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Exact Algorithms for Isotonic Regression and Related

Yao-Liang Yu and Eric P. Xing
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

E-mail: {yaoliang, epxing}@cs.cmu.edu

Abstract. Statistical estimation under order restrictions, also known as isotonic regression,
has been extensively studied, with many important practical applications. The same order
restrictions also appear implicitly in sparse estimation, where intuitively we should shrink
variables starting from smaller ones. Inspired by the achievements in both fields, we first propose
the GPAV algorithm for solving problems with order restrictions. We study its theoretical
properties, present an online linear time implementation, and prove a converse theorem to
pinpoint the exact correctness condition. When specialized to the proximity operator of an order
restricted regularization function, GPAV recovers, as special cases, many existing algorithms,
and also leads to many new extensions that even involve nonconvex functions.

1. Introduction
As (data) scientists, how do we argue global warming is not bogus? One established way is to
perform statistical hypothesis testing using say the likelihood ratio: Given a collection of everyday
temperatures over a certain time period, we can estimate the yearly mean temperatures under
the null hypothesis that global warming is not happening (i.e., constant mean), and also the
mean temperatures under the alternative hypothesis that global warming is indeed happening
(i.e., monotonically increasing mean). Adopting an appropriate statistical temperature model,
the latter would require maximizing the likelihood function subject to the isotonic constraint,
i.e., the estimated yearly mean temperatures should be monotonically increasing. This problem
is widely known as isotonic regression and has been extensively studied in the 1970s, culminating
in the excellent books [1, 2], with many illuminating results and applications. See §2 for some
examples.

More generally, statistical estimation under shape constraints (such as monotonicity,
convexity) has been an important topic in statistics since the seminal works [3, 4]. A large
part of the theory focuses on studying the asymptotic distribution of estimators (parametric or
nonparametric) under shape constraint, which are generally different from those obtained without
shape constraint and are rather difficult to derive. An excellent summary in this direction is the
recent book [5]. Computationally, how to obtain the estimator under shape constraint has also
attracted lots of attention. The pool-adjacent-violators (PAV) algorithm [6], essentially the
Euclidean projection onto the isotonic cone, is one of the early achievements in this field and is
still widely used today.

Order constraints also implicitly appear in sparse estimation problems. If the true estimator
is sparse or can be well approximated by a sparse vector, it would be beneficial to “sparsify”
our estimator, effectively reducing model complexity hence potentially improving generalization.
“Sparsification” is usually executed through the proximity operator of carefully designed sparse
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Figure 1: Partial orders induced by a chain, a rooted tree, a “soft” chain, and a DAG.

regularizers, among which the `1 norm, along with its soft-shrinkage operator, is perhaps the
most famous. Intuitively, if we were to shrink a subset of variables to zero, we should start
with the smaller ones, since larger estimates are more likely to be genuinely nonzero. Indeed,
almost all sparse regularizers that we are aware of obey this principle and implicitly enforce an
order restriction on the output. More recent sparse regularizers, such as the k-support norm [7],
OSCAR [8], and the sorted `1 norm [9] even made the order restriction explicit. Computationally,
the order constraint complicates the computation of the proximity operator and is addressed case
by case in many recent works [7, 9–13]. The connection to the field of isotonic regression, in
particular, the PAV algorithm, is not always explored.

The main goal of this work is to provide a unified treatment of the various computational
algorithms involving order constraints. Based on a surprisingly simple yet general result
(Theorem 1 below) we develop in §3 the generalized pool-adjacent-violators (GPAV) algorithm,
which is a strict generalization of PAV, hence making the connection to the field of isotonic
regression explicit. We also prove a converse theorem that pinpoints exactly when GPAV
is provably correct, which, to our best knowledge, is the first result of its kind. An online
implementation is provided in §4 to bring down the time complexity from quadratic to linear.
Then, in §5 we specialize the online GPAV to the problem of computing the proximity operator
of functions involving order restrictions. One nice feature of online GPAV is that it can handle
k-piecewise convex functions (that are generally nonconvex). In particular, it also computes the
proximity operator for all 2-convex functions exactly, globally in linear time.

In this work we focus exclusively on the linear model (namely the functions gi in Equation (1)
below are univariate). However, extensions to additive models (where gi can be multivariate
functions of a specific form) can be pursued as in the work of Bacchetti [14] and Fang and
Meinshausen [15].

2. Problem definition
We are interested in solving the following problem:

min
x∈K

p∑
i=1

gi(xi), (1)

where gi : R → R ∪ {∞} are univariate functions and K is an isotonic cone induced by some
partial order � on the set {1, . . . , p}:

K := {x ∈ Rp : xi ≤ xj for all comparable pairs i � j}. (2)

Equivalently, since any partial order can be represented as a directed acyclic graph (DAG), we
can define K through a DAG too. In particular, the following special case where K is induced
by a total order (equivalently a chain graph) motivated the development historically:

Kc := {x ∈ Rp : x1 ≥ x2 ≥ · · · ≥ xp}. (3)
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There are of course many other possibilities, see Figure 1. We will address the first two cases in
Figure 1 and leave the other two cases for future work.

The order constraint modeled by the isotonic cone in (2) has many practical applications. Let
us mention a few for the sake of motivation.

Example 1 (Exponential Family Parameter Estimation [1, 6, 16, 17]). Consider the exponential
family (w.r.t. some dominating measure) p(x|θ) ∝ exp(T (x)θ−f(θ)), where T (x) is the sufficient
statistic and f(·) is the log-partition function. Fix the unknown parameters θ. For estimation
we take ni observations for each parameter: xi,j , i = 1, . . . , p, j = 1, . . . , ni. Then the (restricted)
maximum likelihood estimator is:

max
θ∈K

p∑
i=1

ni[θiT̄ (xi)− f(θi)], (4)

where T̄ (xi) =
1
ni

∑ni
j=1 T (xij). Surprisingly, as shown in [1], the solution depends only mildly

on the log-partition function f . We refer to the excellent book of Barlow et al. [1] for many
eye-opening applications under this setting.

Example 2 (Inventory Management [18–21]). Consider an inventory system where a single
product is produced and assembled in multiple sites and stages. Once the product is completely
assembled it can be sold to the customer which has certain demands. There is a production cost
and a storage cost in each site, and each site depends on its “ancestor” sites, that is, in order
for site i to produce its part it will need a certain amount of parts from say site j. Obviously,
this quantity cannot exceed the storage in site j, hence creating a natural order restriction. An
optimal inventory policy can then be formulated and found by solving problem (1), where the
functions gi depend on the production cost, storage cost, and demand.

Example 3 (Sparsity [7–13]). Sparsity has been recognized as one of the key structures that allow
statistical inference in high dimensions, and is usually forced through a penalty function such as
the `1 norm. Consider the ideal orthogonal design case:

min
x∈Rp

1
2‖x− y‖2 + f(x), (5)

i.e. we are trying to sparsify the input vector y. Intuitively, a bigger entry should be thresholded
to zero only after the smaller entries, because the former is more likely to be genuinely nonzero
than the latter. This intuition in turn puts an implicit order restriction on the penalty function
f . Early penalty functions like the `1 norm are simply permutation-invariant, but more recent
works [7, 8, 10, 13] have made the order restriction explicit. A similar setting was also considered
in [9] for controlling the false discovery rate in multiple hypothesis testing problems. However,
the connection to the isotonic cone is not always recognized or exploited.

Problem (1) is very special in the sense that its objective function is separable in each
coordinate, however, the isotonic cone K couples all coordinates. If the functions gi are convex,
(1) can be solved using for instance the iterative projected gradient algorithm, provided that we
know the Euclidean projection ontoK. Instead, the GPAV algorithm we present below is based on
a different idea (and will prove more useful later). First note that (1) would be easy to solve if we
ignore the isotonic constraint x ∈ K: we simply minimize the univariate functions gi separately
(or even in parallel). Of course, the resulting unconstrained minimizer, denoted generically as
z throughout, may not satisfy the isotonic constraint. The GPAV algorithm then “pools” the
functions gi in (1) so that next time the unconstrained minimizer z violates strictly less order
constraints (if any). The “pooling” is intelligently performed so that the (constrained) minimum
value of (1) is still maintained. Therefore after at most finitely many steps the unconstrained
minimizer z will automatically satisfy the isotonic constraint hence be a bona fide minimizer.
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Let us point out the convenience of working with general abstract functions gi. Suppose we
have an additional nonnegative constraint in (1), i.e., x1 ≥ x2 ≥ · · · ≥ xp ≥ 0, which is clearly
equivalent as x1 ≥ x2 ≥ · · · ≥ xp, xp ≥ 0. Thus, upon redefining gp(xp) = ∞ if xp < 0 (i.e.,
restricting the effective domain of gp to R+), we reduce back to (1), but this time without any
explicit nonnegative constraint. Clearly, other interval constraints under any isotonic cone can
be dealt with similarly.

3. The generalized pool-adjacent-violator algorithm
We present in this section the generalized pool-adjacent-violators (GPAV) algorithm. The
presentation is kept general and abstract so that we can see the idea more clearly, without
being distracted by the non-essential details. The generality will be felt when we apply the
results in §5 to recover various existing results and also to uncover many new ones.

As we mentioned in the previous subsection, GPAV “pools” the functions gi so that the
unconstrained minimizer z will satisfy the isotonic constraint eventually. Take any unconstrained
minimizer1 z of the separable function

∑p
i=1 gi(xi), and consider the violator set

{j : zj ≤ zi for some i that is an immediate predecessor of j w.r.t. the partial order K}. (6)

Order the violators by their z-values. We have the following result for pooling:

Theorem 1. Let K be induced by a rooted tree (Figure 1b). Suppose for all i the closed function
gi : R → R ∪ {∞} is convex2. Consider any minimum violator zj and its predecessor zi, then
there exists a constrained minimizer

y? ∈ argmin
x∈K

p∑
i=1

gi(xi) (7)

such that y?i = y?j .

Note that in a rooted tree, every node has exactly one predecessor (except the root which
has none). This condition is needed as otherwise it can be tricky to pool which predecessor with
the violator. Therefore, whenever the unconstrained minimizer z violates any order constraint,
we obtain crucial information about the constrained minimizer y?. Thanks to separability, the
unconstrained minimizer z may be found cheaply (perhaps even in closed-form).

Theorem 1 is known in special cases: It was first discovered in Ayer et al. [6] where K = Kc

is induced by a chain (a special rooted tree) and each gi is quadratic. Strömberg [22] considered
the same chain order but allowed gi to be arbitrary convex functions, see also [23, 24]. W. A.
Thompson [17] considered the general rooted tree order but only with specific gi functions. Our
proof (omitted here) also differs substantially from [17]. Orders induced by an arbitrary DAG
has also been considered [e.g . 1, 2], but the pooling strategies are very complicated, sometimes
with unknown complexity.

Theorem 1 immediately suggests an efficient algorithm for solving (7), when K is induced by
a rooted tree. In each iteration we find a minimum violator and perform the pooling, namely,
set gi(·) ← gj(·) ← 1

2 [gi(·) + gj(·)]. Since there are at most O(p) violators, and each pooling
will reduce the problem size by 1, the total complexity is O(p2), assuming that finding the
unconstrained minimizer z takes O(p) time. Note that if all functions gi are quadratic, then it
is possible to use advanced data structures to improve the complexity to O(p log p) [25].

We complement Theorem 1 with a strong converse, which, to the best of our knowledge, is
the first of its kind. The choices of the functions gi below are motivated by the applications in
§5.
1 The existence of minimizers is always assumed in this work, for simplicity.
2 In fact, we only need the weaker quasiconvexity (unimodality) here.
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Theorem 2. Fix λ > 0 and consider applying Theorem 1 to solve (1) with gi(x) := wi(x −
yi)

2 + λif(x). If it always leads to a correct minimizer for any w ∈ Rp
+,y ∈ Rp, p ≥ 2, then the

univariate function f must be convex.

Thus, for nonconvex functions gi, we cannot directly apply GPAV for solving (1), but see §5
for some exceptions.

4. Linear time algorithm for the chain graph
When the isotonic cone K is induced by a chain (a special rooted tree), the complexity
automatically reduces from O(p2) for the general rooted tree order to O(p), which is clearly
the best possible. This is because in the chain case finding the minimum violator among all
violators can be incrementally done in O(1) time. Here we give an online view of this known
fact, based on which we will extend the algorithm to piecewise convex functions in §5.

The idea is very simple: we pretend that the input functions g1, . . . , gp are revealed to us one
by one, but each time we must solve the current constrained problem before the next function is
revealed.

To start, we get the first function g1 and we solve u1 ∈ argminx g1(x) in O(1) time, completing
the first step and enabling the next function g2 to be revealed. Now suppose we have found3

(u1, . . . , uj) ∈ argmin
x1≤···≤xj

j∑
i=1

gi(xi), (8)

and we have kept a partition 0 = t0 < t1 < . . . < t`j = j of the set {0, 1, . . . , j} so that for each
s = 1, . . . , `j , uts−1+1 = · · · = uts . Then the next function gj+1 is revealed and we need to solve

argmin
x1≤···≤xj+1

j+1∑
i=1

gi(xi). (9)

The key is that we need not solve (9) from scratch. Indeed, after finding the unconstrained
candidate

uj+1 ∈ argmin
x

gj+1(x) (10)

in O(1) time, we realize that, augmented with our previous solution (u1, . . . , uj), u :=
(u1, . . . , uj+1) is in fact obtainable from applying the pooling procedures suggested in Theorem 1
to the problem (9). Of course, u need not be the minimizer of (9) since the (only new) order
constraint uj ≤ uj+1 may not be satisfied yet. So we continue applying Theorem 1 on top of u
to finish the business (picking violators in any order we like). Inductively, after the p-th function
is revealed, we will have u that is a minimizer of (7).

The partition list 0 = t0 < t1 < . . . < t`j = j is maintained so that we can resume and
complete the j-th round in say O(γj+1) time, instead of the brute-force O(j) time, where γj+1 is
the number of poolings we performed in step j. Indeed, all terms fall into the interval [ts−1+1, ts]
have been pulled together hence require only one representative. More crucially, we always have
the inequality

`j+1 ≤ `j − γj+1 + 1, and γj+1 ≤ `j . (11)

3 If not for notational clarity, we should put a superscript on uj , reflecting its possible change in later iterations
than j.
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Figure 2: An example k-convex function.

Basically, this means that if we spend a lot of time (large γj+1) in pulling components in the j-th
iteration, then we would have few components (small `j+1) to work with in the (j+1)-th iteration,
which in turn bounds the time spent in the (j +1)-th iteration. Simply put, previous hard work
eventually pays out in the future, which is the essence of amortized complexity analysis [26].
After the last function gp is handled, we can count the total time consumed, using the bound in
(11):

O
( p∑

i=1

γj+1

)
≤ O

( p∑
i=1

(`j − `j+1 + 1)
)
= O(p). (12)

Perhaps more importantly, we observe that the above online update not only solves (7) in
linear time, it actually does much more: it simultaneously solves all the subproblems (8) for
all j = 1, . . . , p in linear time. Let us create a vector r ∈ Rp to record the minimum value in
(8). Similarly, we create a vector l ∈ Rp that records in linear time the minimum values in the
similar subproblems:

(vj , . . . , vp) ∈ argmin
xj≤···≤xp

p∑
i=j

gi(xi). (13)

Then these two records will allow us to apply Theorem 1 on even piecewise convex functions gi
(that need not be convex globally). This will be detailed below.

5. Extension to piece-wise convex functions
In this section we apply the online implementation in §4 to the following problem:

min
x∈Kc

p∑
i=1

wix
2
i −mixi + λif(xi), (14)

where f : R → R ∪ {∞} is some univariate closed function, w,λ ∈ Rp
+, and Kc is induced by

a total order (see Figure 1a). Note that by setting mi = 2wiyi, λi ≡ λ we recover the familiar
problem minx∈Kc

∑p
i=1wi(xi − yi)

2 + λf(xi) —a constrained proximity operator of f . Setting
f ≡ 0 recovers the isotonic regression problem in [1].

We can actually allow the function f to be nonconvex. Let us recall:
Definition 1 (k-convexity). f : R→ R ∪ {∞} is called k-convex if there exists ∞ = τ0 ≥ τ1 ≥
· · · ≥ τk = −∞ such that f restricted to [τi, τi+1] is convex for all i.

Clearly, 1-convexity corresponds to the usual convexity. With k > 1, we can start to generate
many interesting nonconvex functions, see Figure 2 for an illustration.
Example 4. The capped absolute function [e.g. 27, 28] |x|ρ = min{|x|/ρ, 1} is 2-convex (when
restricted to R+) with τ1 = ρ. Note that ρ|x|ρ → |x| when ρ→∞ while |x|ρ → 1x6=0 when ρ→ 0.
More generally, for any convex function f , we can define its capped cousin fρ = min{f/ρ, 1},
which is 2-convex with τ1 = ρ. The capped functions are preferred in sparse estimation problems
for their ability to reduce estimation bias, as compared to the convex alternatives [27, 28].
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One attractive property of k-convex functions is its computational tractability: we can chop it
into convex pieces and consider each piece in turns. Indeed, if in (14) the function f is k-convex,
with τ1, . . . , τk being given, we can then consider all possible partitions 0 = j0 < j1 < · · · < jk =
p. For all s = 1, . . . , k and for all js−1 + 1 ≤ i ≤ js, by defining

fi(xi) =

{
λif(xi), τs−1 ≥ xi ≥ τs

∞, otherwise
, (15)

we can “reduce” the nonconvex problem (14) with a k-convex f into the more general problem
(1) where all gi are convex. Since the online implementation in Section 4 solves (1) in linear
time, we can simply enumerate all possible partitions 0 = j0 < j1 < · · · < jk = p, each yielding
a convex problem in the form of (1). Finally, taking the minimum among these

(
p

k−1

)
similar

problems yields the (global) minimizer of (14). If k is a constant then we will have a polynomial
time algorithm for solving the nonconvex problem (14) (where nonconvexity comes form f). Note
that any function can be (uniformly) approximated by a k-convex function. Intuitively, the more
nonconvex f is, i.e. a bigger k is needed for a decent approximation, the more time-consuming
it is computationally, i.e., more subproblems to be considered (on the order of pk−1). While it
may be possible to prune out many of these subproblems, we will simply restrict to k ≤ 2 below,
a choice motivated by Example 4.

Let f be a 2-convex function from now on, with τ1 = τ , i.e., f is separately convex on (−∞, τ ]
and [τ,∞) but need not be convex on R, see e.g. Example 4. Then, to solve our main problem
in (14), we need only find the optimal split

x1 ≥ · · · ≥ xj ≥ τ ≥ xj+1 ≥ · · · ≥ xp, (16)

among all possible positions of τ (namely j). Moreover, given the position of τ , we can convert
(14) into two unrelated problems in the form of (1), which we already have a linear time algorithm
in §4:

argmin
x1≥···≥xj

j∑
i=1

wix
2
i −mixi + fi(xi), argmin

xj+1≥···≥xp

p∑
i=j+1

wix
2
i −mixi + hi(xi), (17)

where the functions fi and hi are defined as:

fi(xi) =

{
λif(xi), xi ≥ τ

∞, otherwise
, hi(xi) =

{
λif(xi), xi ≤ τ

∞, otherwise
. (18)

Note that both fi and hi are convex thanks to the 2-convexity of f , and more importantly
they do not depend on the position j. In other words, applying the online implementation in §4
we would be able to find the minimal values in (17) in linear time for all j simultaneously. These
are exactly the records l and r we mentioned at the end of §4. Then the optimal position for τ
in (16) is given as

j? ∈ argmin
0≤t≤p

lt + rp−t, (19)

where l0 = r0 = 0. After having j? we can just re-solve (17) with j replaced by j?. It is clear that
the overall time is still linear O(p), a big improvement compared to the naive

(
p
1

)
·O(p) = O(p2)

time (obtained by calling the online implementation p times).
The above acceleration trick can be generalized to handle a k-convex function f in (14),

with the overall complexity
(

p
k−1

)
+O(kpmin{2,k−1} + p) = O(pk−1 + p) as opposed to the naive(

p
k−1

)
·O(p) = O(pk) time. We omit the rather technical (but less insightful) details.
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Example 5. Bogdan et al. [9] considered the following sorted `1 norm for false discovery rate
(FDR) control:

‖x‖SLOPE =

p∑
i=1

λi|x|(i). (20)

The main computation involved is again (14) with f = | · |. A linear time algorithm in this case
is provided in [9]. However, our treatment allows dealing simultaneously with any k-convex f .
In particular, our algorithm covers the capped and sorted `1 norm that is known to yield less
statistical bias.

6. Conclusion
In this work we explored the connection between statistical estimation under order restriction and
sparse regularization in high dimensional statistical inference. We presented a general pooling
principle to solve the order constrained optimization problem and proved a converse theorem
to reveal the exact correctness condition. An online linear time implementation for the special
chain graph was developed, and further extended to deal with piecewise convex functions. We
will apply our algorithm to shrinkage parameter estimation and false discovery control problems.
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