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On Repairing Corrupted Correlation
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Recurring Theme in Information Theory

e Correlation Corruption
Alice and Bob share imperfectly correlated information

e Correlation Recovery
Alice and Bob take action to recover perfect correlation
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Classical Noisy Channel
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e Alice sends bits to Bob

e Correlation corruption by the noisy
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Quantum Noisy Channel

Alice A
0> -

- imperfect

-~ entanglement

noisy channel

e Alice sends qubits to Bob

e Entanglement corruption by the noisy channel
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“Correlation” Overloading

e classical::correlation = correlation

e quantum::correlation = entanglement
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Strategies for Correlation Recovery

e Preventive Strategy

Adding redundancy before the corruption

e Reparative Strategy

Recovering correlation only after corruption
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Preventive Strategy

AIice_|> encode é] _____________ >(—)

noisy channel perfect correlation

Bob
————————————————— = decode —'>Q

e Information encoded before the corruption

e Error Correcting Codes (ECCs)

e Quantum Error Correcting Codes (QECCSs)
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Error Correcting Codes

m C
Alice—>® !

noisy channel

——{D}— Bob
C m

e (n,k,d)-ECC: {0,1}*¥ — {0,1}7, such that

DIST(E(m1), E(m2)) > d
e Code Overhead: (n — k) bits
e Noise Tolerance: < (d—1)/2 bit flips

(encoding/decoding complexity not our focus)
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Reparative Strategy

Alice I = local operation —»ﬁ

} s bits perfect correlation

noisy channel

Bob - = local operation —»LJ

e Correlation repaired after the corruption

e Alice and Bob exchange s bits to recover the correlation
— ASSUMPTION: noiseless classical communication
— GOAL: minimize s

(computational complexity not our focus)
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Correlation Distillation

———————————————————————————————————

Alice r —= |ocal operation

noisy channel } sbits

Bob ------oooooooe- —= |ocal operation

i

L

e Classical Correlation Distillation Protocol (CDP)

e Quantum Entanglement Distillation Protocol (EDP)
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Information Transmission

Alice wishes to transmit m to Bob, noiselessly

preventive

m TE C

noisy channel

C

%

m

reparative

4?—> local operation ——
noisy channel \/\ } sbits

J—» local operation

1. Encoding: ¢ = E(m)
2. Transmission: ¢ — ¢

Overhead = |c| — |m|

3. Decoding: m = D(¢)

1. Transmission: m — m
2. Distillation:
(m, ) = (m, m)

Overhead = s
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preventive

ME

noisy channel

reparative

4?—> local operation ——
noisy channel \/\ }S bits

| — ‘@ N s I local operation
C m
classical Error Correcting Code Correlation Distillation Protocol
guantum | Quantum Error Correcting Code | Entanglement Distillation Protocol
overhead IC| — | M| S
status well-studied, well-understood less studied, fewer results
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preventive reparative

m{E} C * 4t—> local operation ——
\/\ }s bits

noisy channel noisy channel
4.'~ D |—> _______ J—» local operation ——
C m
classical Error Correcting Code %orrelation Distillation Protocol\\

quantum | Quantum Error Correcting Cod?/ Entanglement Distillation Protocol

overhead IC| — | M| S

status well-studied, well-understood \ less studied, fewer results /

My thesis
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Error Correction is Great!

preventive

m TE C

noisy channel

C

%

m

reparative

ﬂ—» local operation —
noisy channel \/\ } sbits

_______ I local operation

©) non-interactive

interactive
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"An ounce of prevention isworth a pound of cure."

(FYI: 1 pound = 16 ounces)

Carnegie Mellon
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“An Ounce of Prevention is Worth a Pound of Cure.”

reparative

4?—> local operation ——
noisy channel \/\ } sbits

_______ I local operation

preventive
m C
—E}F—
noisy channel
%
C m
Overhead = |c| — |m|

Overhead = s

same level of corruption, 16 x more efficient?

Carnegie Mellon
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Not Necessarily

Correlation distillation is ...

1. as efficient as error correction

2. applicable to a wider range of applications

Carnegie Mellon
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Information Transmission

preventive

m TE C

noisy channel

C

%

m

reparative

4?—> local operation ——
noisy channel \/\ } sbits

J—» local operation

Overhead = |c| — |m|

Overhead = s

THM (n,k,d)-linear ECC = CDP of overhead s = (n — k)

THM (n, k,d)-stabilizer QECC = EDP of overhead s = (n — k)

Carnegie Mellon
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Proof

THM (n,k,d)-linear ECC = (n — k)-bit CDP

message — message checksum

— - — -l -

- - | -

K K n—k

PROOF
1. Alice sends the (n — k)-bit check-sum
2. Bob decodes
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"An ounce of preventionis worth}@@ of cure."

an ounce

Carnegie Mellon
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Correlation Distillation Beats ECCs

THM Correlation distillation is provably more powerful than ECCs

31 noisy channel, s.t.
e No ECC can achieve a non-trivial rate.

e But Correlation Distillation Protocols can
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Entanglement Distillation Beats QECCs

[Bennett, Di Vincenzo, Smolin, Wootters 1996]
Entanglement Distillation is provably more powerful than QECCs

34 noisy channel, s.t.
e No QECC can work

e But Entanglement Distillation Protocols can
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"An ounce of preventron+ a pound of cure."

"In a corrupted world, prevention is useless, yet there is cure."

Carnegie Mellon
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Correlation Distillation has More Applications

Assumptions made by error correction —

Preventive encoding must precede the noise
“What if encoding is impossible?”

Noise model identical independent noise, known noise rate
“What if the noise model is different?”

Have to guess an upper bound on noise rate

Carnegie Mellon
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Random Beacon

m>>> 0[1/1]0]1

A real-time, verifiable random source
e verifiable lottery

e information-theoretically secure cryptography — key-exchange,
encryption... (assuming bounded storage)
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How to Build a Random Beacon

// | \\
%/7\ -0/1/1/0 1—>)>> N
Alice (owner) Bob (verifier)

e Point a telescope to a pulsar
e Measure the signal, convert to random bits

e Real-time verifiable: (almost) everyone can see the pulsar
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Noisy Measurement

@%‘/M\

A A
Alice (owner) Bob (verifier)
0/1/1/0/1|0]1 0/1/0/0|1]1
A A A A

____________________________________________________________________________________

Measurement errors — corrupted correlation
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Correlation Recovery for Random Beacons

— @ —
Alice (owner) Bob (verifier)
0/1/1/0({1/0]1 0/1/0/0/1]1
A A A A

____________________________________________________________________________________

GOAL = to achieve (almost) perfect correlation
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Error Correction on a Pulsar 7!

e Both Alice and Bob have corrupted information
e Preventive strategy doesn’'t work

e Okay to produce ‘fresh” random bits

Carnegie Mellon
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Correlation Distillation for Random Beacon

AN | /
o Q o
// | \\
N N
l Alice (owner) j Bob (verifier)
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Random Beacon: error correction doesn’'t apply

Carnegie Mellon
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Storing EPR Pairs

e EPR pairs are useful quantum objects, but hard to store
e Constantly decaying — varying noise rate

e QECC has to guess an upper bound of noise rate

Carnegie Mellon

33



Quantum Key Distribution (Ideal)

Y

A

>
=
@D
.
\

perfect entanglement

-
L

perfect correlation

—
-

Bob - Y - _

[Bennett-Brassard 84, Bennett 92] (modified)

0

1

e Alice sends random qubits to Bob and keeps a copy herself

e (Ideally) perfectly entangled qubits

e Both measure = (Ideally) perfectly correlated bits

Carnegie Mellon
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Quantum Key Distribution (Real life)

Alice P
N |
' - corrupted entanglement
e (U] e
Bob v

e Eve intercepts some qubits and distorts them

e corrupted entanglement = corrupted correlation
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Error Correction for Eve?

QECC assumes identical independent noise

but...

Eve is adversarial

Carnegie Mellon
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Quantum Key Distribution: error correction uses a different model
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Why Reparative?

Scenario

Reason

Information Transmission

Correlation distillation is as
efficient as error correction
(and can be more useful)

Random Beacon

ECCs don't apply
(can't error correct a pulsar)

Storing EPR pairs

QECCs are inefficient
(varying noise rate)

Quantum Key Distribution

QECCs don't apply
(different noise models)

Carnegie Mellon
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Quantifying Distillation Protocols

Alice @—» local operation Hm

\/ } shits

Bob C}—> local operation —»u
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Fix Noise Model, Study Communication vs. Quality

Alice @—» local operation ——»

\
' I
| \
\
) \
|
| |
|
I U ‘
I
! |
,I | |
I 1 |
I
/ I
\ /

Bob @—> local operatlop/

"noi se nodel " conmmuni cati on /

quality = CLOSENESS(out put, "perfect")
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nol se nodel

bounded corruption
binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity

Carnegie Mellon
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noi se nodel

bounded corruption
binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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©u L
© U
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@ U ue u
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leo Isse |9

wn juenb

HD@Cr

lower bound
upper bound

my orignal result
Independent result
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conmuni cati on L = lower bound
noi se nodel 0 1 | many U = Upper bouna
_ — © = my orignal result
bounded corruption ) = independent result

binary symmetric
binary erasure

tensor product

bounded corruption linear ECC => perfect CDP

bounded measurement
depolarization

entanglement
fidelity

% juenb /eo ISSe |2

stablizer QECC => perfect EDP

©
=
C
©
=
C
©
=
C

Carnegie Mellon 45



nol se nodel

bounded corruption |

binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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conmuni cati on

many

leo Isse |2

© vl L
© Ul L
@ Ul® ue u
OLUIOLU | ©LU

non-interactive correlation distillation

wn uenb

DO Cr

= |ower bound

upper bound
my orignal result

Independent result
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Non-interactive Correlation Distillation

Alice and Bob distill correlation without communicating

Carnegie Mellon
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Correlation Recovery for Random Beacons

— @ —
Alice (owner) Bob (verifier)
0/1/1/0({1/0]1 0/1/0/0/1]1
A A A A

____________________________________________________________________________________

GOAL = to achieve (almost) perfect correlation
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One Alice, Many Bobs

(AN

QAI Ice (owner)

Carnegie Mellon
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Non-Interactive Correlation Distillation for
Random Beacon

_\(‘)/_
// | \\
& A
j Alice (owner) L Bob (verifier) Both a and b unbiased
ol1]1/o[1l0[1] [o[1olo[a[a]z] Prle=0t—1
\\f// \\g//
* ¢
a b
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Correlation Extraction, Mathematically

Alice Bob
0/1{1/0/1/0|1 0/1/0/0]1/1/|1
\\f/// \\g//

' '

a b

e Alice z1,x2,...,2n, BOb y1,y2,...,yn, S.t. Prizy =yl =1 —p
o Alice a = f(x1,xo,..,2n); Bob b= g(y1,vy>,...,Yyn)
e Unbiased bits Prla =0] =1/2, Pr[b=0] =1/2

e Maximize Prl[a = b]
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Naive Strategy

Alice Bob
0/1/1/0/1/0|1 01 0
a b

e Both output the first bit

o Prla=b=1-p

Carnegie Mellon
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Can We do Better?

Alice Bob
0/1{1/0/1/0|1 0/1/0/0]1/1/|1
\\f/// \\g//

' '

a b

e Alice z1,x9,...,x7, Bob y1,yo,...,y7, Prizy = y] = 0.9

e Can Pr[a =1b] > 0.917
(mutual information = 3.72)
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No

Alice Bob
0/1/1/0/1/0|1 0/1/0/0({1/1/1
a b

[Alon, Maurer, Wigderson], [Mossel, O'Donnell], [Yang 2004]
e [ he nalve strategy is optimal

e All optimal strategies are naive
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Binary Symmetric Model

Alice Bob
0 (1-p)/2 0
p/2
p/2
1 (1-p)/2 1

[Yang 2004] generalization to Tensor Product Model

(large alphabet, more general noise)

Carnegie Mellon
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Binary Erasure

Model

[Yang 2004] The naive strategy is asymptotically optimal

Carnegie Mellon

Alice opy2 Bob
0 P 0
p/2
1
p/2
. (1-p)/2 .
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bounded corruption |

binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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non-interactive correlation distillation
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DO Cr
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upper bound
my orignal result

Independent result
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conmuni cati on

H O Cr

= |ower bound
upper bound

my orignal result
Independent result

leo Isse |2

noi se nodel 0 1 many
bounded corruption| | | | |
binary symmetric| < U ©L | L
binary erasure|© U | L
tensor product | 0 U
bounded corruption @UL
bounded measurement @U ________________ L
depolarization | )
entanglement | @U@U@ _______ U
fidelity | ©LU[@LU[©@LU

i®)

c

Q
{

Carnegie Mellon
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EPR extraction
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Motivation: classical randomness extraction

Carnegie Mellon
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Randomness EXxtractors

Input
i Input: random source

extractor —— AuXx Aux: uniform random bits

Jz Output: near—uniform random bits
Output

produce near-uniform random bits from arbitrary random sources
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Facts About Extractors

Very useful, works with very general input

e input = arbitrary random source.
e |output| «— min-entropy(input)

e |auxiliary input| = ©(log(Jinput|))

e [Ta-Shma, Umans, Zuckerman 2001] Near-optimal construc-
tions exist
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“General Entanglement Distillation?”

classical quantum
uniform Dbits EPR pairs

randomness in purest form entanglement in purest form
extractor entanglement distillation
low-quality randomness low-quality entanglement

Y Y
high-quality randomness high-quality entanglement

input input

arbitrary random bits arbitrary entangled state?
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No

THM General entanglement distillation is impossible
(no protocol extracts EPR pairs from arbitrary entangled states)
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Proof Sketch

classical unique distribution of max entropy

quantum infinitely many maximally entangled states

The 4 Bell states:

ot = (10407 + 1)1 1))
o = (00" - 1))
vt o= (0N +D40)%)
v o= (104D - 107

Carnegie Mellon



Proof Sketch, cont’d

Suppose there exists such a protocol P, s.t.,
P(dptT) 5 o1, P(d™) 5 T, P(WT) 5 T, P(W-) 5 T
Let p be a mixed state:
1 . _ _
p= 7 (IPFTASF| 4+ |OTYST| + [WFHWT| + W)W )
We should also have:

P(p) — &
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Change of Basis

1
p =7 (IFASF| + [©7XST| + [WFYWF| 4 [w Ty w )
By changing of basis:

p = (100)(00| +]01)01| +[10)(10] +[11)11])

p Is disentangled = impossible to produce EPR pairs

Carnegie Mellon
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conmuni cat i on L = lower bound
noi se nodel 0 1 | many U = upper bound
_ © = my orignal result
bounded corruption| | | | | 2| &) = independent result
binary symmetric @U@L _________ L §
binary erasure | ¢ U L o
______________________________ 3
tensor product | ©) U -
bounded corruption | <> U| | L
bounded measurement ©U ________________ L | ¢ impossibility for general
depolarization | &) 2 EPR extraction
entanglement @U@U@U{
fidelity | @ LU[@LU]©LU

Carnegie Mellon
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Why General Entanglement Extraction Fails?

e NO protocol can do well on average

e Useful protocol only if input is ‘close” to some state

Carnegie Mellon
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T he Fidelity Noise Model

[Ambainis, Smith, Yang 2002]

fidelity(input, “perfect”) > 1 —¢

[Lo, Chau 1999], [Shor, Preskill 2000]
used it in proof of security of [BB84] key distribution protocol

Carnegie Mellon
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conmuni cati1 on

noi se nodel 0 1 | many
bounded corruption| | L
binary symmetric @U@LL
binary erasure @U'—
tensor product | © U
bounded corruption | U] | -
bounded measurement @UL ________
depolarization | ) Y L
entanglement | > yU|© Ul® U
fidelity [ &)L U@L U ©LU
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Lower Bound: a Construction

[Ambainis, Smith, Yang 2002]

VY n,s, d s-bit protocol, on n qubit pairs of fidelity 1 — ¢, either:
e fails with probability € (nothing is output), or
e outputs (n — s) pairs of qubits of fidelity 1 — (f%

(output fidelity = output quality)

+ Can increase the fidelity as close to 1 as possible, sacrificing
logarithmic number of qubit pairs and using logarithmic bit
of communication

= Fails with probability e.
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Failure i1s Unavoidable

[Ambainis, Smith, Yang 2002]
14 n qubit pairs in state p of fidelity 1 — ¢, s.t. any protocol taking
p as input and outputting m qubit pairs, has average fidelity at

1-27m

T 5=m € ~ 1 —e€.

most 1 —

Cannot increase the overall fidelity
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Optimality of Our Construction

[Ambainis, Smith, Yang 2002]
vV n,s, 3 s-bit protocol, on n qubit pairs of fidelity 1 — ¢, either:

e fails with probability ¢ (nothing is output), or
e outputs (n —s) pairs of qubits of fidelity 1 — F—
Optimal...

e Failure Probability — Must fail with probability € in order to
achieve close-to-one “lucky fidelity”

e Yield — (n — s) qubit pairs, asymptotically optimal
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More Optimality

[Ambainis, Smith, Yang 2002]
VY n,s, d s-bit protocol, on n qubit pairs of fidelity 1 — ¢, either:
e fails with probability € (nothing is output), or

e outputs (n — s) pairs of qubits of fidelity 1 — %

[Ambainis, Yang 2004] ©
Communication complexity optimal up to an additive constant
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A BiIt More Technically...

Analysis of general two-party protocols prior to [Ambainis, Yang 2004]

[Nielsen 1999] “Simulation-based Reduction”
e For pure state input, Alice can ‘simulate” Bob's actions

e Arbitrary protocol — single-message protocol

(Alice measures; Alice sends message to Bob; Bob measures)
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Simulation-based Reduction

“reducing any protocol to a single-message protocols”
e Does not work for protocols with mixed states as input

e [Bennett, Di Vincenzo, Smolin, Wootters 1996]
Two-way protocols more powerful than one-way protocols

e Reduction doesn’'t work!

e Other techniques do not seem to work with mixed states
either (e.g [Hayden, Winter 2002])
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Our Contribution

[Ambainis, Yang 2004]
Novel technique for mixed states and two-way protocols

e Keep track of the local density matrices of Alice and Bob
e Communication causes a density matrix to “split”

e Maintain an invariant with communication history

Carnegie Mellon

77



conmuni cati1 on

noi se nodel 0 1 | many
bounded corruption| | L
binary symmetric @U@LL
binary erasure @U'—
tensor product | © U
bounded corruption | U] | -
bounded measurement @UL ________
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nol se nodel

bounded corruption
binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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conmuni cati on L = lower bound
0 1 many U = upper bound
© = my orignal result

__________ _— L | 2] ® = independent result
@ u(oL )* §
© v | L [T~ One-bit protocol provably
@’\L{ — Dbetter than non-interactive
/ protocols
© U \ L
@U/[L o hon-interactive entanglement
---------- oo & distillation
© U L %
M © U|l® U| 3
OLU|OLU|OLU
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Summary

e Reparative: Correlation/Entanglement Distillation Protocols
e CDP/EDPs as efficient and ECC/QECC, maybe more
e \Wider applications

e Results:
— Impossibility of NICD/NIED
— Impossibility of general EPR extraction
— Optimal protocl for fidelity model

— One-bit protocol for binary symmetric model
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T hanks!
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preventive reparative

m{E} C * 4t—> local operation ——
\/\ }s bits

noisy channel noisy channel
4.'~ D |—> _______ J—» local operation ——
C m
classical Error Correcting Code %orrelation Distillation Protocol\\

quantum | Quantum Error Correcting Cod?/ Entanglement Distillation Protocol

overhead IC| — | M| S

status well-studied, well-understood \ less studied, fewer results /

My thesis
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noi se nodel

bounded corruption
binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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noi se nodel

bounded corruption
binary symmetric
binary erasure
tensor product
bounded corruption

bounded measurement
depolarization

entanglement
fidelity
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conmuni cati on

0 1 | hany

©LU

les Isse |2

L
U
@:
e

= lower bound

= upper bound

my orignal result
= Independent result

empty = unknown result

communication—qualiity
tradeoff?
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Big Questions

e Optimality of constructions
“Linear ECC = CDP, Stabilizer QECC = EDP, are they

optimal?”
e More Trade-off on interactive correlation distillation

“What's the optimal quality Alice and Bob can get with s
bits of communication?”

e Unified results

“Are there noise models more general than, say, the fidelity
model?”

“Can we merge the results to make the table smaller?”
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More Immediate Questions: one-bit Protocols

e Can we upper bound the quality of one-bit CDP/EDPs?

e Is the protocol with the binary symmetric model optimal?

Carnegie Mellon
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Time-line

[2003/3 — 2004 /3] Continue research

[2004 /4 — 2004 /9] Write thesis
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