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Statistical inference 101

To estimate unknown parameter 6 € R”:

y,-=x,-T€+e,-, i=1,...,n

@ classical setting: p fixed small, n — oo, lots of results.
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High-dimensional challenge

@ More unknown parameters than observations, ill-defined.
» structure: effective number of unknown parameters is moderate.

* @ is sparse: nnz(#) small, but do not know which is which.
* 6 as a matrix is low-rank, but do not know the column/row spaces.

o Extremely large scale, takes forever to run.
» first order grad alg: scales (sub)linearly with problem size.

o ldeally, want algorithm to exploit structure for faster convergence.
» open the blackbox.

» contributions of this thesis lie in.
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Regularized loss minimization

Generic form for many ML problems:

in £ f h
min_ (w) + f(w), where

@ ( is the loss/-likelihood function, usually smooth;
@ f is the regularizer, usually nondifferentiable;
» structure inducing

Special interest:
@ sparsity (structure);

@ computational efficiency.
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The LASSO (Tibshirani'96)

min ||Aw — b||? + \||w||; .
WERP e el N —

{(w) f(w)

Multiple benefits
interpretability;

complexity control;

storage saving;

o
o
@ perfect recovery;
@ etc.

Computationally?

@ convex quadratic program
e but P#£E!

@ especially when p is large.
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Nonsmooth optimization

Generic subgradient descent:

w1 = we — n[VE(we) + Of (wy)]

o guaranteed convergence, O(1/€2);

@ dense iterates;

o weak regularizing effect;

@ and slow, very slow... Naum Zuselevich Shor
(1937-2006)

Second order methods (e.g. IPM) do not scale.
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Moreau envelope and proximal map
Definition (Moreau'65)

MZ(y) = min 5. [|w — y||* + f(w)
n
f

P (y)—argmm2 lw — y[? + f(w)

05F

05

Jean Jacques Moreau, 1923-2014

Y-L. Yu
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Some properties of the proximal map

0, weCcC

e For f(w) =ic(w) = o
oo, otherwise

» P(-) is the usual Euclidean projection onto C;

» MJ(-) is the (squared) distance function;

» Both well-defined as long as C is closed.

e For f convex (and closed),
» PY(-) is a nonexpansion: ||P7(x) — P{(y)|| < ||x — y||;
» M7(-) is continuously differentiable;
»nl0 = M]1f.

e For general f (that decreases not too fast), Pe(y)

» PY(-) is a nonempty compact set; y
» M](-) is continuous;
» Stillp 0 = M?Tf. pc(y)
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Proximal gradient (Fukushima & Mine'81)

min /(w) 4 f(w), where (eCh
weR™

Q y.=w:—nVi(wy); (forward)
Q@ w1 = Pi(y,) (backward)

For f = || - ||1, obtain the shrinkage operator
[P, )i = sign(yi)(lyil = n)+

e much faster, O(1/¢), can be accelerated;
@ generalization of projected gradient: f = i¢;

@ reveals the sparsity-inducing property.

Refs: Combettes & Wajs'05; Beck & Teboulle’09; Duchi & Singer’'09; Nesterov'13; etc.
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The good old days

CONVEX PROGRAMMING IN HILBERT SPACE

BY A. A. GOLDSTEIN'
Communicated by V. Kles, May 1, 1964

This note gives a construction for minimizing certain twice-differ-
entiable functions on a closed conves subset C, of a Hilbert Space, H.
The algorithm assumes one can constructively “project” points onto
convex sets, A related algorithm may be found in Cheney-Goldstein
[1], where a constructive fixed-point theorem is employed to con-
struct points inducing a minimum distance between two convex sets.
In certain instances when such projections are not too difficult to
construct, say on spheres, linear varieties, and orthants, the method
can be effective. For applications to control theory, for example, see
Balakrishnan [2], and Goldstein [3].

In what follows F will denote the “projection” operator for the
convex set . This operator, which is well defined and Llpschitxian,
assigns to a given point in i its dﬂsusf. point in C (see, e.g., [1]).
Take *€H and yEC. Then [r—y, P(x)—y] 2| P(x) =y In the
nentrivial case this inequality is a consequence of the fact that C is
supported by a hyperplane through P(x) with normal — P(x). Let
£ be a real-valued function on H and x; an arbitrary point of C. Let
S denote the level set {xEC: f(x) Zf(xo) }, and let § be any apen set
containing the convex hull of 5. Let f'(x, -)= [Vf(x), -] signify the
Fréchet derivative of f at x. A point 5 in € will be called stationary if
P(s—p¥f(e)) == for ail p>0; equivalently, when f is convex the linear
functional f'(z, -) achieves a minimum on C at z.

THEOREM. Assume f is bounded below, For each x €8, h in H and for
some pu> 0, assume that f'(x, k) exists in the sense of Préchet, f"(x, b, k)
exisis in the sense of Gileawus, and | "(x, k, k)| Z||k|*/ps. Choose ¢ and
o1 satisfying 0<aZpy and ¢ SpeS200—0. Seb Fapn=Plvi— 0V (1))
Then:

(i} The sequence %, belangs (0 5, (xaya—m) converges fo 0, and f(z:)
converges downsward o a imit L.

(i) If S1is compact, 5 s a cluster point of {x.}, and Vf is continuous
in some neighborkood of 2, then 2 is a ammmry point. If £ is unigue,
xy converges to =, and 5 minimizes f on

Gii) If S is convex and [*tx, b, K) 2_u|k”‘jﬂ1 each xS, BEH and
some 520, then L=inf {f(x): xEC).

(iv) Assume (iii) with S bounded. Weak cluster points of [z} mini-
tise | on C.

* Present address, University of Washington, Seattle. This rescarch was sup-
ported by grant AF.AFOSR.62.348.
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(V) Assume (iii) with u positive and Vf bounded on S. Then f(s) =L
Jor some = in S, xx converges fo =, and = 15 wnigue,

PrOOF. Assume x belongs to S and that x is not stationary. Let
Wf() = Vi 2lp) = Play —pfi), () = x(p) —erand Alp) =f(xa) —f (x(p)).
If we notice that —p[¥/i, () | [|5(p)]* and invoke Taylor's theo-
rem, we obtain A(s) Z |80} *|p~ —f"Ele). 8(p), 8(e1)/2]3()1).
Here £(p) =, +2(p) with t€(0, 1). chr some p sufficiently small and
positive, Alp) is positive and continuous. Let # denote the least posi-
tive p satisfying A(p)=0, if such exists. If § exists, A(3) =0 implies
that p22p. Thus if ¢=pS2pe—0, Alp)>0 and x(p)ES, whence
Alps) 2| 2241 — x| 20/403, proving ().

The proof of (ii) being straightforward, we proceed with the proof
of (iii). Suppose that L##inf{f(x): ¥€C} and choose sEC such that
J(8) <L. Then 0>f(s) =f(s1) = [T, 5=5]. If lim inf[Vf, s—m] =8
were non-negative, a contradiction would be manifest. But the in-
equality [aVi, 2— %] Z [ —sn, 8]+ [2en, #en—x] holds be-
cause either % —ps¥fi —xi1 is the normal to € at zs, or it is 0. If
the sequence #: is bounded, clearly §=0; otherwise choose a sub-
sequence satisfying ||| > ||z Then gz 0.

To prave (iv) we observe that f is lower semi-continuous on S if
and only if the set So= {x€S: flx) Sm} is closed in 5 for each m.
Since f is convex and continuous, S is closed and convex, and is thus
weakly closed. Hence f is weakly La.c. If @ converges weakly to z,
then lim inf f(e) = L=(5).

Assume the hypotheses of (v). If s3&, we may write that 0> f(x.)
—f000) 2 [Vfe %e—x]+(1/2ullx.—x]|*, whence {#.} is bounded. In-
voking again the suppmmg hyperplane at =i, [0¥fi, x,—x]
2 [pefe, 2 =% ]+ [T =2 20— ). Thus when k is sufficiently
large || — = <e There exists therefore 5E S minimizing f on €, and
20+ [V718, 5]+ /Dl s—el’. Since [%0a), 32120,
J(#)—fle) 2 (1/2)nf|x—sl|% and therefore 2 is unique.

REFERENCES
.. W. Cheney and A. A, Goldstein, Prasinsity maps for conves sels, Pros. Amer,
Mu\h Soc. 10 (1058, 448-450.
2. A. V. Balalerishnan, Ax operator theoresic formslation of o class of coniral prob
lemss and a steepest descent method of solution, . SIAM Control Ser. A 1(1963), 109-127.
3. A. A Goldstein, Minimising fuctionals on Hilbert space, Computer methods
in optimization problems, Academic Press, New York, 1964, pp. 159-165.

UNIVERSITY oF TRXAS

June 05, 2015

12 / 60



Modern significance & rediscovery

Donoho & Johnstone (90s), wavelet shrinkage;

Starck, Donoho, and Candes (2003), astronomical image
representation;

Figueiredo & Nowak (2003), image restoration;
Daubechies, Defrise, and De Mol (2004), inverse problem.

Many many more...
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However...

“I think you should be more explicit here in step two.”

from What's so Funny about Science? by Sidney Harris (1977)
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However...

“I think you should be more explicit here in step two.”

from What's so Funny about Science? by Sidney Harris (1977)
: 2
Step 2: PY(y) = argv?lnﬁ ly — w|* + f(w)
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Structured sparsity: group

Group level sparse regularizer @ @ @
) = 3wl (3 T ¢ ()
i

For P,, when groups are

@ non-overlapping: decouple;

@ tree structured: decompose; @ @

@ arbitrary?

Refs: Bakin'99; Yuan & Lin'06; Zhao et al.’09; etc.
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Structured sparsity: graph

Neighborhood sparse regularizer

{ij}€E

2 4

15
2

1
05 0

. 0
For P, when graph is o5 -

@ a chain: DP, o0 20 30 40 50 60 ‘0 10 2 30 40 50 &

15 3
@ arbitrary? 1 ,
@ vector valued? o !
0

0
-1
05 2

10 20 30 40 50 60 O 10 20 30 40 50 60

Refs: Tibshirani et al.’05; Kim et al."09; Kim & Xing'09; Hoefling'10; etc.
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Structured sparsity: matrix

@ Matrix completion:

XeRmxn <
(ij)eo f(X)

/

min Z (Xi — Zi)* + A1 X -

o(Xx)

e Can apply PG:

P?‘”Htr(y) = Zk:(ak_)\n)+Uk V;(r,

@ Require full SVD in each step.

Refs: Candes & Recht’09; Cai et al.’10; Pong et al.’10; Toh & Yun'10; Ma et al.'11; etc.
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Learned so far

@ Proximal gradient is simple, efficient, and structure-friendly.
» easily parallelizable, can randomize, can block-wise.

@ But backward step (proximal map) not always easy/cheap.

» decompose;
> approximate;
> bypass proximal gradient;

@ Constant theme: exploit the structure of your problem!

» statistically;
» and computationally.
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How to decompose?

@ Typical structured sparse regularizers:
flw) =) fi(w);
i

» Also applies to ERM, each i is a sample.
o Key observation: each P, is easy to compute.
@ Can we compute P, = PZ-f- efficiently?
Theorem (Folklore)

Prig = (Pof +P5) 1o (2ld).

@ Not directly useful;
@ Can numerically reduce to P, and P, (Combettes et al."11);

@ But a two-loop routine can be as slow as subgradient (Villa et al.'13).
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Two previous results
p
lwllry = [wi = wiga].
i=1

Theorem (Friedman et al.’07)

Pttt = Pl © Py

Theorem (Jenatton et al.’'11)

Pt e, = Plitles © 7@ Pl -

Generalization

Prig = ProP, £ P 0P,

But, is it even sensible?
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Good news and bad news

Theorem
On the real line, 3h such that P, = P, o Pg.

Example (But not so in general...)

Consider R?, and let f = Uxi=x}1 & = U xa=0}-

T2

®
'
'
'
4
'
i

9 = Uay=0} .

1
f= Uy =as}
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Nevertheless

@ Can ask the decomposition to hold for many but not all cases.
@ Setting the subdifferential to O:

Prig(z) —z+0(f +g)(Prig(2)) 2
Pg(2) — 2+ 0g(P,(2)) >
Pr(Pg(2)) = Pg(2) + 9f(Pr(Pg(2))) 2 0.

o Adding the last two equations we obtain
P¢(P;(2)) — z+ 0g(P,(2)) + 0f(P(P,(2))) > 0.
Theorem (Y'13a)
A sufficient condition for P¢ ,(z) = Pf(Pg(z)) is

Vy € domg, 9g(P¢(y)) 2 Og(y).

Y-L. Yu Fast gradient algs for structured sparsity June 05, 2015 23 / 60




The rest is easy

e Find f and g that clinch our sufficient condition.
Y-L. Yu

o
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Result |: Start with “trivialities”

Theorem (Y'13a)
Fix f € Tp. Pf+g = P;oPg forall g € T if and only if
e dim(H)>2, f=corf= L{w} + ¢ for some c € R and w € H;

e dim(H) =1 and f = vc + ¢ for some closed and convex set C and
ceR.

Asymmetry.

Theorem (Y'13a)

FixgeTlo. Pr, =PpoPg for all f € Tg if and only if g is a continuous
affine function.
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Result II: Positive homogeneity and “roundness”

Theorem (Y'13a)
Let f € ['g. The following are equivalent (provided dim(#) > 2):

i). £ =nh(||-||) for some increasing function h: Ry — R U {oo},
i) x Ly = f(x+y)=>f(y)
iii). Forallze M, Py(z)=\;-z for some \; € [0,1];

).

A"

0 € domf and P, = P,oP, forall p.h. functions r € Iy.

@ Include and generalize many results;
o Connects to the representer theorem in kernel methods (YCSS'13).
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More implications

Example (Elastic net, Zou & Hastie'05)

_ 1 .
P,\||.||§+,€ = P>\||.||§ oP, = 7P« double shrinkage

Example (Jenatton et al.'11)

Tree-structured (laminar system)

Ptk = Piile © 7 @ Plllg, -
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Characterizing the ball

L]
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Result Ill: Comonotonicity and Choquet integral

Initially case by case for many polyhedral regularizers.

Theorem (Y'13a)

Let f be permutation invariant and g be the
Choquet integral of some submodular set function.

Pf+g = Pf (¢] Pg.

Example (Friedman et al.’07)
Pttty = Pl © Pligiv:

@ || - |l1: permutation invariant;
@ || - ||tv: Choquet integral of something.

y

AV /\"'
Gustave Choquet
(1915-2006)

“Always consider a problem under the minimum structure in which it makes sense.”

Y-L. Yu Fast gradient algs for structured sparsity
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Summary

Posed the question: Pf+g Z ProP, z P, oPy;
Presented a sufficient condition: dg(P+(y)) 2 dg(y);
“Trivial” case;

Positive homogeneity and “roundness”;

Comonotonicity and Choquet integral;

Immediately useful if plugged into PG;

‘What if the sufficient condition fails?‘
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More generally

Recall: typical structured sparse regularizers: f = > aifi
o P} easy to compute;

o f; Lipschitz continuous.

Example (Overlapping group lasso, Zhao et al.’"09)

fi(w) = ||w||g, where g; is a group (subset) of variables.

@ When the groups overlap arbitrarily, P? cannot be easily computed;
e Each f; is 1-Lipschitz continuous w.r.t. || - |;

@ The proximal map PZ is simply a re-scaling:

w;, JE¢gi

Pa(wl = {(1 —n/|wlig) v, jEgi
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Example cont’

Example (Graph-guided fused lasso, Kim & Xing'09)
Given some graph, we let fjj(w) = |w; — w;| for every edge {i,/}.
o For a general graph, the proximal map of the regularizer
= Z{iJ}eE «jjfii can not be easily computed,;
@ Each fjj is 1-Lipschitz continuous w.r.t. the Euclidean norm;

@ The proximal map PZJ is easy to compute:

Ws, Sg{laf}

ws — sign(w; — wj) min{n, |w; — w;|/2}, s e {i,j} .

[P} (w))s = {

v

Other examples abound.
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Smoothing (Nesterov'05)

MZ(y) = min 5. [|w — y||* + f(w)
Piy) = argmln o llw = y|? + f(w)
S
Proposition (Nesterov'05)
If f is L-Lipschitz continuous, then 0 < f — M7 < nlL?/2. J
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In retrospect

t: in{(w).

Suppose wan min (w)

Same for large A > 0: min {(w) + X - dist(w, C)
w

e dist(w, C) := min¢¢ |[w — z||, nonsmooth but Lipschitz continuous.
@ Can smooth dist and apply gradient descent.
@ But nobody does that, overkill.

@ Can just use projected gradient.
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A "naive” idea (Y'13b)

f = > aif;
i
(2 as if have linearity?

n ~ .p"
P~ D aiP
i

Definition (Proximal Average, Moreau'65; Bauschke et al.'08)
There exists a unique function A” such that P}, = Z,-a,—P’,Zi. J
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What mathematicians call a “picture”

onto

IR > M7 €SSy,
convex
Ty 5 A7 1 > a-M"V €SS
0 — 2 My, 1/7
\Y \Y
PRy < > 2 Py,

@ Not so easy to compute A", but existence is enough.
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The algorithm

Dream

Q z;=w;—uVi(wy)

Reality
Q wii1 = P?‘(Zt)

4

Q z;=w;— uVi(wy)

Q wi1 = Pzn(zt) => oz,-PZ(zt)
min {(w) + f(w)

4

mMi/n {(w) + AT (w)

When are they close? |
=] 5 = E DAy




Nonsmooth approximation

@ How good the proximal average A7 approximates f?

Proposition (Uniform lower approximation)

Assuming f; is M;-Lipschitz continuous, and M =), a;M,—z, then

0<f—A7T<yM?)/2.

@ Proximal average is a tighter approximation than smoothing:

Za;Mz <AT<f.

1

Y-L. Yu Fast gradient algs for structured sparsity June 05, 2015 39 / 60



An example

Example

Consider fi(x) = |x|, and f(x) = max{x, 0}.

a=0.5,17=10 a=051=5

4 4
2] 2 pl
Yo -5 0 5 10 o -5 0 5 0 do

@ The proximal average is smooth iff some f; is;

o Essentially we de-smooth Nesterov's approximation.

Y-L. Yu
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Convergence guarantee

Theorem (Y'13b)

Using a suitable step size, we get an e-accurate solution in at most

O(y/max{Lo, L2/(2¢)}+/1/€) steps.
o Improves Nesterov's complexity O(+/Lo+L?/(2€)/1/€) by removing

secondary term;

@ No overhead, same assumption, strict improvement;

@ Simple update rule.

. 77L0 1 n
S-PG: wig = Lo [ L Vf( ] + R Zaipfi(Wt)?

PA-PG: weyy =Y aiPl(w, — nVi(wy)).

i
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Experiment

10 10°
PA-PG \ PA-PG
S-PG \ S-PG
—PA-APG \
---S-APG
------------ 10_1 L L L L
150 0 20 40 60 80 100
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Summary

@ Linear approximation of the proximal map;
@ Improved convergence guarantee;

@ Retain nonsmoothness (to some extent);
°

How to combine regularizers?
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Conditional gradient (Frank-Wolfe'56)

iy

o C: compact convex;

@ {: smooth convex.

Q y,; € argmin (w, V{(wy));
weC

Q@ wipr = (1-n)w:+ny,.

Gained much recent attention due to
@ its simplicity;

@ the greedy nature in step 1.

Refs: Zhang'03; Clarkson'10; Hazan'08; Jaggi-Sulovsky'10; etc.
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An example

mibna?+(b+1)2, st.la<1,2>b>0
a,

 J

o & E DA
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An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

=] 5 E DAy
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An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)

=] 5 = E DAy
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= (_170)

=] 5 = E DAy
Y-L. Yu Fast gradient algs for structured sparsity




An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)

= (_170)

=] 5 = E DAy
Y-L. Yu Fast gradient algs for structured sparsity




An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)
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An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)

= (_170)

Y2 = (1?0)
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An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)

= (_170)
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An example

mina2—|—(b+1)2, st.|la|<1,2>b>0
a,

xr = (17 1)

= (_170)

Y2 = (1?0)
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Y-L. Yu Fast gradient algs for structured sparsity



An example

= (—1,0)

Y-L. Yu

mibna2—|—(b+1)2, st.la<1,2>b>0
a,

xr = (17 1)

" [—conditional gradient]
—1/(k+2)

ya = (1,0) ] 5 10 15 20

Fast gradient algs for structured sparsity
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An example

Can show #(w;) — {(w*) =4/t + o(1/t).

z1=(1,1)
.
T2
e 3
“n
= (=1,0) y2 = (1,0)

PG converges in two iterations.

Y-L. Yu Fast gradient algs for structured sparsity

mibnaz—i-(b—l— 1)% st.]a| <1,2>b>0
a’

" [—conditional gradient]
—1/(k+2)

20

25 30
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An example

mibnaz—i-(b—l— 1)% st.]a| <1,2>b>0
a’

' ' ' ' " [—conditional gradient]
4.5 —1/(k+2)

z1=(1,1)

(...': T3 2r

y1 = (—1,0) y2 = (1,0) 0 5 10 15 20 25 30 35 40
Can show #(w;) — {(w*) =4/t + o(1/t).
PG converges in two iterations.

Refs: (Levtin-Polyak'66; Polyak’'87; Beck-Teboulle’04) for faster rates.
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The revival of CG: sparsity!

The revived popularity of conditional gradient is due to (Clarkson'10;
Shalev-Shwartz-Srebro-Zhang'10), both focusing on

min  {(w).
w: [wl1<1
Q y, « argmin (y, V{(wy)), card(y,) =1,
Iylli<1
Q@ wii + (1—n)w:+ny,, card(w¢y1) < card(w;) + 1.

Explicit control of the sparsity.

Later on, (Hazan'08; Jaggi-Sulovsky'10) generalized the idea to SDPs.

Y-L. Yu Fast gradient algs for structured sparsity June 05, 2015 47 / 60



Generalized conditional gradient

mMi/n Uw)+ X f(w)

@ composite, with a nonsmooth term;
@ unconstrained, hence unbounded domain;
o first studied by Mine & Fukushima’'81 and then Bredies et al.’09;

@ generalizes CG.

Q y, € argmin (w, V{(wy)) + f(w);
w

Q@ wipr=(1-n)we+ny,.

Our interest:
e f p.h. (e.g., a norm);
@ Step 1 undefined.
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Positive homogeneous regularizer

mMi/n Uw) 4+ X k(w)
@ {: smooth convex;
@ k: positive homogeneous convex—gauge (not necessarily smooth).
Challenges:
@ composite, with a nonsmooth term;
@ unconstrained, hence unbounded domain;

@ K expensive to evaluate.

@ Polar operator: y, € argmin (w, V{(w;)); X
w:k(w)<1

@ line search: s; € argmin/((1 — n)w; + nsy,) + Ans;
s>0

©Q wipr = (1-n)w:t +nsty,.
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Convergence guarantee

mMiIn lw) + X k(w)

Theorem (ZYS'12)

If ¢ and k have bounded level sets and ¢ € C*, then GCG converges at
rate O(1/t), where the constant is independent of \.

@ Proof is simple: Line search is as good as knowing x(w*);
@ Upper bound

K((L=n)we+nsy,) < (1 —n)r(we) +nk(sy,) < (1—n)s(we) +ns;

@ Still too slow!
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Local improvement

Assume some procedure (say LOCAL) that can locally solve
mMi,n Uw)+ X k(w),

or some variation of it.

Combine LOCAL with some GLOBAL?

Three conditions:
@ LLOCAL cannot incur big overhead;
@ cannot ruin GLOBAL;

@ easy to switch between LoCAL and GLOBAL.

Refs: Burer-Monteiro'05; Mishra et al.’11; Laue'12
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Case study: matrix completion with trace norm

GLOBAL: min > (X — Zj)? + X+ || X[
X (ij)eo
The only nontrivial step in GCG:

@ Polar operator: Y; € argmin (Y, G;), dominating singular vectors.
Y [ler<1

In contrast, PG requires the full SVD of —G;.

LocAL (Srebro'05): ?w(_?o((BW)U — Zi)? 4+ 72 (|B]|2 + |W]2).
’ 1,J)e

@ Not jointly convex in B and W;
@ But smooth in B and W;
@ Y;: in GCG is rank-1 hence X; = BW is of rank at most t.
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Case study: experiment

MovielLens-100k, A = 20 MovieLens—-1m, A = 50 MovieLens—10m, & = 50

=)
o
A
=

——Ours—obj
- - - Ours-loss o
MMBS—obj |~y 3%
MMBS-loss| "
DHM-obj "
DHM-loss »,
Jsoss | T

10° 10° 10
Running time (seconds) Running time (seconds) Running time (seconds)

(a) Objective & loss vs time (loglog) (a) Objective & loss vs time (loglog) (a) Objective & loss vs time (loglog)

=)
>

3
Objective and loss (training)

Objective and loss (training)
Objective and loss (training)

=po

10?2

MovieLens-100k, A = 20 MovieLens—1m, A = 50 MovieLens-10m, A = 50
09 0.9 0.9
03| 08 038
07 07 07
8 8 8
£06 £ o6 gos
Zos 8 o5 705
= " o4
0.4 0.4
—Ours —— Ours. 0.3{—ours
03 MMBS 0.3] MMBS MMBS
© DHM © DHM 02ff © oM
o2ll* s — 02[_* Js — 01 . Js N
107* 10° 10° 10° 10° 10* 10° 10° 10° 10f
Running time (seconds) Running time (seconds) Running time (seconds)

(b) Test NMAE vs time (semilogx) (b) Test NMAE vs time (semilogx) (b) Test NMAE vs time (semilogx)
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Summary

Generalized conditional gradient for p.h. regularizer;
O(1/t) convergence rate;
Combined LocAL with GCG ;

Applied to matrix completion.
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Prox-decomposition and isotonicity

Holder's inequality: (x,y) < ||x|||lylls, r>1, 1/r+1/s=1

Ky Fan's norm || x|, =y Zf'(:l ’X|€i)'

(x,y) < |Ix]|x,r??7, i.e., dual norm ||y||7, := max (x,y) =7
’ llx[lk,r<1

First shown in (Mudholkar et al, 1984).

Theorem (YYX'15)

Forany r > 1 and1/r+1/s =1, the dual Ky Fan norm | y|[; . = | z||s,

where z := Pi.(m) = argmin 3|m — w|3 and
W12 W2 2> W

_ |y|(,-), iZl,...,k—l
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Video event detection and recounting (CYYH'15)

Comparing previous ADMM and ours

Isita “Horse *
Comp.”?
o
g
0]
2
3
2
=
o
Whyisita -~ a2f i NeemrT 8
» “Horse Comp.”? et
0 0
: : 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Semantic Feature Extraction Input Matrix Size
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Nonconvex proximal average (YZMX'14)
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Approximate generalized conditional gradient

Pick x(y,) <1 such that for some a € (0, 1]

(Ye, Vl(we)) <o+ min (y,Vi(w)).
yr(y)<1l

Theorem (YCZ'14)

Assume ¢ > 0. Equipped with an a-approximate PO, GCG ‘converges” to
an a-approximate solution at the rate O(1/t).

[m] = = =
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Thank you!
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