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Abstract problems, quantum world also brings new open problems
to communication complexity.

Entanglement is an essential resource for quantum com-  Entanglement distillation is a widely studied problem
munication and quantum computation, similar to shared in quantum information theory. Entanglement Distillation
random bits in the classical world. Entanglement distil- Protocols (EDPS) are two-party protocols between Alice
lation extracts nearly-perfect entanglement from impetrfe  and Bob that take as input imperfectly entangled quantum
entangled state. The classical communication complekity o states, and output near-perfect EPR pairs. In such pratocol
these protocols is the minimal amount of classical informa- Alice and Bob are allowed to perform local quantum opera-
tion that needs to be exchanged for the conversion. In thistions and classical communications. However, they are not
paper, we focus on the communication complexity of proto- allowed to communicate in a quantum channel. Protocols
cols that operate witincomplete informationi.e., where  of this type are called “LOCC protocols,” for “Local Oper-
the inputs are mixed states and/or prepared adversarially. ation Classical Communication.” For LOCC protocols, it is

We consider three models of imperfect entanglement,natural to ask what the communication complexity of these
namely, the bounded measurement model, the depolarizatasks is, i.e., how much information Alice and Bob need to
tion model, and the fidelity model. We describe there mod-€exchange in order to produce near-perfect EPR pairs. Also,
els as well as the motivations for studying them. For the itis interesting to consider the trade-off between the amou
bounded measurement model and the depolarization modelpf communication and the quality of the output.
we prove tight and almost-tight bounds on the output qual-  Entanglement distillation protocols are closely related t
ity of non-interactive protocols. For the fidelity model we a number of areas. We discuss some of these related areas,
prove a lower bound that matches the upper bound given byas well as how the communication complexity of EDPs are
Ambainis et al., and thus completely characterizes commu-related in these areas.

nication complexity of entanglement distillation prottsco )
for this model. Our result also suggests the optimality of Qnderst&_mdmg Entanglgment Entanglement, and_ par-
the BB84 protocol in terms of communication complexity. ticularly in the form of Einstein-Podolsky-Rosen pairs]18

We emphasize that although some of the results appealEPR pairs), is probably the most important phenomenon

intuitively straightforward, their proofs are not. In fattvo in quantum information theory, with exciting applications
novel techniques are developed for proving these results.SUCh as teleportation [6] and superdense coding [11]. Re-

We believe that these techniques are of independent interS€archers have long trying to understand entanglement, and
ests. t00. in particular, thequantificationof entanglement. Given an

entangled stat®, how muchentanglement does it have?
Among the various proposes is the conceptisfillable en-
) tanglemen{10, 44], which is defined to be the asymptotic
1 Introduction ratio of number of EPR pairs “distillable” from copies of
p using the optimal entanglement distillation protocohto
Communication complexity studies the amount of com- A good understanding of EDPs, therefore, is essential for
munication needed to solve a certain computational prob-understanding entanglement.
lem [60, 31]. Communicating quantum bits instead of
classical bits can decrease the amount of communicatio
needed [16, 51, 52]. Besides new solutions to classical

nFighting Decoherence Quantum states are notoriously

unstable and are easy to “decohere,” that is, that they in-
teract with the environment and become “corrupted.” This
“Institute for Advanced Studieanbai ni s@ as. edu. can be a problem for, for example, teleportation, where Al-
fCarnegie Mellon Universityangke@s. cru. edu. ice and Bob need to maintain a large collection of shared




EPR pairs before the teleportation starts, and imperfeBt EP tion of QECCs, which they call “approximate quantum er-

pairs will result in unfaithful teleportation. Naturallflice ror correcting codes”, and showed that by relaxing the error
and Bob need to use EDPs to “extract” almost perfect EPR correction condition, more efficient codes can be designed.
pairs. This result, viewed from the perspective of the EDPs, sim-

ply corresponds to the trade-off between the amount of

Understanding Quantum Errc()jr Correcting  Codes h communication and the output quality of these protocols,
Quantum Error Correcting Codes (QECCs) are mec a-\vhich appears to be quite natural.

nisms for systematically encoding quantum information

into “code-words”, so that if parts of a code-words are cor- ] o ]
rupted, the original information can still be recovered by Understanding Quantum Key Distribution Consider

decoding. It is desirable to design QECCs with low over- the Quantum Key Distribution protocol (QKD) by Bennett
head (the amount of redundancy added) that can tolerate &nd Brassard [S]. It is one of the very few results from
high rate of noise. Initiated by Shor [56] and Steane [57], duantum information theory that currently enjoy prgctlcal
the study of QECCs has become a very active area. Manyapphcatlons. See [4, 29, 39, 12, 13] for some experimental
constructions are proposed [20, 32, 49], and many bounddesults. There also have been a sequence of proofs of secu-
on the overhead of QECCs are known [17, 19, 54, 46, 47 rity for such a protocol, with latter ones simplifying and/o
48]. Most of these bounds are proven using techniquesStrengthening the former ones; see [38, 14, 35, 33, 15, 55].
from classical error correcting codes and are onlyrfon- Lo and Chau [35] were the first one that made a connection
degenerateodes [20, 43]. On the other hand, much less is fTom the key distribution protocols to EDPs, and the proof
known fordegenerateodes, since they don't have counter- Was further simplified by Shor and Preskill [55]. While all

parts in classical error correction and novel techniques ar these studies focus on the security of such a protocol, they
needed to prove bounds for them. seem not to be concerned with the communication complex-

Quantum entanglement distillation protocols can be ity, ie., hoyv efficient the BB84 protocol is in term of the
viewed as an alternative to QECCs. Thanks to teleportation,classical bits exchanged. o
a collection of shared EPR pairs is equivalent to a quantum  Interestingly, quantum key distribution protocols are
channel. If Alice produces a number of EPR pairs and sendCl0sely related to entanglement distillation protocolskwo
over Bob’s share through a noisy channel, they will share ing in the so-called “fidelity noise model” (discussed later

imperfect EPR pairs. Next, Alice and Bob can use an en- N Our paper). There exists a significant amount of simi-
tanglement distillation protocol to distill perfect EPRiga  larity between the definition of secure QKD protocols and

and then use the distiled EPR pairs to transmit quantum in-the definition of conditional EDPs for the fidelity model. In
formation by teleportation. In this way, EDPs can be used particular, Lo and Chau and Shor and Preskill showed that

to transmit quantum information reliably through a noisy the BB84 protocol is in some sense “equivalent” to a spe-
channel. This connection was first pointed out by Bennett cific EDP, such that the security of the BB84 protocol corre-

etal. [9], and later made more precise in [10]. Furthermore, SPONds to the “quality” of the EDP, and the communication
Bennett et al. [10] showed a correspondence between one€omplexity of the BB84 protocol directly corresponds to the
way EDPs (where the communication is only from Alice to ommunication complexity of the EDP. Therefore, an opti-
Bob) and QECCs. They proved that every one-way EDP Mality result for this entanglement distillation proto¢ab

implies a QECC that can tolerate the same noise rate, andVe Shall show in this paper) implies that the BB84 protocol
vice versa. is optimal in terms of communication complexity for proto-

Because of the correspondence between QECCs an©ls-
EDPs, it is interesting to compare their efficiencies, and
in particular, if their overheads are preserved in the con-1.1 Our Contributions
version. We may measure the overhead of a QECC by
the difference between the code length and the message In this paper, we study the classical communication com-
length, and the overhead of EDPs is naturally measuredplexity of EDPs withincomplete information In this set-
by the amount of communication. Unfortunately, the con- ting, Alice and Bob don’t have the complete knowledge
version by Bennett et al. [10] does not preserve the over-about the input state they share. Rather, the input state is
head. However, the overhead is preserved for a large class mixed state, or is adversarially prepared.
QECCs, known as stabilizer codes [20]. See Nielsen and We also focus on thprecisecommunication complexity
Chuang [43, pp. 597]. Such an equivalence suggests thabf EDPs, rather than theasymptotidoehavior. In fact, we
the study of communication complexity of EDPs may pro- try to answer questions of the following fashion: “On this
vide more insights to the study of the bounds on QECCs, for particular input state class, how many bits of classical-com
both degenerating codes and non-degenerating codes. Amunication are needed in order to just outpsiregle EPR
a case in point, Leung et al. [32] considered a generaliza-pair with certain quality?” We believe that it is important



to understand the communication complexity in this case,
where the requirement appears tonbi@imal Interestingly,

as we shall see later, answers to this minimal question al-
ready yield a lot of insights into the more general problem,

where Alice and Bob wish to generate EPR pairs of not only
high quality, but also of large quantity.

We consider various formulations of “imperfect EPR

pairs”, which we call “noise models”. We study the be-
havior of EDPs with different noise models and inputs. We
summarize our results here.

A tight bound for the bounded measurement mode.

In the bounded measurement model, Alice and Bob
originally sharen perfect EPR pairs, and therout of
thesen pairs are measured in the computational basis,
resulting in a mixed state}(\OO)(00| + |11)(11)).
Alice and Bob have no information about which pairs
are measured and which are not, but they kmovn
other words, the measured qubit pairs are adversarially
chosen. This is a simplified version of the noise model
typically used in quantum error correction, whare
pairs are arbitrarily corrupted. We choose to study the
bounded measurement model since it is simpler for
analysis yet rich enough to yield interesting results.

We prove a tight upper bound on the output fidelity
(which measures the “quality” of a protocol) of non-
interactive protocols, i.e., ones where Alice and Bob
don’'t communicate. More precisely, we prove that
maximal fidelity of a non-interactive protocol is at
most 1—r/2n. This is tight since there exists a very
simple protocol that achieves a fidelity of¥ /2n. We
view this result as the first step towards understanding
EDPs for this model.

An almost tight bound for the depolarization model.

In the depolarization model, Alice generate€PR
pairs by herself, and then sends to Bob his share
over through a depolarization channel of parameter
which independently leave each qubit unchanged with
probability (1 — p) and replace it with a completely
mixed state with probabilityp. It is a typical model

for “noisy channels”, and in particular was studied by
Bennett et al. [9, 10].

We prove an almost tight upper bound for non-
interactive protocols over this model. More precisely,
we show that any non-interactive protocol has maxi-
mal fidelity 1— p/2 in its output. This bound if almost
tight in that there exists a very simple protocol of out-
put fidelity 1— 3p/4.

A complete characterization for the fidelity model. The

fidelity model is an adversarial noise model, where
the only information Alice and Bob have is that the
fidelity of their input state and the perfect EPR pairs

is 1—¢&. Ambainis et al. [1], studied this model in
the name of “general error” model. This model was
also independently studied by Lo and Chau [35]
and Shor and Preskill [55] in proving security of the
BB84 quantum key distribution protocol, who showed
that the BB84 protocol is, in fact, an entanglement
distillation protocol for the fidelity model.

We present a complete characterization of EDPs over
the fidelity model. We prove an almost tight lower
bound (up to an additive constant) on the communica-
tion complexity of EDPs over the fidelity model. More
precisely, we prove that the maximal conditional fi-
delity of an EDP witht bits of communication is at
most 1-&- p/2*1, even if the EDP is only required to
output 1 qubit pair. Hereg is the fidelity of the input
state,p is the probability that the EDP succeeds with
perfect EPR pairs, and the conditional fidelity is the fi-
delity of the EDP conditioned on it succeeding (we al-
low an EDP to fail in this case). Therefore, to achieve a
fidelity or 1— & on the output, lo¢ll/d) +log(e- p) — 1

bits of classical communication is needed. Compar-
ing the result from [1], which contains a protocol that
(with simple modification) uses 1¢d/0) + log(1 — €)

bits, our lower bound is tight up to an additive con-
stant (under the reasonable assumption that lgoth
and p are constant). Our result implies that the “ran-
dom hashing” protocol by Ambainis et al. [1] optimal.
Since essentially the same protocol is used in the BB84
key distribution protocols, as pointed out by Lo and
Chau [35], the BB84 protocol is also optimal in terms
of communication complexity.

We stress that some of these results may seem intuitively
straightforward, their proofs do not appear so. In fact, in
order to prove these results, we need to develope two novel
techniques that might be interesting by themselves.

Alternative definition of fidelity We give an alternative

definition of the fidelity of a pure state and an EPR pair.
We first notice that an EPR pair (denoted ®y) is

the unique state that remains unchanged under a group
of operators. Then we show that for an arbitrary pure
state| @), its “deviation” from this group of operators

is exactly the fidelity of ¢) and®*. See Lemma 3.

This technique is used to prove the two results for the

bounded measurement model and the depolarization
model. It is interesting to compare this technique to

the stabilizer formalism [21], where a state is defined

as the unique elements that is “stabilized” by a group

of operations, i.e., that is remains unchanged under
these operations. Our alternative definition suggests
that it may be interesting to consider states that are
“partially” stabilized as well.



Analysis of protocols with mixed state input We intro- the first one that studied conditions under which one pure
duce a technique to analyze general LOCC protocolsstate can be transformed into another one by LOCC. All the
with mixed states as input. Prior to our work, most of work above assumes that Alice and Bob know the explicit
the work on LOCC protocols only deal with pure states description of the state they share, and so they cao@t
as input. Having a pure state as input greatly simplifies mally.
the analysis, since the Schmidt decomposition can be Relatively less work was done on studying EDPs with
used. Many researchers have used Schmidt decompoincomplete information prior to this paper. See Bennett et
sition in their analysis, including Lo and Popescu [36], al [9, 10]. The fidelity noise model was independently stud-
Nielsen [41], Hayden and Winter [25], and Nayak and ied by a number of researchers: Lo and Chau [35] and Shor
Salzman [40]. Unfortunately this technique does not and Preskill [55] in proving security of the BB84 protocol;
work for mixed states, since Schmidt decomposition Barnum et al. [2] in the study of “purity-testing protocols”
is only for pure states. In fact, Lo and Chau proved protocols; Ambainis et al. [1] in relating EDPs to classical
that for pure state inputs, one-way protocols are asrandomness extractors.
powerful as two-way protocols. On the other hand,  Researchers have also studied the classical commu-
Bennett et al. [10] showed that for certain mixed state nication complexity of other quantum tasks. Lo and
inputs, two-way protocols are provable more powerful Popescu [37] observed that the “entanglement concentra-
than one-way protocols. These results shows a distincttion protocol” in [8] does not require any classical com-
difference between pure state and mixed states. munication, while the “entanglement dilution protocol: re

Our technique, on the other hand, is designed to anal-auiresO(n) bits of classical communication for producing
ysis protocols with mixed states as input. Roughly N copies of the “diluted” state. They also constructed a new
speaking, our technique works as follows. We con- dilution protocol that only use®(y/n) bits of communica-
sider both the reduced density matrix of Alice and tion. This protocol was proven to be asymptotically opti-
Bob. When Alice sends a classical bit to Bob, this Mal by Hayden and Winter [25], and Harrow and Lo [23].
may cause Bob’s density matrix to “split”, since if Al-  LO [34] studied the communication complexity for Alice
ice and Bob’s states are entangled, then the bit sent byand Bob to jointlypreparea large number of copies of ar-
Alice may carry some information about Bob's state.  Pitrary (known) pure states, and proved an non-trivial uppe
Our technique keeps track of the splitting reduced den- bound. All the results above focus on a relatively simple sit
sity matrix pair as the protocol proceeds, and builds a uation, where the input arecopies of a known pure state,
binary tree corresponding to the messages exchanged@nd almost all are asymptotic results.

By maintaining an invariant when traversing the tree

of message history, we manage to prove our result. We2  Notations and Definitions

discuss this in Section 5.

All logarithms are base-2. We identify an integer with
the 0-1 vector obtained from its binary representation. For
a vectorv, we writeVv[j] to denote itsj-th entry. For 0-1
vectorx, we denote it4dlamming weighby |x|, which is the
number of 1's inx. For binary string andy, we usex;y to
denote theoncatenatiorf these two strings.

Throughout the paper we are interested in finite, bipar-
tite, symmetric quantum systems shared between Alice and
Bob. We identify a “ket”| @) with a unit column vector.
We assume there exists a canonical computational basis
for any finite Hilbert space of dimensiod, and we de-
note it by {|0),|1),...,|N—1)}. We use superscripts to
indicate which “side” a qubit or an operation belongs to.
For example, a general bipartite statg can written as
(&) = i jaij [ 1)A)®B.

There are 4Bell statesfor a pair of qubits shared
between Alice and Bob, and we denote themdas =
: L1008+ DA1)B), & = L(|0A0)B~ | 1)A1)B),

On the other hand, assumin i ’ el -
formation, if Alice and’Bob’s inpgtﬂ;?;tggC;:?lc(j)tB;r?t;nognll;:rr]aiiﬂt;ﬁ W= %(| 0>A‘ 1>B + 1>A| 0>B)’ andw = %G 0>A| 1>B B
sent by Alice will not cause the split. | 1)A|0)B).

1.2 Related Work

To the best of our knowledge, the study of entanglement
distillation protocols was initiated by Bennett et al. [8],
who considered the problems of producing perfect EPR
pairs from a large copy of identical pure states. From
then on, the problem of entanglement distillation was stud-
ied by a number of researchers from different perspec-
tives [9, 10, 27, 28, 44, 45, 50, 24]. All of which consider
the situation whera identical copies of a state are given
as input to an LOCC protocol, which then outpmi€EPR
pairs. They studied the asymptotic behaviomgf asn
approaches infinity.

Researchers also studied EDPs for a single copy of an ar
bitrary pure state; see Vidal [58], Jonathan and Plenio, [30]
Hardy [22], and Vidal et al. [59]. Much of the work was
built on the result of majorization by Nielsen [41], who is




We denote the stat@™)®", which represents perfect
EPR pairs, byb,. We also abuse the notation to udgto
denoteboththe vectord, and its density matrix®,) (Pn|,
when there is no danger of confusion.

The Pauli MatricesX, Y, andZ are unitary operations
over a single qubit defined as

Proof: By the definition of base fidelity, we may assume
thatp has dimension 2. By Claim 1, we only need to con-
sider the case thatis a pure statép)(@|. Since|@) is dis-
entangled, we may write it as

| @) = (do| 0) + 01 1)) @ (Bo| 0) + Ba| 1))

Then a direct calculation reveals that

X(a[0)+B[1) = BlO)+all)
Y(a|0)+B|1)) = ip|0)—ia|l ~ 1
(OB = 18I0 el F(0@) = 3 laoBo+ s
Z(a|0)+B[1)) = of0)—Bl1) 1
= = (|ao|?|Bo2+ |a1|?|Ba|? + aoBoa;B; + agByat
We usel to denote the identity operator. (1ol"1ol ™+ faa 1o 0Boct3; +coBocta )
For a unitary operatdd, we can write it in a matrix form < (\0‘0|2H30\2+\0(1\2|31|2+|0(0l3*1‘|2+|0(1[38|2)

under the computational basis. Then we definedsju-

gate U*, to the entry-wise conjugate &f. ClearlyU* is

still a unitary operation. Arerror modelis simply a set of
bipartite (mixed) states, and is often denoted#y We say
a statep is consistentvith A, if p € M.

Fidelity is a measure of closeness between quantum
states which we use to measure the quality of the out-

put of an EDP. For two mixed statgs and ¢ in the
same Hilbert space their fidelity is defined Rép,0) =
Tr?(\/pY/20p/2). If o = |§)(d] is a pure state, the defi-
nition simplifies toF (p,|$)(¢]) = (¢ |p| d). A special case
is when|¢) = @y, for somen, such thap and®, have the
same dimension. In this case, we call the fidelitypadind
|¢) the fidelity of statep, and the definition simplifies to
F(p) = (®n|p|Pn).

We are often interested in the fidelity of two states of un-
equal dimensions, and in particular, the fidelity of a gehera
statep and the Bell statab*. Then, we define thbase
fidelity of p to be the fidelity of the state obtained by trac-
ing out all but the first qubit pair gb. We denote the base
fidelity of p by F(p).

It is easy to verify that the fidelity is linear with respect
to ensembles, so long as one of the inputs is a pure state.

Claim 1 If p is the density matrix for a mixed state that is
an ensemblé¢p;, |@)}, ando is the density matrix of a pure
state, then we have(p,o0) = 3; pi - F(|@)(@],0). [ |

The fidelity is also monotone with respect to trace-
preserving operations [43].

Claim 2 For any statep and o and any trace-preserving
operatorE, we have KE(p), E(0)) > F(p,0). [ |

One useful fact about fidelity is that any completely dis-
entangled state has base fidelity at mg'a.1

Lemmal If p is a completely disentangled state, then

F(p) <1/2.

NI NI = NI

where the inequality is due to Cauchy-Schwartz. ]

2.1 Entanglement Distillation Protocols

We often denote an entanglement distillation protocol by
P. The protocol starts with a mixed stgieshared between
Alice and Bob. Alice and Bob can have their private an-
cillary qubits, originally all initialized tg 0). A protocol is
either deterministic or probabilistic. Fdeterministicpro-
tocols, Alice and Bob don’t share any initial random bits;
for probabilistic protocols, Alice and Bob share a (classi-
cal) random string. We say a protocBlis at-bit protocol,
if there aret bits of (classical) communication during the
protocol. We don't allow protocols to have any initial en-
tanglement as auxiliary inputs, nor do we allow quantum
channels between Alice and Bob.

An the end of a protocol, both parties outpntqubits,
which form the output of the protocol.  is the density
matrix of the output of protocaP on inputp, we write it as
P(p) = 0. For an entanglement distillation protocd] we
define itsfidelity with respect to an error moda{, denoted
by Fy/ (), to be the minimal fidelity of its output over alll
input states consistent with(. |. e.,

Fa () = MinF(2(p)

1)

In the fidelity error model (Section 5), we allow protocols
to fail with some probability. (As shown in [1], this is nec-
essary for having good output fidelity in this model.) In this
case, Alice also outputs a special symbol (eitheuac or
aFAIL). Thesuccess probabilitgf a protocol? over an in-
put statep is the probability that Alice outputSUCC at the
end of the protocol, and we write this B§*[p]. Theideal
success probabilitpf a protocol? is its success probabil-
ity over the ideal inputb,,. We say a protocol igleal, if its
ideal success probability is 1.



If Tis the density matrix of the output of protocslon
input p, conditioned orthat Alice outputsSUCC, then we
call T the conditional outputof protocol P, and write this
asP¢(p) = 1. We define theconditional fidelityto be the
minimal fidelity of its conditional output:

Fa(?) = minF(2%(p)) (@)

peM

When the error modeM is clear from the context, it is
often omitted.

3 The Bounded Measurement Model

We prove an upper bound on the fidelity of 0-bit EDPs
with respect to the bounded measurement error model.

In the bounded measurement model, the input state of

EDP consists ofi EPR pairsr of which have been mea-
sured. That is, the input state|ipy) = 'J-‘;(1)|(pj), where

0)A 08  ifv[j]=0
(Pj>—{ IDADB ifvj]=1
oF if V[j] =

andv € {0,1,%}". The statd @y) is called arerror state
wherev is called itserror indicator vector The degree of
v, denoted by deg), is the number of's in {1,...,N} for
which v; # x. The error model for the bounded measure-
ment model, denoted by, is defined to be

Moy = {v) | dedv) =r} ©)
An n-dimensional 0-1 vectox is consistentwith a binary
indicator vectow, if x[j] = v[]j] for all j such thaw/[j] # *.
We write this as C v. For anyv of degreer, there are 2"
0-1 vectors consistent withy. It is not hard to verify that

lov) = ﬁX;IX)Ax)B 4)

3.1 Two Useful Lemmas

We prove two lemmas that would be useful for the proofs
in this paper. Both lemmas are about how much “deviation”

Proof: We write| @) = ag|0)| qo) + a1|1)| @) and| )
Bol 0)| Wo) + B2/ 1)| W)

Then we have

(@ll|w) = agBo(go|Wo) + a1Ba(@r|W1)
(eIX|w) = a1Bo(Pr|Wo) + agPr(Wo|@r)
(@lY[W) = —iaaBo(Pr|Wo) +icoPr{eo|Wa)
(@[Z|w) = agPol{o|Po) —azPa(er|Pa)
Therefore
(@lulw)P
ue{l'Xy,z}

2|ctoBol|(@o| Wo) |* + 2|aiaBal (@1 | W) [* +
2|aioBa/?|(¢0 | Wa)|* + 2 a1Bo|*| (@1 | Wo) [
2|aio|?|Bol? + 2/oa|?|Bal* +
2|aio|?|B1f* + 2/ata|?|Bol?

2(|otof* + [oa ) (|Bol >+ 1B1l?)

= 2
[
An immediate corollary is
Corollary1 Let |@) be a pure sate. We have

Sueixy.zy (@U@ < 2.

Next, we consider quantum states and operations over
bipartite systems. In particular, we study the “deviation”
of a general bipartite state under unitary operations of the
formU @ U*. We interpretU ® U* as Alice applied) to
her first qubit and Bob applid$* to his first qubit. Again,
we considet € {I,X,Y,Z}.

We have the following lemma.

Lemma 3 Let |@) be a pure state in a bipartite system
shared between Alice and Bob. Let |XX*, Y ® Y*, and
Z® Z* be the unitary operations over the first All these 4
operations work on the first qubit of Alice and the first qubit
of Bob. Then we have

(U 2U*|Y) = 4F (| )
Ue{l’X\y,2}

(6)

a quantum state undergoes when applied various unitary opProof: We first consider how the Bell states behave under

erations.

First, we consider the “deviation” of an arbitrary pure
state under the operatiofis X,Y,Z} over its first qubit. We
have the following lemma:

Lemma 2 Let|@ and|y) be two pure states of the same

dimension, not necessarily bipartite. Let |, X, Y, and Z be

the unitary operations over the first qubit @f). Then we
have

(lU|W)> <2
Ue{l'X)Y,z}

(%)

these unitary operations. Itis easy to verify the resulictvh
we compile into the following Table 3.1.

It is easy to see that the state" is invariant under any of
the 4 operations, while other Bell states will change their
signs under some operations.

Notice the 4 Bell states form an orthonormal basis for
a bipartite system of 2 qubits. We decompogginto the
Bell basis and write

@) = ap®t @ | Wo) + 01D~ @| Y1) + oW @ | Pp) +03W ®|Ys)



state ot - Yt Y-
lolF | ®oF @&  $T g
XX | ot -0 Wt g
YeY: | ot -om Wt wo
Z0Z' | ot o pt -

Table 1. The Bell States under operators

wherez?zo |aj|2 = 1. Therefore we have

@@ = |oo/®+]|azf*+|oz*+ |os|?
@I(X@X)|@ = |oo/®—[azf*+|ozf* — |as|?
@YY@ = |aof*—|ag|*— |azl*+ |az|?
(©(Z2Z))@) = oo+ ozl — oz —|ag|?

and thus (@[@) + (@[(X ® X*)[@) + (@[(Y ® Y")|@) +
(0/(Z0Z7)| @) = 4aol = 4F (| 9)). u

Lemma 3 in fact gives an alternative definition of the
base fidelity of a pure state.

We prove that the fidelity of 0-bit EDPs for the bounded
measurement error model is at most &/2n, even if the
protocols are only required to output one qubit-pair. Nitic
that fidelity is monotone. Therefore if no protocol can out-
put a single qubit pair of fidelity at least-1r/2n, then no
protocol can output multiple qubit pairs of fidelity at least
1-r/2n.

Theorem 1 For any probabilistic 0-bit protocof that out-
puts one qubit pair, we have(FP) < 1— 5 with respect to
the bounded measurement model.

Notice that there exists a very simple probabilistic 0-bit-p
tocol of fidelity 1— - Alice and Bob use their shared ran-
dom string to uniformly pick an EPR pair and output it. If
this pair is measured, (which happens with probabilty),
the fidelity is 1/2, and otherwise it is 1. So the overall fi-
delity is exactly 1-r/2n and thus our upper bound is tight.

Proof: We consider a slightly different error model, where
arandom rout of n EPR pairs are measured. This corre-
sponds to the density matrix

N

p= 2”(?) V;d%/:r ‘(p\/><(p\/|

Notice that this is the “average case” version of the bounded
measurement model. Thus if we prove an upper bound on

the fidelity of P overp, then it is also an upper bound with
respect to the bounded measurement model.

We shall prove that ndeterministicO-bit protocol can
have a fidelity higher than-1r/2nif p is the input. Then,

we conclude that no probabilistic protocol can have a fi-

delity higher than 1-r /2n, too, since fidelity is linear.

Notice 2 is non-interactive, we can model it as Alice
and Bob both applying a unitary operation to their share of
qubits, outputs the first qubit and discard the rest.

Suppose the unitary operators of Alice and Bobldke
andUg. We denote the states under these operations by
UalX) — | @ andUs|x) —> |).

Notice that we use“—" instead of “=" since we allow
Alice and Bob to use ancillary bits. Clearly, the vectors
{] @) }x are orthonormal, and so are the vectny) } x.

We shall prove that

r
<1l-——,
= on’

(7)

2(7) g

which shall imply Theorem 1.
By Lemma 3, (7) is equivalent to

3, [FiUs Voo aniUasUs)

z l > (W|(UA®UB)T(U®U*)(UA®UB)(p\/)]
degV=r |Ue{I'X,Y,Z}

< 2 (?) -4(1—%)

We expand the left hand side: Notice that
1
(Ua®Ug)|ov) = WX%\(MN&)

wherex C v if x is consistentith v (that is, if x[j] = V[]]
for all j such thaw[j] # *).
Therefore, we have

(ov]|(Ua®Ug)"(U®U")(Ua® Ug)| gv)
L 5. 5 (@Ule) Uy
XLVyL

2n7r

for any unitary operatiobl. So we only need to prove that

n r
Ulg) Wy U gy) <27 ) -4(1— —
de;:rxg yé UGU;Y,Z}W @) - (W U™ y) <r> (1-30)

However, by Cauchy-Schwartz, we have

(O [UTqy) - (W U™ [ Wy)
deg%:rxgly;/uw;vz} » /
1
2
< (e |U] >|2> :
(degz—r x;/yg/u e{I;.,Y,Z} >
1
2
<wXU*w>Z>
(degz—rx;/y;uql.;v,z} Vi)



Next, we estimate the terms on the right hand side:

U 2
degz:rx;/yg/ug{hzxy’z} (@ |V (R/)\
= 3> 3 lelie)f s 1

X Yy Ue{l,X\Y,Z} degV=r:x  CVAXoCV

Notice that since ¢y)’s are all orthonormal, we have
Sy l(@ U] )| < 1 forallxs. Thus

2n+2

T loUledP <
X Vue{I’XY.z}

For anyx andy, we have

n—[XaYy| )
n-r—|xay|
The reason is simple: the only freedom ¥as where to put
the(n—r) «’s. But for every positiork such thak[k] # y[k],

we have to have[k] = . Then we still havén—r — |x®y|)
*'S we can put anywhere. Soxf£y,

n—1
L
degV=r SCVAYCV n-r-1

Also notice that by Lemma 2,

Sueqixyzy (@ U] @)% < 2 for anyx.
Putting things together, we have

degz:rxg/yglue{l,ZX,Y,Z} eV ‘2

n
()3 5 ledvleors
X Ue{l'’X,Y.Z}
) yUe{IXYZ}

§
10 (), 3, e
<?_ i) .Zgug{nzx,u}'(%‘u'%)‘z
() ()] e () =
- () s

Similarly, we have

XU* 2<2n+2<> 1— —
de;:rxg/ygme“;y;@ U7 [ Wy)| Bl 2n)

too.

degV=r: XCVAYCV (

we have

IN

(@ U )2

Thus we have

(O U @) - (W |U™ | Wy)
degz:rxg/yglu e{léMZ} » ’

< 2“2Q>u—§p

which proves the theorem. [ ]

4 The Depolarization Model

We prove an upper bound on the fidelity of 0-bit EDPs
with respect to the depolarization model.

We first describe the depolarization channel. A depolar-
ization channef of parametepis a super-operator defined
as [43]

D(p)z(lfp)-pw-lz

In other words, this channel behaves in the follow-
ing manner: with probabilitf1 — p), it keeps the state
untouched, and with probabilitp, it replaces that with
the completely mixed state. After passing the second
qubit through th|s channel, the stateé” becomes a mixed
statepp = (1— 3) @+ )(OF [+ R (|0 ) (@ |+ |WH(WF|+
WWD.

The depolarization error model of qubit pairs and
parametem denoted aSMnd , consists of a single state:

= {Pp"}-

We prove that the maximal fidelity of 0-bit EDPs for the
depolarization error model is-1 p/2, even if the protocols
are only required to output one qubit-pair.

Theorem 2 For any probabilistic 0-bit protocof? that out-
puts one qubit pair, we have(?) < 1— & with respect to
the depolarization model. [ ]

There exists a very simple deterministic 0-bit protocot tha
has fidelity 1— %p: Alice and Bob simply output the first
qubit pair. Itis very easy to verify that the fidelity of this
protocol is 17 . Therefore the bound in the theorem is
almost-tight (up to a constant factor).

The proof to Theorem 2 is very similar to that to Theo-
rem 1, except thatit is more complicated. We omit the proof
due to space limitations.

5 The Fidelity Model

We study the communication complexity of EDPs with
respect to the fidelity error model.

First, we give the definition of the fidelity error model.
For a bipartite system afqubit pairs, we define the fidelity



error model of parameterto be the set of all bipartite sys-
tems of fidelity at least + €. We denote the error model
by

Mie={p|F(p)>1-¢} (8)

Notice that this error model is very different from the two

One can modify this protocol to eliminate communica-
tion. The resulting protocol has fidelity aboufe]%s (there-
fore communication almost doesn't help at all in this case).
We also have a lower bound that matches the protocol up to
exponentially small terms.

previous models we studied, since it provides much less in-Theorem 3 (a) There exists a probabilistic 0-bit entan-

formation than the previous one. As a comparison, notice
that in the bounded measurement model, all the error states

have fidelity 2", and in the depolarization model, the fi-
delity of the inputis(1—3p/4)", both are very small. How-

ever, Alice and Bob have the additional information about
the structureof the input states, and are able to use the in-

formation to do very well.

5.1 Two Useful Facts About Positive Operators

2“72
§_3£

glement distillation protocol of fidelitl — 37—
with respect to the fidelity model of parameger

ment distillation protocol has fidelity at modt —

3 Zzznzils with respect to the fidelity model of parameter

€.

(b) If zzzn—zile < % then any probabilistic 0-bit entangle-

The proof to this theorem is postponed to Appendix A.

The situation for conditional fidelity is very different.

We present two useful facts about positive Operators. ompainis et al. proved that good protocols exist with high

used in the rest of the paper.

For two positive operator&a andB, we sayA dominates
B, if A— B is still a positive operator, and we write this as
A > B, or equivalentlyB < A.

Claim 3 For any positive super-operatdf and any posi-
tive operators A and B, if & B, thenZ(A) = Z£(B). [ |

This directly follows the fact that is linear and preserves
the positivity of operators: IA — B is a positive operator,
thenZ(A) — £(B) = E(A— B) is also a positive operator.

Claim 4 Letp ando be density matrices such that- a-
o, for some positive number a. For any POV{,}, let
pm = Tr(pEm) and and ¢, = Tr(cEn,) be the probabilities
the measurement result being m foand g, respectively.
Then we have p> a- gn. [ ]

This is obvious, since we haven —a-gm = Tr((p — a-
0)Em) > 0.

5.2 Bounds for the Fidelity Model

Ambainis et al. [1] proved that in the fidelity error
model of parameteg (which they called the “general er-
ror model”), the maximal fidelity of a protocol is 1

Zmz—,’nzkznz—ila. If the protocol has qubit pairs as inputk
perfect EPR pairs as auxiliary input, and outportgjubit
pairs. In a special case wheke= 0 (no auxiliary input)
andm= 1 (only one pair is output), the maximal fidelity is
1- an—flg < 1—¢/2. In other words, no “interesting” en-
tanglement distillation protocols exist for the fidelityrar

conditional fidelity In particular, the following result can
be easily derived from [1]:

Theorem 4 [1] For every n and s< n, there exists prob-
abilistic s-bit entanglement distillation protocols ofrudi-
tional fidelity 1 — 275/(1 — €) with respect to the fidelity
model of parameteg.

Proof’s sketch: Consider the “Simple Random Hash”
protocol in [1]. The original construction for this protdco
in [1] has(2n+ 2) bits of two-way communication. But a
close examination reveals that 1 bit of one-way communi-
cation suffices. In the original construction, Alice sends 2
bits to Bob to establish a common random string, which are
not needed for a probabilistic protocol. In the originalpro
tocol, Bob also sends 1 bit of his measurement result back
to Alice. This bit can also be eliminated in our model, since
we allow one player (normally Alice) to outputsUCC or
FAIL symbol at the end of the protocol. We then repeat the
simplified 1-bit protocol fors rounds sequentially, and ob-
tain ans-bit protocol of conditional fidelity - 275/(1—¢).

[ |

Notice that this protocol only consists of one-way commu-
nication. Also notice this protocol is ideal, in that if the
input is the perfect EPR pairB,, then the protocol always
succeeds.

Therefore, to achieve a conditional fidelity of-B, only
Iog(%) —log(1 - €) bits of communication is needed in the
fidelity error model. Next, we prove a lower bound on the
communication complexity.

Theorem 5 For any probabilistic s-bit protocol of ideal

model. Their result is tight, in that they also constructed success probability p, its conditional fidelity is at most

a protocol, namely the “Random Permutation Protocol”,

. . . . m__ ok n
which achieves a fidelity of + £% 52—¢.

1—gp/25+1 with respect to the fidelity model of parameter
E.



Immediately from the theorem, we obtain a a%g— B ep
Iog(%) — 1 lower bound on the communication complexity 25t1(1- 252518’ p)
for ideal protocols of conditional fidelity 4 8. In the usual 1_ sp/25+1
setting where is a constant, our lower bound matches the
upper bound from Theorem 4, up to an additive constant.  Now we prove thafy > p?/25. We analyze two cases
Interestingly, the theorem is proven for protocols thayonl separately: in case |, the stabg is the input to the protocol;
output 1 qubit pair. However, this lower bound matches the in case II, the statg}; is the input to the protocol. For each
upper bound of the Simple Random Hash protocol, which case, we keep track of the reduced density matrices of Alice
in fact outputs many qubit pairs. In this sense, the commu- 44 gob. In case |, we uséA andTL"B to denote the reduced
nication complexity is quite independent from the yield of density matrices of Alice and Bob after theth round:; in

IN

the EDPs. case Il, we userLI A andtL"B, respectively. Fok =0, we

. A _1B _Il.A I1,B . .
Proof: WLOG we assume the protocol only outputs one definethey™, 157, 15 ™, andt, ™ to be the density matrices
qubit pair. Consider a particular input state at the moment that protocol starts.

We give more definitions: after tHeth round, there are
po=(1 €)Pp+e- % ©) 2K possibi.lities depending onkthe fiﬂsbitﬁAcommur}igated.
For any binary string € {0,1}*, we useo;” (resp.c;’") to
denote the reduced density matrix of Alice (resp. Bob) after
thek-th round in case |, conditioned on that the fikgbits
) ) on communicated so far atg0],t[1],...,t[k— 1]. We usep! to
€). Notice thatF () = 5. So if we se€’ = -Z—¢&,then  genote the probability that this happens (that the Kiflsits
we haveF (p) = 1 &. We shall prove that no deterministic, aret[0],t[1], ...,t[k— 1]). Obviously we have! = pt|'0+ pt|_1
s-bit protocol has fidelity more than-12~(*Yepover state 4o, anyt € {0,1}%. Furthermore, we have the following
po, Which will imply that no probabilistic protocol can have equalities ’ '
fidelity more than -2~ (stDep, too.
We fix a deterministic protocaP. WLOG, we assume ptl 1 (12)
it proceeds irounds in each round, one of the two par- te {01}k
ties (Alice or Bob) applies a super-operafoto his or her

Itis a mixture of the perfect EPR paid, (with probability
1-¢') and the completely mixed staﬁg (with probability

share of qubits, and then sends one (classical) bit to the ptl 'OILA - TII<7A (13)
other party. The protocol consists sfrounds, with one te{o1}*
bit in each round. Finally, Alice outputs the special symbol z ptl _otl,B = rl'(vB (14)
determining if the protocol succeeds or fails. te{0,1}k

To analyze the behavior of the protoc®lover the input
Po, We consider how? behaves over stat, and state)y;, We definea; , ol 8, andp!! for case II, similarly.

respectively. We use (resp.q) to denote the probabilities We usef to denote the empty string. So we hqgie:
thatP succeeds over stat, (resp.E'zﬁ). Noticepis in fact p” 1
e = 1.

the ideal success probability of protoed! Then it is easy i .
One important observation is that when the protocol

to see that
starts, the reduced density matrices for Alice and Bob are
he reduced densi ices for Ali d Bob
. (1—¢€)p-Fe(P(Pp)) +€q- FC(@(%)) identical in both cases:
Fe(®? =
(#(po) (1-¢)p+eq IA_ IB_ lla_ lig_ |
(10) O =% =% =% =m (15)
Notice that we always have®(?(dp)) < 1. Sinceﬁ is a _ _
disentangled statd?(g'zﬁ) is also disentangled. When the protocol proceeds, the reduced density matri-

ces in two cases will become different, since the statés

c(p( L
By Lemma 1, we havé=*(?(5z)) < 1/2. We shall an entangled state, whil%ﬁ is not. However, they cannot

prove that differ “too far”, as we shall prove in the following lemma.
roof postponed to Appendix A).
a> /2 ay ~ (Proctpostronedio Append A

— k
which will imply that L|e21maléllAFor all k l_BO, 1, .l.l.,Bsf landte {0,1}% p -
o =0y andd-o{ <0 .
(1—¢)+¢p/2stt Now we are ready to prove (11). Afterbits are sent,
F(®(po)) < (1—¢)+¢ep/2s Alice will decide whether to succeed or fail. In case |,

10



we user; to denote the probability that Alice choose to
succeed conditioned on that the bits communicated are
t[0],t[1],...,t[s— 1]. Notice we havz—:ptI -0t|7A = ot”"A, and
thus by Lemma 4, we know that in case Il, the success prob-
ability is at IeastptI “TIt.

Therefore, we have

p = re- pl (16)
te{o1)s
a3 re-pl - (17)
te{0,1}s
which implies that
2
q > re- (o) (18)
te{0,1}s
1 12
> re |- re- (Pt ] (29)
2 (te(gl}s > LG(gl}s ( )
1 2
> 2—( > n-p!) (20)
te{0,1}s
P
= (21)
This proves the theorem. ]
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A Proofs to the Results in the Fidelity Model

Proof: [to Theorem 3,a] Our protocol is a modification of the random permutation peot of [1].
No-communication Random Permutation Protocol.

1. Using the shared random string, Alice and Bob generatdfaromy random permutatiom € Sy» andx; € {—1,1},
X2 € {-1,1}, .., xn € {-11}.

2. Alice and Bob apply the transformatibhmappingU|i) = (—1)%|m(i)) to their qubits.
3. They output the first EPR pair and trace out the rest.

Note that if they are given the perfect stétg, thenU @ U|®,) = P, and the output is a perfect EPR pair. If the starting
state is not perfect, then the first two steps “symmetrize” it

Claim 5 Letp be the mixed state obtained after the first two steps. Then,

P = Po| Pn)(Pn |+ p1p1+ P2p2 + P3P3

whereps is a uniform mixture of" states|i)|i), p2 is a uniform mixture oP"(2" — 1) states%(\ DD +10)1)), 1 #1, pais
a uniform mixture o2"(2" — 1) states%(“)\ D=1, j#iand m, p1, p2, ps € R.

!

Proof: We divide the transformation into two parts: = U"U’, Ui, = (—=1)%, U"]iy = |m(i)). Letp’ be the intermediate
DI IR T

density matrix after applying’. Then, the only nonzero entries@hare|i)|i){i|{i], |i
Leta,b,c,d be their values. Then, we can sgt=2"a, p1 = 2"(b—a), p» =2"(2"-1)(c+d), p3=2"(2"-1)(c—d). m

ApplyingU” after that makes all entries of each type equal.

We haveF (pg) = 1,F(p1) = 2—1,, andF (p2) = F(p3) = 0. We note that
1
Po-l-?plzlfﬁ (22)

because each of statdso U | P) has the same fidelity ag)) and fidelity is convex. We can rewrite (22)%?5—1 p1+p2+p3<
€.

Outputting the first EPR pair and tracing out the rest tramsépg into a state of fidelity 1p; into a state of fidelity 1/2
andp, andps into states of fidelitf 2"~ — 1) /2(2" — 1). Thus, the final fidelity is 1- 8,

51 +3-2“*1—1( N )<3-2"*1—18_§2“—2/38
I AT TR o B e R

Proof: [to Theorem 3,b] Let p be the mixture of ®,) (P, | with probability 1— 522:%18 and the completely mixed state in

2" x 2" dimensions with probabilit 22,,2!8. Since the perfect state has fidelity 1 and the completelgdstate has fidelity

5% this state has fidelity 4 €.

W.l.o.g., @ ho-communication protocol consists of Alicelgng Ua, Bob applyingUg and each of them outputting the
first qubit.

Let pa be the density matrix of Alice’s first qubit if she starts witer system in 2dimensional completely mixed state. As
any density matrix on one qubjfip has can be decomposed into mixture of two orthogonal oné-sfiattes (its eigenstates)

PA = A1| WaA) (WA | + A2 W) (Wa |

wherel1 » are the eigenvalues ph. Since eigenvalues of a density matrix must sum up to 1, wassumme thaX; = % +0a
and\, = 1 — 3a, 34 > 0. Let pg be the density matrix of Bob’s first qubit if he starts with Bigstem in 2-dimensional
completely mixed state. We defingsg), | Wg ), dg similarly. Letd = maxda,dg).
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Claim 6 If the starting state isb,,, the fidelity of the final state is at mdbt- &2.

Proof: W.l.o.g. assume tha&t= 0a.

Consider Alice’s part ofby,. It is the completely mixed state on Alice’S @imensional system. Therefore, Alice’s output
qubit will be in the statgpa. This means that the fidelity of the state output by Alice+Bwidl |00) + |11) is at most the
fidelity betweerpa and%l (density matrix of Alice’s part O%(\ 00) +|11))).

LetU be the unitary transformation that ma to | ya) and|1) to |Yx). Then,

F(pn51) = FU o 30 < F (23 5 )3)
(o Y T )

Claim 7 If the starting state is the completely mixed stat@dhdimensions, the fidelity of the final state is at m%)sts.

Proof: Since the completely mixed state is the tensor product ofptetaly mixed states of Alice and Bob, the final state
of output qubits igpa ® pe. This state is a mixture di) @ | '), where| ) (or | ') is one of| Pa) and|P4) (or | Pg) and
|Wg)) with probabilities(% + 6A)(% +dg).

Notice that

(|w>\ D+ WO W)

| Wa). Leta—|(L|JA|L|JB)\2 Then, the fidelity of statéspa) ® | Ug)
) and|Wx) ® | We) is 152, Therefore, the overall fidelity of the

1
ﬁ(\00> +]1D) =

for any one qubit statpp) In particular, we can takep)
and|yz) ® |Pg) is § and the fidelity of statega) ® |

%|

Wg
final state is
a/ 1 1 1- 1 1 1
> <(§+6A)(2+6B) ( - = *68 > — ( +6A)(2*68) (§ o )(§+5B)>
a/1l l-a/1 1/1 1
=-15 — | 5- == <> +0%
2<2+26A65>+ > (2 26A6B> 2<2+26A6B>4+6
[ ]
Therefore, the fidelity of the protocol g, is at most
22n ) 22n 1 ) 3 22n
(17—22n_18)(175) o1 (4+6) ~ 2z 1E (23)
If Alice and Bob share randomness, we can fix one valém randomness and také, andUg for thisr. The bound of
equation (23) applies for any particularTherefore, it also applies on the average over.all ]

Proof: [to Lemma 4] By induction. The base case is obvious. Now the inductive .c&onsider the situation at the end
of thek-th round. Suppose the firktbits sent are[0],t[1],...,t[k — 1]. WLOG we assume that in tH&+ 1)-th round, Alice
applies a super-operat@érto her share of qubits, and send oneadid Bob.

First we consider the density matrix for Alice. Notice thageneralais the result of the measurement fratn Therefore,

we can “split” £ into two positive super-operato# and;, such that

ool?) = ool (24)
Pt
|

Lo = Di.glA (25)
Pt

I1,A pt”O 1A

Fo(0r ©) = — Oro (26)
Il

Lol ?) = pt—.;ﬁ-ot';'i’* (27)
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Intuitively, £ corresponds to the case that 0 is sent, ancE; corresponds to the case tlaat 1 is sent.

By inductive hypothesis, we have
oo <ol " (28)

Combining (28), (24) and (26) with Claim 3 yields that

Il
Plo- o = Zo(pl - or”) = Folor ) = P or" < oy (29)
Combining (28), (25) and (27) with Claim 3 yields that
| LA I 1A ptl-l II A IIA
Pt1- 0yt = Fapt oY) 2 Eafal ) = pt|'| "Op1 201 (30)

Now we consider the reduced density matrix for Bob. In caeelgqubits between Alice and Bob are entangled. Therefore,
the bit Alice sends to Bob Carries some information aboustage. In terms of the density matrix, Bob’s reduced density

matrix will “split” from 0 Bto ot 0 ando Notice that Bob doesn’t perform any operation to his qulaitsl thus we have

te, P gl (3D
p!
In case I, the qubits between Alice and Bob are disentandledrefore, the bit sent by Alice carries no information atbo

Bob’s own state. Thus Bob’s reduced density matrix remainthanged. Thus we have

|B_pt0

Ot
pi

ol = gllB_glle (32)
By inductive hypothesis, we have
pl-o®=<a'® (33)
Combining (31), (32), and (33), we have
oo = pl-ot®=al®=ay® (34)
o = pl-ot®=al®=ayf (35)
[ |

So the inductive case is proved.

2We assume that Alice and Bob don't erase any informatiomduttie protocol.
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