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1 Model Description

Multiple Datasets Tabular Combination (MDTC) Model is designed for pairwise correspondence
inference from multiple time series datasets. To simplify our discussion, we use gene regulatory
correspondence as a working example, and present how to apply the MDTC Model to infer pairwise
regulatory correspondence between transcription factors (TFs) and genes from multiple time series
Microarray expression datasets collected under a variety of experimental conditions.

Figure 1(a) is the tabular representation of MDTC Model. Each column represents a particular TF-
gene pair. The first row represents global parameters for each of the pairs. Each of the other rows
represents an expression experiment.
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Figure 1: Two representations of Multiple Datasets Tabular Combination Model. (a) The tabular
representation.Vij = {Tij , Gij , Dij , Zij}, whereTij andGij are the normalized expression pro-
files of the TF and gene of TF-gene pairj under conditioni, respectively.Dij is the actual lag
between TF-gene pairj under conditioni. Zij is a binary variable which indicates whether there is
a regulatory correspondence between TF-gene pairj under conditioni. Ri is the time scale factor
for conditioni. dj is the canonical lag for pairj. (b) The graphical model representation. Observed
variables are shaded. For an experiment in which an correspondence exists between the TF and the
gene (that is, ifZij = 1), the actual lagDij depends on the canonical lag,dj , and the specific time
scale factor,Ri. And the observed expression profile for the gene,Gij , is constrained by the TF’s
profile,Tij , and the actual lagDij .

The MDTC Model associates four variables with each cell in the table: (a) the observed expression
profiles of the TF and gene in this cell (denoted byTij andGij , respectively), which have been
normalized to have zero mean and unit standard deviation, (b) whether there exists a regulatory
correspondence for this TF-gene pair in this dataset (denoted by the binary variableZij), and if so,
(c) the actual lag (denoted byDij) for this correspondence. Both ofZij andDij are unobserved.
In addition, the MDTC Model associates one parameter with each column: the canonical lag,dj ,
for the pair. This parameter allows us to associate different lags with different pairs. Also, the
MDTC Model associates one parameter with each row: the time scale factor,Ri. Ri represents the
linear transformation required to transform the time unit of one experiment to another. It has been
shown that this linear transformation provides a good fit for mapping one time scale to another in
expression experiments [1]. Thus, while one can use a more complicated transformation, with the
proposed model we restrict our attention to linear transformation.



Given the column and row parameters, the expected lag,Expected Lagij , for each cell can be
computed as the product of the canonical lag,dj , for the TF-gene pair, and the time scale factor,Ri,
for this experiment. The modelling assumption here is that the expected lag between the expression
profiles of the TF and the gene is determined by both the typical lag for this pair and the experimental
condition of the particular dataset, namely:

Expected Lagij = Ri × dj (1)

Figure 1(b) uses a graphical model to illustrate the dependencies among variables in the MDTC
Model. LetTij(t) andGij(t) denote the values of TF and gene’s profiles of TF-gene pairj under
conditioni evaluated at time pointt, respectively, and letLi denote the length of theith experiment,
θ denote the model parameters{Ri, dj , (σD

i )2, (σG
i )2} (i = 1, .., M ; j = 1, .., P ). The conditional

probabilities in this graphical model are defined as:

P (Gij(t)|Tij , Dij , Zij = 1, θ) ∼
{ N (0, (σG

i )2) t ∈ [0, Dij ]
N (Tij(t−Dij), (σG

i )2) t ∈ (Dij , Li]
(2)

P (Gij(t)|Tij , Dij , Zij = 0, θ) ∼ N (0, 1); (3)

P (Gij |Tij , Dij , Zij , θ) = exp (
∫ Li

t=0

log P (Gij(t)|Tij , Dij , Zij) dt); (4)

P (Tij(t)|θ) ∼ N (0, 1); (5)

P (Tij |θ) = exp(
∫ Li

t=0

log(P (Tij(t))) dt); (6)

P (Dij |Zij = 1, θ) ∼ N (Expected Lagij , (σD
i )2); (7)

P (Dij |Zij = 0, θ) ∼ Uniform(0, Li); (8)

P (Zij = 1|θ) = α; (9)

Equations 2, 3 and 4 reflect the key assumption in our model. WhenZij = 1, the gene’s profile
is a lagged noisy repeat of the TF’s profile (Equation 2). The distance of this lag isDij , which
accounts for the translation, accumulation and transportation time of the TF. A Gaussian noise with
variance,(σG

i )2, is added to this repeat. This noise represents the biological and experimental noise
that might lead to slight difference from the expected expression level. Prior to its activation by
the TF (between time point 0 andDij), the gene’s profile is modelled as Gaussians with zero mean
and the similar variance. WhenZij = 0, the gene might be either regulated by another TF or not
activated. To reflect this uncertainty, each point in the profile is modelled as a Gaussian with zero
mean and unit standard deviation (Equation 3, we normalize profiles to zero mean and unit standard
deviation). The overall dependency ofGij on its parents are derived from Equation 2 and 3, and
expressed in Equation 4.

Since we do not try to explain the profile of the TF in the pair, Equation 5 and 6 assign equal
probability to any TF profile.

In Equation 7 and 8, whenZij = 1, the actual lag,Dij , is assumed to follow a Gaussian distribution1

whose mean isExpected Lagij which is equal toRi×dj , and variance is(σD
i )2. (σD

i )2 represents
biological and experimental noise which may lead to lags that are slightly different from the expected
lag. WhenZij = 0, no correspondence exists for this pair. Thus, the lagDij is not meaningful and
value in its range is equally probable.

Finally, in Equation 9, we assign the same prior probability,α, to everyZij . This prior can be
determined by domain knowledge about the expected number of interactions.

To summarize, we list the model variables and parameters as follows:

1Since the actual lag should be between zero and the length of the profile, the distribution is in fact a trun-
cated Gaussian distribution. In practice, we did sampleDij according to this truncated distribution. However,
since the normalization term for this truncated Gaussian is very close to 1, we ignored its effect when updating
the parameters in M-step.



1 Hidden variable :Zij andDij ;

2 Observed variable :Tij andGij ;

3 parameters :θ = (Ri, dj , (σD
i )2, (σG

i )2)

wherei = 1, ..., M andj = 1, ..., P .

We are now ready to define the likelihood of our model. From the variable dependencies described
by the graphical model in Figure 1(b), we can write the likelihood of each cell in Figure 1(a). Using
the cell likelihood, the complete likelihood for our model is the product of the likelihood of all cells.
The complete log-likelihood can be written as:

LL =
M∑

i=1

P∑

j=1

log P (Tij , Gij , Dij , Zij |θ)

=
M∑

i=1

P∑

j=1

log P (Gij |Tij , Dij , Zij , θ) + log P (Tij |θ) + log P (Dij |Zij , θ) + log P (Zij |θ) (10)

whereM is the number of experimental conditions (rows), andP is the number of pairs (columns).

Sincelog P (Tij |θ) is a constant, maximizing this likelihood is equivalent to maximizing the other
three terms, which are (i)P (Gij |Tij , Dij , Zij , θ), how well the time series expression profiles for
the TF and gene align under the actual lag,Dij , (ii) P (Dij |Zij , θ), how muchDij deviates from the
expected lag given by Equation 1, and (iii)P (Zij |θ), the prior ofZij . This reflects the essence of
our model, choosing an actual lag that balances the desire to find the best match between the profiles
of TF and gene (measured by (i)) against the desire to choose an actual lag near the expected lag
(measured by (ii)) for this cell.

1.1 Estimating the model parameters

We now describe an EM algorithm to estimate the model parameters,θ, by seeking to maximize the
expected likelihood.

In E-step, we calculate the expectation of the complete log-likelihood. The expectation is under the
distribution of the hidden variables given the observed variables and the parameters in last iteration.
Namely,

E(LL) =
M∑

i=1

P∑

j=1

E(log P (Tij , Gij , Dij , Zij |θ))

=
M∑

i=1

P∑

j=1

E(log P (Gij |Tij , Dij , Zij |θ))

+E(log P (Tij |θ)) + E(log P (Dij |Zij , θ)) + E(log P (Zij |θ)) (11)

This expectation is intractable in that it contains the integral over joint distribution ofZij andDij .
We used Gibbs sampling to approximate this expectation.

Firstly, we can sampleDij from the distribution :

P (Dij |Tij , Gij , Zij , θ) ∝ P (Gij |Tij , Dij , Zij , θ)× P (Dij |Zij , θ)
(12)



whereP (Dij |Zij , θ) is a Gaussian whenZij = 1, and uniform whenZij = 0, and

P (Gij |Tij , Dij , Zij = 1, θ) = exp(
∫ Dij

t=0

log(
1√

2πσG
i

exp (− (Gij(t))2

2(σG
i )2

)) dt

+
∫ Li

t=Dij

log(
1√

2πσG
i

exp (− (Gij(t)− Tij(t−Dij))2

2(σG
i )2

)) dt)

= exp(
∫ Dij

t=0

(− (Gij(t))2

2(σG
i )2

) dt +
∫ Li

t=Dij

(− (Gij(t)− Tij(t−Dij))2

2(σG
i )2

) dt

+ Li × log(
1√

2πσG
i

))

= exp(− 1
2(σG

i )2
(
∫ Dij

t=0

(Gij(t))2 dt +
∫ Li

t=Dij

(Gij(t)− Tij(t−Dij))2 dt)

+ Li × log(
1√

2πσG
i

))

= exp(− 1
2(σG

i )2
× SE1

ij(Dij) + Li × log(
1√

2πσG
i

)) (13)

whereSE1
ij(Dij) is a function ofDij , representing the squared error of the gene’s profile compared

to its expected mean whenZi,j = 1. This mean is defined by Equation 2. Similarly,

P (Gij |Tij , Dij , Zij = 0, θ) = exp(−1
2
× SE0

ij + Li × log(
1√
2π

)) (14)

whereSE0
ij is the squared error of the gene’s profile compared to zero, which is the mean of the

gene’s profile (defined by Equation 3) whenZij = 0. In practice, we approximate the squared error
by uniformly sampling a set of points on the domain of the profile and calculate the weighted sum
of squared difference between two curves evaluated on these points.

Zij was sampled from the conditional distribution,

P (Zij |Dij , Tij , Gij , θ) ∝ P (Gij |Tij , Zij , Dij , θ)× P (Dij |Zij , θ)× P (Zij |θ) (15)

whereP (Gij |Tij , Dij , Zij , θ) can be calculated by Equation 13 and Equation 14.

After sampling, we approximate the expectation in Equation 11, by

ED,Z|T,G,θold(LL) ≈ 1
S

S∑
s=1

M∑

i=1

P∑

j=1

(log P (Gij |Tij , Dij,s, Zij,s, θ)

+ log P (Tij |θ) + log P (Dij,s|Zij,s, θ) + log P (Zij,s|θ)) (16)

whereDij,s is thesth sampled actual lag ,Zij,s is thesth sampled existence indicator, andS is the
number of samples.

In M-step, we search for the parameters,θ, in order to maximize the expected log-likelihood ap-
proximated in E-step.

Since searching for(σG
i )2 is independent of searching for the other parameters. We first consider

searchingRi, dj and(σD
i )2 which are only related with,

S∑
s=1

M∑

i=1

P∑

j=1

log P (Dij,s|Zij,s, θ) (17)

=
S∑

s=1

M∑

i=1

P∑

j=1

(I(Zij,s = 1) log(
1√

2π(σD
i )2

exp((− (Dij,s −Ri × dj)2

2(σD
i )2

)2))

+I(Zij,s = 0) log(
1
Li

)) (18)



where I(·) is a indicator function, whose value is 1 when the expression in parenthesis is true, and 0
otherwise.

The searching problem becomes looking forRi, dj and(σD
i )2 to maximize,

S∑
s=1

M∑

i=1

P∑

j=1

I(Zij,s = 1) log(
1√

2π(σD
i )2

exp((− (Dij,s −Ri × dj)2

2(σD
i )2

)2)) (19)

We zero the first derivative of Equation 19 with respect toRi, dj and (σD
i )2, which leads to the

following equations:

(σD
i )2 =

∑S
s=1

∑P
j=1 I(Zij,s = 1)(Dij,s −Ri × dj)2∑S

s=1

∑P
j=1 I(Zij,s = 1)

(20)

Ri =

∑S
s=1

∑P
j=1 Dij,s × dj × I(Zij,s = 1)

∑S
s=1

∑P
j=1 d2

j × I(Zij,s = 1)
(21)

dj =
∑S

s=1

∑M
i=1 Dij,s ×Ri × I(Zij,s = 1)∑S

s=1

∑M
i=1 R2

i × I(Zij,s = 1)
(22)

It is hard to find the close form for these equations. To overcome this problem, We used coordinate
ascent to find approximate solutions to these equations. Specifically, we used the values ofRi, dj

and(σD
i )2 in thetth iteration (denoted byRi,t, dj,t and(σD

i,t)
2, respectively) to calculate the values

of Ri, dj , and(σD
i )2 in the next iteration, and got the following iterative solution forRi, dj and

(σD
i )2,

(σD
i,t+1)

2 =

∑S
s=1

∑P
j=1 I(Zij,s = 1)(Dij,s −Ri,t × dj,t)2∑S

s=1

∑P
j=1 I(Zij,s = 1)

(23)

Ri,t+1 =

∑S
s=1

∑P
j=1 Dij,s × dj,t × I(Zij,s = 1)

∑S
s=1

∑P
j=1 d2

j,t × I(Zij,s = 1)
(24)

dj,t+1 =
∑S

s=1

∑M
i=1 Dij,s ×Ri,t × I(Zij,s = 1)∑S

s=1

∑M
i=1 R2

i,t × I(Zij,s = 1)
(25)

Finally, we search for(σG
i )2 which is only related with

S∑
s=1

M∑

i=1

P∑

j=1

log P (Gij |Tij , Dij,s, Zij,s, θ) (26)

Maximizing this probability is equivalent to maximizing:
S∑

s=1

M∑

i=1

P∑

j=1

(I(Zij,s = 1)× (Li × log(
1

σG
i

)− 1
2(σG

i )2
× SE1

ij,s(Dij,s))) (27)

Searching for optimal(σG
i )2 that maximizes Equation 27 can be calculated by simple MLE tech-

niques:

(σG
i )2 =

∑S
s=1

∑P
j=1 I(Zij,s = 1)× SE1

ij,s(Dij,s)∑S
s=1

∑P
j=1 I(Zij,s = 1)× Li

(28)

1.2 inference

For inference, we define a confidence score,confij , to be the posterior probability ofZij given the
observed variables,P (Zij |Tij , Gij). This posterior can be approximated by our final samples in E-
step ofZij andDij . We disregard samples ofDij , and only use the samples ofZij to approximate
this marginal posterior ofZij .



2 Predicting new pairs

The prediction algorithm makes predictions regarding which new TF-gene pairs are likely to exhibit
regulatory correspondences under which experimental conditions. Given a new TF-gene pair we
construct a new table with only one column, the column for the new TF-gene pair. The above
iterative algorithm run on this table, holding the learned parameters (Ri, (σD

i )2, (σG
i )2) fixed. This

algorithm estimates the canonical lagd for the new pair, as well as the confidence scores,confi, for
each of the experimental conditions. In this way, we can predict for each condition how likely the
new TF-gene pair is to exhibit a regulatory correspondence, according to the final confidence score
assigned after the convergence of our prediction algorithm.

In order to compare the prediction results of our proposed algorithm with previous literature, we also
classify each pair into two classes, pair with regulatory correspondence or pair without regulatory
correspondence. This classification task is based on the final confidence scores. For a given TF-gene
pair, our prediction algorithm arrives at a final vector of confidence scores. Each score in this vector
corresponds to an experimental condition. Given this score vector, we apply a threshold,S. If the
final confidence score for theith experimental condition is greater thanS, we predict that there is a
regulatory correspondence between this TF-gene pair under theith experimental condition. We then
sum the number of conditions under which the pair is expected to have a regulatory correspondence.
If this number is greater than some cutoff,C, this pair is predicted to be a pair with regulatory
correspondence.

The entire gene regulatory network is often partly activated (only some edges are ”active” under a
particular condition). Our threshold,S, is designed to discover this conditionally active regulatory
correspondence. In addition, in order to pass our cutoff,C, a TF-gene pair must exhibit strong time
lagged correspondence in multiple experiments. This may reduce our ability to identify all possible
pairs (or our coverage). However, as shown in main paper this allows us to drastically reduce the
set of false positives when compared to the analysis that is carried out using a single time series
experiment.
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