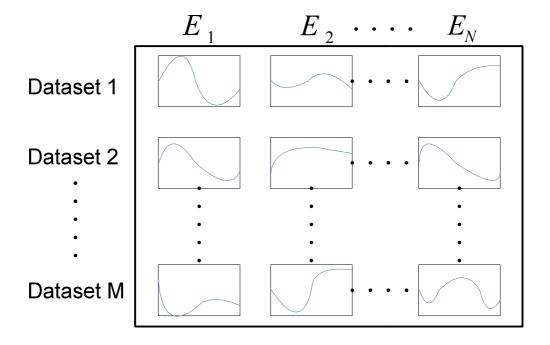
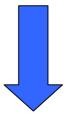
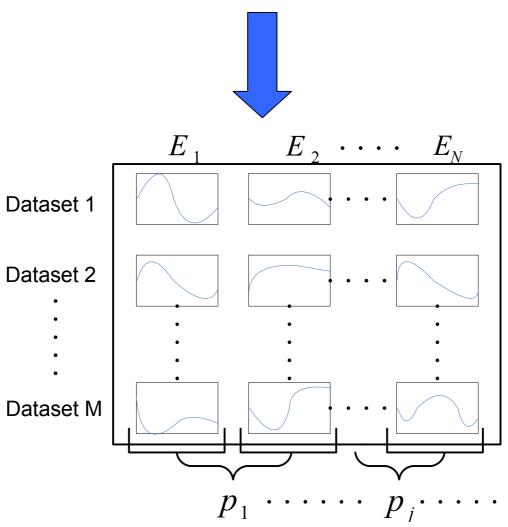
Schematic Illustration of the Proposed Method

Supporting Material for Main Paper

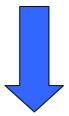


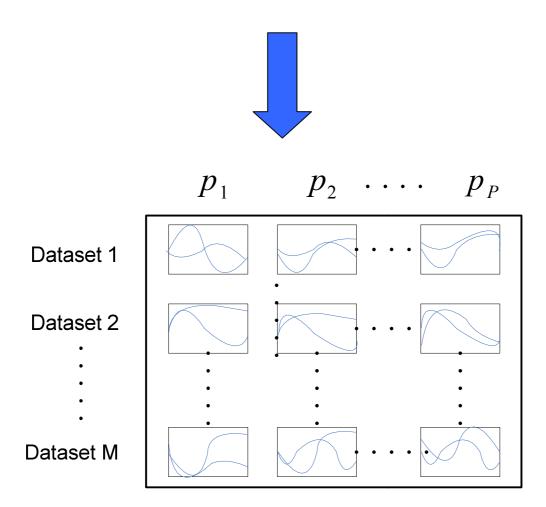
Step 1. Original data. Given N elements, $\{E_1, E_2, ..., E_N\}$, we have M datasets, each containing N time series profiles, each for one element. Within one dataset, the profiles have the same length.





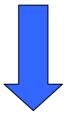
Step 2. Choosing a group of element pairs. We choose P pairs of these elements. At least, a subset of this group of element pairs should display lagged correspondence in a subset of the M datasets. Let $\mathcal{P}=\{< E_{a_j}, E_{b_j}>: j=1,...,P\}$ denote the set of all selected P pairs, where E_t represents the t^{th} element, and $a_j,b_j\in\{1,...,N\}$. Let $p_j=< E_{a_j},E_{b_j}>$ denote the j^{th} pair.

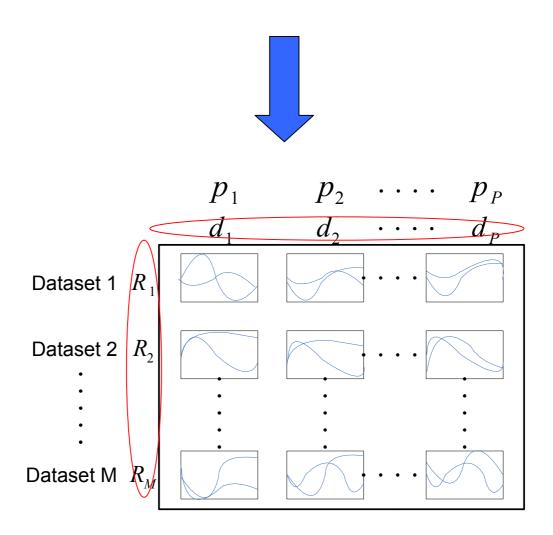




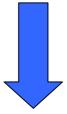
Step 3. The selected pairs under different conditions. Our goal is to assign a value to an indicator variable, Z_{ij} . This variable is set to 1 if there is a time lagged correspondence between element pair, $p_j = \langle E_{a_j}, E_{b_j} \rangle$, in dataset i and to 0 otherwise.

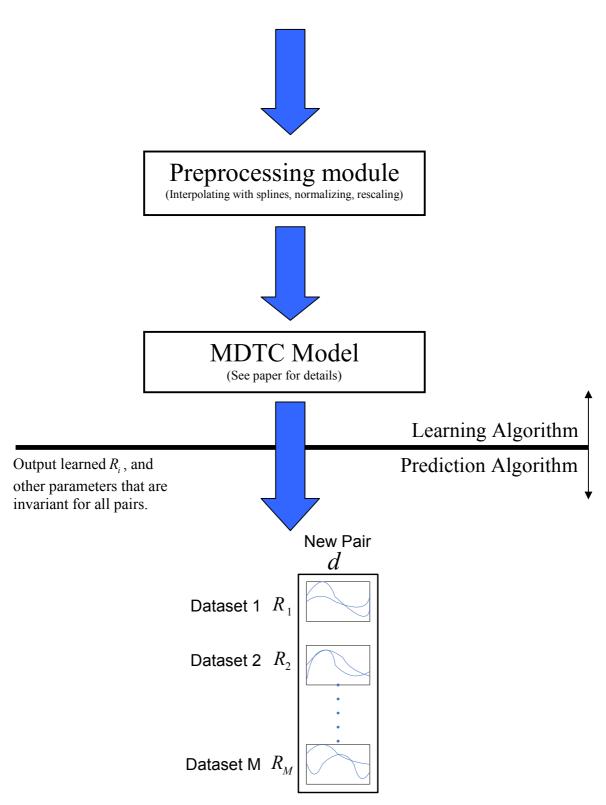
In the context of gene expression analysis, p_j is a pair of TF and gene. We are interested to find whether these two genes have regulatory correspondence. If so, under which conditions their correspondence occurs.



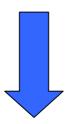


Step 4. Parameter association. We associate an unknown, linear, *time scale factor*, R_i , with each of the datasets. We also associate an unknown canonical lag d_j with each of these pairs of elements, $p_j = \langle E_{a_j}, E_{b_j} \rangle$. For such a pair, the expected lag in a given experiment will be the product of the experiment time scale factor and its canonical lag, $R_i \cdot d_j$.



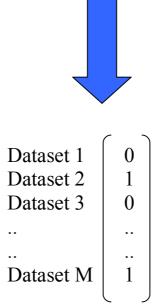


Step 1. For a given new pair, the prediction algorithm runs the MDTC Model on a table with only one column, the column for this new pair. With learned R_i fixed, this algorithm automatically learns d, the canonical lag for this new pair.



Dataset 1	$\left[0.1\right]$
Dataset 2	0.8
Dataset 3	0.2
••	
••	••
Dataset M	$\left[\begin{array}{c} 0.6 \end{array}\right]$

Step 2. After convergence, the prediction algorithm assigns a confidence score vector to this new pair, representing the confidence that this pair has correspondence under each of the datasets.



Step 3. We apply a threshold S (S = 0.5 in this case) to turn the confidence score into binary value. If a dataset has value 1, we predict that a correspondence occurs in this dataset, 0 otherwise.