)

Suppose x∗ ∈ ∂Q − {z1, . . . , zm} and xk ∈ riQ indefinitely, then
∀α > 0, ε > 0, f (xk)− f (x∗) ≥ α/k1+ε indefinitely.
In particular, if x1 ∈ riQ and f (x1) < mini f (zi ), then xk ∈ riQ.

In retrospect

(Frank-Wolfe, 1956) deliberately (or accidentally?) went through messy
primal-dual transforms so that x∗ becomes an extreme point, hence
avoiding the above theorem (in fact, proved termination in finite steps).
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Fast rate I (Levtin and Polyak, 1966)

Uniformly convex set

A convex set C is (mid-point) δ-uniformly convex iff ∀x , y ∈ C ,
∀‖z‖ ≤ δ(‖x − y‖), x+y

2 + z ∈ C ; µ-strongly convex iff δ(t) = µ
2 t

2.

Theorem

If in addition, infx∈Q ‖∇f (x)‖ > 0, Q is strongly convex,

ηk = 〈∇f (xk ),xk−yk 〉
L‖xk−yk‖2

∧ 1, then xk → x∗ at a linear rate.

Theorem (Sharp minima (Polyak, 1987))

If in addition, ∀x ∈ Q, f (x) ≥ f (x∗) + α‖x − x∗‖, then xk → x∗ in finite
steps.

Page 26, Notes 1: “The asymptotic O(1/k) rate cannot be improved
without extra assumption ... even if f is strongly convex.”
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Fast rate II (Beck and Teboulle, 2004)

Problem

Find a point in {x : Ax = b} ∩ Q, where Q is (weakly) compact.
Assume feasibility, equivalent as min

x∈Q
‖Ax − b‖2.

Theorem

Assume feasibility and Slater’s condition, then the conditional gradient
(applied to the above problem) converges at a linear rate.

Kernel herding (Chen, Welling and Smola, 2010)

Subsampling: min
φ∈Q
‖µP−φ‖2H,whereQ :=conv{Φ(X )}, sup

x∈X
‖Φ(x)‖H<∞.

1/k2 rate, assuming µP ∈ riQ. Note that i.i.d. sampling yields 1/k rate.

But see (Bach, Lacoste-Julien and Obozinski, 2012)!

Similar idea appeared in (White, Yu, Zhang and Schuurmans, 2012).
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Connection to boosting (Zhang, 2003)

Obvious: Q corresponds to the set of hypotheses, and Step 1
corresponds to the oracle that selects “weak” hypotheses.

Totally corrective (Meyer, 1974)

Had we kept all yk ’s, perhaps we should choose

xk+1 ← arg min
x∈conv{y1,...,yk}

f (x).

Progressively more expensive. At least converge at O(1/k).
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Connection to function approximation (Temlyakov, 2012)

Problem

Let (X , ‖ · ‖) be a Banach space, D an arbitrary bounded subset having
dense span. Given z ∈ X , want to approximate it by linear combinations
of elements of D, i.e. min

x∈span{D}
‖z − x‖.

Similar to the Herding problem, except the norm need not be Hilbertien.

The algorithm

1 x∗k ∈ argmax‖x∗‖=1 〈z − xk ; x∗〉;
2 yk ∈ argminy∈D 〈y ; x∗k 〉;
3 choose ηk ;

4 xk+1 ← (1− ηk)xk + ηkyk .

Theorem

Suppose ‖ · ‖ is uniformly smooth with type q ∈ (1, 2], then the above
algorithm converges at k−1/p.
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Fast rate III (Shalev-Shwartz, Srebro and Zhang, 2010)

Problem

min
x :‖x‖1≤B

f (x), where f ∈ C 1
L .

Uniformly convex function

f is δ-uniformly convex iff ∀x , y ∈ dom f , ∀λ ∈ (0, 1),
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− λ(1− λ)δ(‖x − y‖);
µ-strongly convex iff δ(t) = µ

2 t
2.

Theorem

If in addition f is µ-strongly convex, then the totally corrective
conditional gradient algorithm converges at a linear rate.

Remains true for `1 regularization (Zhang, Yu and Schuurmans, 2012).
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Generalized conditional gradient (Bredies, Lorenz and
Maass, 2009)

Problem

min
x∈Q

g(x), where g(x) := f (x) + h(x).

As usual, f ∈ C1L is convex while h is convex but not necessarily smooth.

Lesson learned recently

Carry the nonsmooth part with you!

The generalized algorithm

1 yk ∈ arg minx∈Q 〈x ,∇f (xk)〉+h(x);

2 choose ηk ;

3 line search if Q is unbounded;

4 xk+1 ← (1− ηk)xk + ηkyk ;
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Mirror descent as g.c.g.

Mirror descent (Nemirovski and Yudin, 1979)

The problem: min
y∈Q

g(y);

The algorithm: yk+1 ← argmin
y∈Q

g(yk) + 〈y − yk ,∇g(yk)〉+ LD(y , yk).

Reinterpretation as g.c.g

min
x∈Q

g(x)− Ld(x)︸ ︷︷ ︸
f (x)

+Ld(x)

Step 1: y ← min
x∈Q
〈x ,∇f (xk)〉+ Ld(x)

Note that y = yk+1.

Step 3: xk+1 ← (1− η)xk + ηy .
Choose η ≡ 1 recovers mirror descent.

Yao-Liang Yu An Introduction to Conditional Gradient



Regularization

The rise of regularization

min
x

g(x) where g(x) := f (x) + h(x).

As usual, f ∈ C1L is convex; h, the regularizer, is convex but not
necessarily smooth.
Fits nicely into the generalized conditional gradient framework.

Trace norm regularization

min
X

f (X ) + λ · ‖X‖tr

(Optimal) gradient needs to solve: minY
1
2‖Y − Z‖F + λ · ‖Y ‖tr.

G.c.g. needs to solve: minY 〈Z ,Y 〉+ λ · ‖Y ‖tr,

and the line search... Wooooops!
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Gauge (Minkowski) function (Tewari, Ravikumar and
Dhillon, 2012)

Given any convex, balanced, absorbing and bounded set A, define the
gauge function pK (x) := inf{σ > 0 : x ∈ σK}, which is a norm.

Trace norm

‖X‖tr = pK (X ),where K := conv(W ),W := {uv ′ : ‖u‖2 = 1, ‖v‖2 = 1}.

Reformulation

min
X

f (X ) + λ‖X‖tr ⇔ min
σ∈c+00

f (〈w;σ〉) + λ
∑
i

σi

Cons: Infinite-dim!

Pros: Infinite-dim! Line search much cheaper.
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The power of local search (Zhang, Yu and Schuurmans,
2012)

Recall

Serious drawback of conditional gradient: sublinear rate!

Yet another reformulation

min
X

f (X ) + λ‖X‖tr ⇔ min
U,V

f (UV ) + λ
2 (‖U‖2F + ‖V ‖2F )

RHS is smooth unconstrained, albeit nonconvex...

Hybridize!

1 one step conditional gradient on the LHS;

2 construct initializer for RHS;

3 run lbfgs on RHS until local convergence;

4 construct initializer for LHS;

It works extremely well!
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