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Abstract

Entanglement is an essential resource for quantum com-
munication and quantum computation, similar to shared
random bits in the classical world. Entanglement distil-
lation extracts nearly-perfect entanglement from imperfect
entangled state. The classical communication complexity of
these protocols is the minimal amount of classical informa-
tion that needs to be exchanged for the conversion. In this
paper, we focus on the communication complexity of proto-
cols that operate withincomplete information, i.e., where
the inputs are mixed states and/or prepared adversarially.

We consider three models of imperfect entanglement,
namely, the bounded measurement model, the depolariza-
tion model, and the fidelity model. We describe there mod-
els as well as the motivations for studying them. For the
bounded measurement model and the depolarization model,
we prove tight and almost-tight bounds on the output qual-
ity of non-interactive protocols. For the fidelity model we
prove a lower bound that matches the upper bound given by
Ambainis et al., and thus completely characterizes commu-
nication complexity of entanglement distillation protocols
for this model. Our result also suggests the optimality of
the BB84 protocol in terms of communication complexity.

We emphasize that although some of the results appear
intuitively straightforward, their proofs are not. In fact, two
novel techniques are developed for proving these results.
We believe that these techniques are of independent inter-
ests, too.

1 Introduction

Communication complexity studies the amount of com-
munication needed to solve a certain computational prob-
lem [60, 31]. Communicating quantum bits instead of
classical bits can decrease the amount of communication
needed [16, 51, 52]. Besides new solutions to classical�Institute for Advanced Studies,ambainis@ias.edu.
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problems, quantum world also brings new open problems
to communication complexity.

Entanglement distillation is a widely studied problem
in quantum information theory. Entanglement Distillation
Protocols (EDPs) are two-party protocols between Alice
and Bob that take as input imperfectly entangled quantum
states, and output near-perfect EPR pairs. In such protocols,
Alice and Bob are allowed to perform local quantum opera-
tions and classical communications. However, they are not
allowed to communicate in a quantum channel. Protocols
of this type are called “LOCC protocols,” for “Local Oper-
ation Classical Communication.” For LOCC protocols, it is
natural to ask what the communication complexity of these
tasks is, i.e., how much information Alice and Bob need to
exchange in order to produce near-perfect EPR pairs. Also,
it is interesting to consider the trade-off between the amount
of communication and the quality of the output.

Entanglement distillation protocols are closely related to
a number of areas. We discuss some of these related areas,
as well as how the communication complexity of EDPs are
related in these areas.

Understanding Entanglement Entanglement, and par-
ticularly in the form of Einstein-Podolsky-Rosen pairs [18]
(EPR pairs), is probably the most important phenomenon
in quantum information theory, with exciting applications
such as teleportation [6] and superdense coding [11]. Re-
searchers have long trying to understand entanglement, and
in particular, thequantificationof entanglement. Given an
entangled stateρ, how muchentanglement does it have?
Among the various proposes is the concept ofdistillable en-
tanglement[10, 44], which is defined to be the asymptotic
ratio of number of EPR pairs “distillable” fromn copies of
ρ using the optimal entanglement distillation protocol ton.
A good understanding of EDPs, therefore, is essential for
understanding entanglement.

Fighting Decoherence Quantum states are notoriously
unstable and are easy to “decohere,” that is, that they in-
teract with the environment and become “corrupted.” This
can be a problem for, for example, teleportation, where Al-
ice and Bob need to maintain a large collection of shared
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EPR pairs before the teleportation starts, and imperfect EPR
pairs will result in unfaithful teleportation. Naturally,Alice
and Bob need to use EDPs to “extract” almost perfect EPR
pairs.

Understanding Quantum Error Correcting Codes
Quantum Error Correcting Codes (QECCs) are mecha-
nisms for systematically encoding quantum information
into “code-words”, so that if parts of a code-words are cor-
rupted, the original information can still be recovered by
decoding. It is desirable to design QECCs with low over-
head (the amount of redundancy added) that can tolerate a
high rate of noise. Initiated by Shor [56] and Steane [57],
the study of QECCs has become a very active area. Many
constructions are proposed [20, 32, 49], and many bounds
on the overhead of QECCs are known [17, 19, 54, 46, 47,
48]. Most of these bounds are proven using techniques
from classical error correcting codes and are only fornon-
degeneratecodes [20, 43]. On the other hand, much less is
known fordegeneratecodes, since they don’t have counter-
parts in classical error correction and novel techniques are
needed to prove bounds for them.

Quantum entanglement distillation protocols can be
viewed as an alternative to QECCs. Thanks to teleportation,
a collection of shared EPR pairs is equivalent to a quantum
channel. If Alice produces a number of EPR pairs and send
over Bob’s share through a noisy channel, they will share
imperfect EPR pairs. Next, Alice and Bob can use an en-
tanglement distillation protocol to distill perfect EPR pairs,
and then use the distiled EPR pairs to transmit quantum in-
formation by teleportation. In this way, EDPs can be used
to transmit quantum information reliably through a noisy
channel. This connection was first pointed out by Bennett
et al. [9], and later made more precise in [10]. Furthermore,
Bennett et al. [10] showed a correspondence between one-
way EDPs (where the communication is only from Alice to
Bob) and QECCs. They proved that every one-way EDP
implies a QECC that can tolerate the same noise rate, and
vice versa.

Because of the correspondence between QECCs and
EDPs, it is interesting to compare their efficiencies, and
in particular, if their overheads are preserved in the con-
version. We may measure the overhead of a QECC by
the difference between the code length and the message
length, and the overhead of EDPs is naturally measured
by the amount of communication. Unfortunately, the con-
version by Bennett et al. [10] does not preserve the over-
head. However, the overhead is preserved for a large class
QECCs, known as stabilizer codes [20]. See Nielsen and
Chuang [43, pp. 597]. Such an equivalence suggests that
the study of communication complexity of EDPs may pro-
vide more insights to the study of the bounds on QECCs, for
both degenerating codes and non-degenerating codes. As
a case in point, Leung et al. [32] considered a generaliza-

tion of QECCs, which they call “approximate quantum er-
ror correcting codes”, and showed that by relaxing the error
correction condition, more efficient codes can be designed.
This result, viewed from the perspective of the EDPs, sim-
ply corresponds to the trade-off between the amount of
communication and the output quality of these protocols,
which appears to be quite natural.

Understanding Quantum Key Distribution Consider
the Quantum Key Distribution protocol (QKD) by Bennett
and Brassard [5]. It is one of the very few results from
quantum information theory that currently enjoy practical
applications. See [4, 29, 39, 12, 13] for some experimental
results. There also have been a sequence of proofs of secu-
rity for such a protocol, with latter ones simplifying and/or
strengthening the former ones; see [38, 14, 35, 33, 15, 55].
Lo and Chau [35] were the first one that made a connection
from the key distribution protocols to EDPs, and the proof
was further simplified by Shor and Preskill [55]. While all
these studies focus on the security of such a protocol, they
seem not to be concerned with the communication complex-
ity, i.e., how efficient the BB84 protocol is in term of the
classical bits exchanged.

Interestingly, quantum key distribution protocols are
closely related to entanglement distillation protocols work-
ing in the so-called “fidelity noise model” (discussed later
in our paper). There exists a significant amount of simi-
larity between the definition of secure QKD protocols and
the definition of conditional EDPs for the fidelity model. In
particular, Lo and Chau and Shor and Preskill showed that
the BB84 protocol is in some sense “equivalent” to a spe-
cific EDP, such that the security of the BB84 protocol corre-
sponds to the “quality” of the EDP, and the communication
complexity of the BB84 protocol directly corresponds to the
communication complexity of the EDP. Therefore, an opti-
mality result for this entanglement distillation protocol(as
we shall show in this paper) implies that the BB84 protocol
is optimal in terms of communication complexity for proto-
cols.

1.1 Our Contributions

In this paper, we study the classical communication com-
plexity of EDPs withincomplete information. In this set-
ting, Alice and Bob don’t have the complete knowledge
about the input state they share. Rather, the input state is
a mixed state, or is adversarially prepared.

We also focus on theprecisecommunication complexity
of EDPs, rather than theirasymptoticbehavior. In fact, we
try to answer questions of the following fashion: “On this
particular input state class, how many bits of classical com-
munication are needed in order to just output asingleEPR
pair with certain quality?” We believe that it is important
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to understand the communication complexity in this case,
where the requirement appears to beminimal. Interestingly,
as we shall see later, answers to this minimal question al-
ready yield a lot of insights into the more general problem,
where Alice and Bob wish to generate EPR pairs of not only
high quality, but also of large quantity.

We consider various formulations of “imperfect EPR
pairs”, which we call “noise models”. We study the be-
havior of EDPs with different noise models and inputs. We
summarize our results here.

A tight bound for the bounded measurement mode.
In the bounded measurement model, Alice and Bob
originally sharen perfect EPR pairs, and thenr out of
thesen pairs are measured in the computational basis,
resulting in a mixed state1

2(j00ih00j + j11ih11j).
Alice and Bob have no information about which pairs
are measured and which are not, but they knowr. In
other words, the measured qubit pairs are adversarially
chosen. This is a simplified version of the noise model
typically used in quantum error correction, wherer
pairs are arbitrarily corrupted. We choose to study the
bounded measurement model since it is simpler for
analysis yet rich enough to yield interesting results.

We prove a tight upper bound on the output fidelity
(which measures the “quality” of a protocol) of non-
interactive protocols, i.e., ones where Alice and Bob
don’t communicate. More precisely, we prove that
maximal fidelity of a non-interactive protocol is at
most 1� r=2n. This is tight since there exists a very
simple protocol that achieves a fidelity of 1�r=2n. We
view this result as the first step towards understanding
EDPs for this model.

An almost tight bound for the depolarization model.
In the depolarization model, Alice generatesn EPR
pairs by herself, and then sends to Bob his share
over through a depolarization channel of parameterp,
which independently leave each qubit unchanged with
probability (1� p) and replace it with a completely
mixed state with probabilityp. It is a typical model
for “noisy channels”, and in particular was studied by
Bennett et al. [9, 10].

We prove an almost tight upper bound for non-
interactive protocols over this model. More precisely,
we show that any non-interactive protocol has maxi-
mal fidelity 1� p=2 in its output. This bound if almost
tight in that there exists a very simple protocol of out-
put fidelity 1�3p=4.

A complete characterization for the fidelity model. The
fidelity model is an adversarial noise model, where
the only information Alice and Bob have is that the
fidelity of their input state and the perfect EPR pairs

is 1� ε. Ambainis et al. [1], studied this model in
the name of “general error” model. This model was
also independently studied by Lo and Chau [35]
and Shor and Preskill [55] in proving security of the
BB84 quantum key distribution protocol, who showed
that the BB84 protocol is, in fact, an entanglement
distillation protocol for the fidelity model.

We present a complete characterization of EDPs over
the fidelity model. We prove an almost tight lower
bound (up to an additive constant) on the communica-
tion complexity of EDPs over the fidelity model. More
precisely, we prove that the maximal conditional fi-
delity of an EDP witht bits of communication is at
most 1�ε � p=2t+1, even if the EDP is only required to
output 1 qubit pair. Here,ε is the fidelity of the input
state,p is the probability that the EDP succeeds with
perfect EPR pairs, and the conditional fidelity is the fi-
delity of the EDP conditioned on it succeeding (we al-
low an EDP to fail in this case). Therefore, to achieve a
fidelity or 1�δ on the output, log(1=δ)+ log(ε � p)�1
bits of classical communication is needed. Compar-
ing the result from [1], which contains a protocol that
(with simple modification) uses log(1=δ)+ log(1� ε)
bits, our lower bound is tight up to an additive con-
stant (under the reasonable assumption that bothε
and p are constant). Our result implies that the “ran-
dom hashing” protocol by Ambainis et al. [1] optimal.
Since essentially the same protocol is used in the BB84
key distribution protocols, as pointed out by Lo and
Chau [35], the BB84 protocol is also optimal in terms
of communication complexity.

We stress that some of these results may seem intuitively
straightforward, their proofs do not appear so. In fact, in
order to prove these results, we need to develope two novel
techniques that might be interesting by themselves.

Alternative definition of fidelity We give an alternative
definition of the fidelity of a pure state and an EPR pair.
We first notice that an EPR pair (denoted byΦ+) is
the unique state that remains unchanged under a group
of operators. Then we show that for an arbitrary pure
statejφi, its “deviation” from this group of operators
is exactly the fidelity ofjφi andΦ+. See Lemma 3.

This technique is used to prove the two results for the
bounded measurement model and the depolarization
model. It is interesting to compare this technique to
the stabilizer formalism [21], where a state is defined
as the unique elements that is “stabilized” by a group
of operations, i.e., that is remains unchanged under
these operations. Our alternative definition suggests
that it may be interesting to consider states that are
“partially” stabilized as well.
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Analysis of protocols with mixed state input We intro-
duce a technique to analyze general LOCC protocols
with mixed states as input. Prior to our work, most of
the work on LOCC protocols only deal with pure states
as input. Having a pure state as input greatly simplifies
the analysis, since the Schmidt decomposition can be
used. Many researchers have used Schmidt decompo-
sition in their analysis, including Lo and Popescu [36],
Nielsen [41], Hayden and Winter [25], and Nayak and
Salzman [40]. Unfortunately this technique does not
work for mixed states, since Schmidt decomposition
is only for pure states. In fact, Lo and Chau proved
that for pure state inputs, one-way protocols are as
powerful as two-way protocols. On the other hand,
Bennett et al. [10] showed that for certain mixed state
inputs, two-way protocols are provable more powerful
than one-way protocols. These results shows a distinct
difference between pure state and mixed states.

Our technique, on the other hand, is designed to anal-
ysis protocols with mixed states as input. Roughly
speaking, our technique works as follows. We con-
sider both the reduced density matrix of Alice and
Bob. When Alice sends a classical bit to Bob, this
may cause Bob’s density matrix to “split”, since if Al-
ice and Bob’s states are entangled, then the bit sent by
Alice may carry some information about Bob’s state.1

Our technique keeps track of the splitting reduced den-
sity matrix pair as the protocol proceeds, and builds a
binary tree corresponding to the messages exchanged.
By maintaining an invariant when traversing the tree
of message history, we manage to prove our result. We
discuss this in Section 5.

1.2 Related Work

To the best of our knowledge, the study of entanglement
distillation protocols was initiated by Bennett et al. [8],
who considered the problems of producing perfect EPR
pairs from a large copy of identical pure states. From
then on, the problem of entanglement distillation was stud-
ied by a number of researchers from different perspec-
tives [9, 10, 27, 28, 44, 45, 50, 24]. All of which consider
the situation wheren identical copies of a state are given
as input to an LOCC protocol, which then outputsm EPR
pairs. They studied the asymptotic behavior ofm=n as n
approaches infinity.

Researchers also studied EDPs for a single copy of an ar-
bitrary pure state; see Vidal [58], Jonathan and Plenio [30],
Hardy [22], and Vidal et al. [59]. Much of the work was
built on the result of majorization by Nielsen [41], who is

1On the other hand, assuming that Alice and Bob don’t erase their in-
formation, if Alice and Bob’s input states are not entangled, then the bit
sent by Alice will not cause the split.

the first one that studied conditions under which one pure
state can be transformed into another one by LOCC. All the
work above assumes that Alice and Bob know the explicit
description of the state they share, and so they can actopti-
mally.

Relatively less work was done on studying EDPs with
incomplete information prior to this paper. See Bennett et
al [9, 10]. The fidelity noise model was independently stud-
ied by a number of researchers: Lo and Chau [35] and Shor
and Preskill [55] in proving security of the BB84 protocol;
Barnum et al. [2] in the study of “purity-testing protocols”
protocols; Ambainis et al. [1] in relating EDPs to classical
randomness extractors.

Researchers have also studied the classical commu-
nication complexity of other quantum tasks. Lo and
Popescu [37] observed that the “entanglement concentra-
tion protocol” in [8] does not require any classical com-
munication, while the “entanglement dilution protocol” re-
quiresO(n) bits of classical communication for producing
n copies of the “diluted” state. They also constructed a new
dilution protocol that only usesO(pn) bits of communica-
tion. This protocol was proven to be asymptotically opti-
mal by Hayden and Winter [25], and Harrow and Lo [23].
Lo [34] studied the communication complexity for Alice
and Bob to jointlypreparea large number of copies of ar-
bitrary (known) pure states, and proved an non-trivial upper
bound. All the results above focus on a relatively simple sit-
uation, where the input aren copies of a known pure state,
and almost all are asymptotic results.

2 Notations and Definitions

All logarithms are base-2. We identify an integer with
the 0-1 vector obtained from its binary representation. For
a vectorv, we write v[ j] to denote itsj-th entry. For 0-1
vectorx, we denote itsHamming weightby jxj, which is the
number of 1’s inx. For binary stringsx andy, we usex;y to
denote theconcatenationof these two strings.

Throughout the paper we are interested in finite, bipar-
tite, symmetric quantum systems shared between Alice and
Bob. We identify a “ket”jφi with a unit column vector.
We assume there exists a canonical computational basis
for any finite Hilbert space of dimensionN, and we de-
note it by fj0i; j1i; :::; jN� 1ig. We use superscripts to
indicate which “side” a qubit or an operation belongs to.
For example, a general bipartite statejϕi can written asjϕi= ∑i; j αi j j iiAj jiB.

There are 4Bell states for a pair of qubits shared
between Alice and Bob, and we denote them asΦ+ =

1p
2
(j0iAj0iB+ j1iAj1iB), Φ� = 1p

2
(j0iAj0iB�j1iAj1iB),

Ψ+ = 1p
2
(j0iAj1iB+ j1iAj0iB), andΨ� = 1p

2
(j0iAj1iB�j1iAj0iB).
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We denote the state(Φ+)
n, which representsn perfect
EPR pairs, byΦn. We also abuse the notation to useΦn to
denoteboth the vectorΦn and its density matrixjΦnihΦnj,
when there is no danger of confusion.

The Pauli MatricesX, Y, andZ are unitary operations
over a single qubit defined as

X(αj0i+βj1i) = βj0i+αj1i
Y(αj0i+βj1i) = iβj0i� iαj1i
Z(αj0i+βj1i) = αj0i�βj1i

We useI to denote the identity operator.
For a unitary operatorU , we can write it in a matrix form

under the computational basis. Then we define itsconju-
gate, U�, to the entry-wise conjugate ofU . ClearlyU� is
still a unitary operation. Anerror modelis simply a set of
bipartite (mixed) states, and is often denoted byM . We say
a stateρ is consistentwith M , if ρ 2 M .

Fidelity is a measure of closeness between quantum
states which we use to measure the quality of the out-
put of an EDP. For two mixed statesρ and σ in the
same Hilbert space their fidelity is defined asF(ρ;σ) =
Tr2(pρ1=2σρ1=2). If σ = jϕihϕj is a pure state, the defi-
nition simplifies toF(ρ; jϕihϕj) = hϕ jρjϕi. A special case
is whenjϕi = Φn for somen, such thatρ andΦn have the
same dimension. In this case, we call the fidelity ofρ andjϕi the fidelity of stateρ, and the definition simplifies to
F(ρ) = hΦn jρjΦni.

We are often interested in the fidelity of two states of un-
equal dimensions, and in particular, the fidelity of a general
stateρ and the Bell stateΦ+. Then, we define thebase
fidelity of ρ to be the fidelity of the state obtained by trac-
ing out all but the first qubit pair ofρ. We denote the base
fidelity of ρ by eF(ρ).

It is easy to verify that the fidelity is linear with respect
to ensembles, so long as one of the inputs is a pure state.

Claim 1 If ρ is the density matrix for a mixed state that is
an ensemblefpi; jφiig, andσ is the density matrix of a pure
state, then we have F(ρ;σ) = ∑i pi �F(jφiihφi j;σ).

The fidelity is also monotone with respect to trace-
preserving operations [43].

Claim 2 For any statesρ and σ and any trace-preserving
operatorE , we have F(E(ρ);E(σ)) � F(ρ;σ).

One useful fact about fidelity is that any completely dis-
entangled state has base fidelity at most 1=2.

Lemma 1 If ρ is a completely disentangled state, theneF(ρ)� 1=2.

Proof: By the definition of base fidelity, we may assume
thatρ has dimension 2. By Claim 1, we only need to con-
sider the case thatρ is a pure statejφihφj. Sincejφi is dis-
entangled, we may write it asjφi= (α0j0i+α1j1i)
 (β0j0i+β1j1i)
Then a direct calculation reveals thateF(jφihφj) = 1

2
jα0β0+α1β1j2= 1

2

�jα0j2jβ0j2+ jα1j2jβ1j2+α0β0α�
1β�1+α�

0β�0α1β1
�� 1

2

�jα0j2jβ0j2+ jα1j2jβ1j2+ jα0β�1j2+ jα1β�0j2�= 1
2
;

where the inequality is due to Cauchy-Schwartz.

2.1 Entanglement Distillation Protocols

We often denote an entanglement distillation protocol by
P . The protocol starts with a mixed stateρ shared between
Alice and Bob. Alice and Bob can have their private an-
cillary qubits, originally all initialized toj0i. A protocol is
either deterministic or probabilistic. Fordeterministicpro-
tocols, Alice and Bob don’t share any initial random bits;
for probabilistic protocols, Alice and Bob share a (classi-
cal) random string. We say a protocolP is a t-bit protocol,
if there aret bits of (classical) communication during the
protocol. We don’t allow protocols to have any initial en-
tanglement as auxiliary inputs, nor do we allow quantum
channels between Alice and Bob.

An the end of a protocol, both parties outputm qubits,
which form the output of the protocol. Ifσ is the density
matrix of the output of protocolP on inputρ, we write it as
P (ρ) = σ. For an entanglement distillation protocolP , we
define itsfidelitywith respect to an error modelM , denoted
by FM (P ), to be the minimal fidelity of its output over all
input states consistent withM . I. e.,

FM (P ) = min
ρ2M

F(P (ρ)) (1)

In the fidelity error model (Section 5), we allow protocols
to fail with some probability. (As shown in [1], this is nec-
essary for having good output fidelity in this model.) In this
case, Alice also outputs a special symbol (either aSUCC or
aFAIL). Thesuccess probabilityof a protocolP over an in-
put stateρ is the probability that Alice outputsSUCC at the
end of the protocol, and we write this asPSUCC

P
[ρ]. Theideal

success probabilityof a protocolP is its success probabil-
ity over the ideal inputΦn. We say a protocol isideal, if its
ideal success probability is 1.
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If τ is the density matrix of the output of protocolP on
input ρ, conditioned onthat Alice outputsSUCC, then we
call τ the conditional outputof protocolP , and write this
asP c(ρ) = τ. We define theconditional fidelityto be the
minimal fidelity of its conditional output:

Fc
M
(P ) = min

ρ2M

F(P c(ρ)) (2)

When the error modelM is clear from the context, it is
often omitted.

3 The Bounded Measurement Model

We prove an upper bound on the fidelity of 0-bit EDPs
with respect to the bounded measurement error model.

In the bounded measurement model, the input state of
EDP consists ofn EPR pairsr of which have been mea-
sured. That is, the input state isjφvi=Nn�1

j=0 jφ ji, wherejφ ji=8<: j0iAj0iB if v[ j] = 0j1iAj1iB if v[ j] = 1
Φ+ if v[ j] = �

andv 2 f0;1;�gn. The statejφvi is called anerror state,
wherev is called itserror indicator vector. The degree of
v, denoted by deg(v), is the number ofi’s in f1; : : : ;Ng for
which vi 6= �. The error model for the bounded measure-
ment model, denoted byM m

n;r , is defined to be

M
m
n;r = fjφvi j deg(v) = rg (3)

An n-dimensional 0-1 vectorx is consistentwith a binary
indicator vectorv, if x[ j] = v[ j] for all j such thatv[ j] 6= �.
We write this asxv v. For anyv of degreer, there are 2n�r

0-1 vectorsx consistent withv. It is not hard to verify thatjφvi= 1

2(n�r)=2 ∑
xvv

jxiAjxiB (4)

3.1 Two Useful Lemmas

We prove two lemmas that would be useful for the proofs
in this paper. Both lemmas are about how much “deviation”
a quantum state undergoes when applied various unitary op-
erations.

First, we consider the “deviation” of an arbitrary pure
state under the operationsfI ;X;Y;Zg over its first qubit. We
have the following lemma:

Lemma 2 Let jφi and jψi be two pure states of the same
dimension, not necessarily bipartite. Let I, X, Y , and Z be
the unitary operations over the first qubit ofjφi. Then we
have

∑
U2fI ;X;Y;Zg jhφ jU jψij2 � 2 (5)

Proof: We write jφi = α0j0ijφ0i+α1j1ijφ1i andjψi =
β0j0ijψ0i+β1j1ijψ1i

Then we havehφ jI jψi = α�
0β0hφ0 jψ0i+α�

1β1hφ1 jψ1ihφ jXjψi = α�
1β0hφ1 jψ0i+α�

0β1hψ0 jφ1ihφ jYjψi = �iα1β�0hφ1 jψ0i+ iα0β�1hφ0 jψ1ihφ jZjψi = α�
0β0hφ0 jψ0i�α�

1β1hφ1 jψ1i
Therefore

∑
U2fI ;X;Y;Zg jhφ jU jψij2= 2jα0β0j2jhφ0 jψ0ij2+2jα1β1j2jhφ1 jψ1ij2+
2jα0β1j2jhφ0 jψ1ij2+2jα1β0j2jhφ1 jψ0ij2� 2jα0j2jβ0j2+2jα1j2jβ1j2+
2jα0j2jβ1j2+2jα1j2jβ0j2= 2(jα0j2+ jα1j2)(jβ0j2+ jβ1j2)= 2

An immediate corollary is

Corollary 1 Let jφi be a pure sate. We have
∑U2fI ;X;Y;Zg jhφ jU jφij2 � 2.

Next, we consider quantum states and operations over
bipartite systems. In particular, we study the “deviation”
of a general bipartite state under unitary operations of the
form U 
U�. We interpretU 
U� as Alice appliesU to
her first qubit and Bob appliesU� to his first qubit. Again,
we considerU 2 fI ;X;Y;Zg.

We have the following lemma.

Lemma 3 Let jφi be a pure state in a bipartite system
shared between Alice and Bob. Let I, X
X�, Y
Y�, and
Z
Z� be the unitary operations over the first All these 4
operations work on the first qubit of Alice and the first qubit
of Bob. Then we have

∑
U2fI ;X;Y;Zghφ jU 
U�jψi= 4eF(jφi) (6)

Proof: We first consider how the Bell states behave under
these unitary operations. It is easy to verify the result, which
we compile into the following Table 3.1.

It is easy to see that the stateΦ+ is invariant under any of
the 4 operations, while other Bell states will change their
signs under some operations.

Notice the 4 Bell states form an orthonormal basis for
a bipartite system of 2 qubits. We decomposejφi into the
Bell basis and writejφi=α0Φ+
jψ0i+α1Φ�
jψ1i+α2Ψ+
jψ2i+α3Ψ�
jψ3i
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state Φ+ Φ� Ψ+ Ψ�
I 
 I� Φ+ Φ� Ψ+ Ψ�
X
X� Φ+ -Φ� Ψ+ -Ψ�
Y
Y� Φ+ -Φ� -Ψ+ Ψ�
Z
Z� Φ+ Φ� -Ψ+ -Ψ�

Table 1. The Bell States under operators

where∑3
j=0 jα j j2 = 1. Therefore we havehφ jφi = jα0j2+ jα1j2+ jα2j2+ jα3j2hφ j(X
X�)jφi = jα0j2�jα1j2+ jα2j2�jα3j2hφ j(Y
Y�)jφi = jα0j2�jα1j2�jα2j2+ jα3j2hφ j(Z
Z�)jφi = jα0j2+ jα1j2�jα2j2�jα3j2

and thus hφ jφi + hφ j(X 
 X�)jφi + hφ j(Y 
 Y�)jφi +hφ j(Z
Z�)jφi= 4jα0j2 = 4eF(jφi).
Lemma 3 in fact gives an alternative definition of the

base fidelity of a pure state.
We prove that the fidelity of 0-bit EDPs for the bounded

measurement error model is at most 1� r=2n, even if the
protocols are only required to output one qubit-pair. Notice
that fidelity is monotone. Therefore if no protocol can out-
put a single qubit pair of fidelity at least 1� r=2n, then no
protocol can output multiple qubit pairs of fidelity at least
1� r=2n.

Theorem 1 For any probabilistic 0-bit protocolP that out-
puts one qubit pair, we have F(P ) � 1� r

2n with respect to
the bounded measurement model.

Notice that there exists a very simple probabilistic 0-bit pro-
tocol of fidelity 1� r

2n: Alice and Bob use their shared ran-
dom string to uniformly pick an EPR pair and output it. If
this pair is measured, (which happens with probabilityr=n),
the fidelity is 1/2, and otherwise it is 1. So the overall fi-
delity is exactly 1� r=2n and thus our upper bound is tight.

Proof: We consider a slightly different error model, where
a random rout of n EPR pairs are measured. This corre-
sponds to the density matrix

ρ = 1

2n
�n

r

� ∑
v:degv=r

jφvihφvj
Notice that this is the “average case” version of the bounded
measurement model. Thus if we prove an upper bound on
the fidelity ofP overρ, then it is also an upper bound with
respect to the bounded measurement model.

We shall prove that nodeterministic0-bit protocol can
have a fidelity higher than 1� r=2n if ρ is the input. Then,
we conclude that no probabilistic protocol can have a fi-
delity higher than 1� r=2n, too, since fidelity is linear.

Notice P is non-interactive, we can model it as Alice
and Bob both applying a unitary operation to their share of
qubits, outputs the first qubit and discard the rest.

Suppose the unitary operators of Alice and Bob areUA

andUB. We denote the states under these operations by
UAjxi �! jφxi andUBjxi �! jψxi.

Notice that we use “�!” instead of “=” since we allow
Alice and Bob to use ancillary bits. Clearly, the vectorsfjφxigx are orthonormal, and so are the vectorsfjψxigx.

We shall prove that

1

2r
�n

r

� ∑
degv=r

h[eF((UA
UB)jφvihφvj(UA
UB)†)i� 1� r
2n

;
(7)

which shall imply Theorem 1.
By Lemma 3, (7) is equivalent to

∑
degv=r

"
∑

U2fI ;X;Y;Zghφv j(UA
UB)†(U
U�)(UA
UB)jφvi#� 2r
�

n
r

� �4(1� r
2n

)
We expand the left hand side: Notice that(UA
UB)jφvi= 1

2(n�r)=2 ∑
xvv

jφxijψxi
wherexv v if x is consistentwith v (that is, if x[ j] = v[ j]
for all j such thatv[ j] 6= �).

Therefore, we havehφv j(UA
UB)†(U
U�)(UA
UB)jφvi= 1
2n�r ∑

xvv
∑
yvv

hφx jU jφyi � hψx jU�jψyi
for any unitary operationU . So we only need to prove that

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zghφx jU jφyi�hψx jU�jψyi� 2n

�
n
r

� �4(1� r
2n

)
However, by Cauchy-Schwartz, we have

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zghφx jU jφyi � hψx jU�jψyi�  

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zg jhφx jU jφyij2! 1

2 � 
∑

degv=r
∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zg jhψx jU�jψyij2! 1

2
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Next, we estimate the terms on the right hand side:

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zg jhφx jU jφyij2= ∑

x
∑
y

∑
U2fI ;X;Y;Zg jhφx jU jφyij2 ∑

degv=r : x1vv^x2vv
1

Notice that sincejφxi’s are all orthonormal, we have
∑y jhφx jU jφyij2 � 1 for all x’s. Thus

∑
x

∑
y

∑
U2fI ;X;Y;Zg jhφx jU jφxij2 � 2n+2

For anyx andy, we have

∑
degv=r : xvv^yvv

1=� n�jx�yj
n� r�jx�yj�

The reason is simple: the only freedom forv is where to put
the(n� r) �’s. But for every positionk such thatx[k] 6= y[k],
we have to havev[k] = �. Then we still have(n� r�jx�yj)�’s we can put anywhere. So ifx 6= y,

∑
degv=r : xvv^yvv

1�� n�1
n� r�1

�
Also notice that by Lemma 2, we have
∑U2fI ;X;Y;Zg jhφx jU jφxij2 � 2 for anyx.

Putting things together, we have

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zg jhφx jU jφyij2� �

n
r

� �∑
x

∑
U2fI ;X;Y;Zg jhφx jU jφxij2++�n�1

r�1

� �∑
x6=y

∑
U2fI ;X;Y;Zg jhφx jU jφyij2= ��

n
r

���n�1
r�1

�� �∑
x

∑
U2fI ;X;Y;Zg jhφx jU jφxij2+�

n�1
r�1

� �∑
x

∑
y

∑
U2fI ;X;Y;Zg jhφx jU jφyij2= ��

n
r

���n�1
r�1

�� �2n+1+�n�1
r�1

� �2n+2= 2n+2
�

n
r

�(1� r
2n

)
Similarly, we have

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zg jhψx jU�jψyij2� 2n+2

�
n
r

�(1� r
2n

)
too.

Thus we have

∑
degv=r

∑
xvv

∑
yvv

∑
U2fI ;X;Y;Zghφx jU jφyi � hψx jU�jψyi� 2n+2

�
n
r

�(1� r
2n

)
which proves the theorem.

4 The Depolarization Model

We prove an upper bound on the fidelity of 0-bit EDPs
with respect to the depolarization model.

We first describe the depolarization channel. A depolar-
ization channelD of parameterp is a super-operator defined
as [43]

D(ρ) = (1� p) �ρ+ p � I
2

In other words, this channel behaves in the follow-
ing manner: with probability(1� p), it keeps the state
untouched, and with probabilityp, it replaces that with
the completely mixed state. After passing the second
qubit through this channel, the stateΦ+ becomes a mixed
stateρp =(1� 3p

4 )jΦ+ihΦ+j+ p
4 (jΦ�ihΦ�j+ jΨ+ihΨ+j+jΨ�ihΨ�j).

The depolarization error model ofn qubit pairs and
parametern, denoted asM d

n;p, consists of a single state:

M d
n;p = fρ
n

p g.
We prove that the maximal fidelity of 0-bit EDPs for the

depolarization error model is 1� p=2, even if the protocols
are only required to output one qubit-pair.

Theorem 2 For any probabilistic 0-bit protocolP that out-
puts one qubit pair, we have F(P ) � 1� p

2 with respect to
the depolarization model.

There exists a very simple deterministic 0-bit protocol that
has fidelity 1� 3p

4 : Alice and Bob simply output the first
qubit pair. It is very easy to verify that the fidelity of this
protocol is 1� 3p

4 . Therefore the bound in the theorem is
almost-tight (up to a constant factor).

The proof to Theorem 2 is very similar to that to Theo-
rem 1, except that it is more complicated. We omit the proof
due to space limitations.

5 The Fidelity Model

We study the communication complexity of EDPs with
respect to the fidelity error model.

First, we give the definition of the fidelity error model.
For a bipartite system ofn qubit pairs, we define the fidelity

8



error model of parameterε to be the set of all bipartite sys-
tems of fidelity at least 1� ε. We denote the error model
by

M
f
n;ε = fρ jF(ρ)� 1� εg (8)

Notice that this error model is very different from the two
previous models we studied, since it provides much less in-
formation than the previous one. As a comparison, notice
that in the bounded measurement model, all the error states
have fidelity 1=2r , and in the depolarization model, the fi-
delity of the input is(1�3p=4)n, both are very small. How-
ever, Alice and Bob have the additional information about
thestructureof the input states, and are able to use the in-
formation to do very well.

5.1 Two Useful Facts About Positive Operators

We present two useful facts about positive operators.
used in the rest of the paper.

For two positive operatorsA andB, we sayA dominates
B, if A�B is still a positive operator, and we write this as
A� B, or equivalently,B� A.

Claim 3 For any positive super-operatorE and any posi-
tive operators A and B, if A� B, thenE(A)� E(B).
This directly follows the fact thatE is linear and preserves
the positivity of operators: IfA�B is a positive operator,
thenE(A)�E(B) = E(A�B) is also a positive operator.

Claim 4 Let ρ andσ be density matrices such thatρ � a �
σ, for some positive number a. For any POVMfEmg, let
pm = Tr(ρEm) and and qm = Tr(σEm) be the probabilities
the measurement result being m forρ and σ, respectively.
Then we have pm� a �qm.

This is obvious, since we havepm� a � qm = Tr((ρ� a �
σ)Em)� 0.

5.2 Bounds for the Fidelity Model

Ambainis et al. [1] proved that in the fidelity error
model of parameterε (which they called the “general er-
ror model”), the maximal fidelity of a protocol is 1�
2m�2k

2m
2n

2n�1ε. If the protocol hasn qubit pairs as input,k
perfect EPR pairs as auxiliary input, and outputsm qubit
pairs. In a special case wherek = 0 (no auxiliary input)
andm= 1 (only one pair is output), the maximal fidelity is
1� 2n

2n�1
ε
2 < 1� ε=2. In other words, no “interesting” en-

tanglement distillation protocols exist for the fidelity error
model. Their result is tight, in that they also constructed
a protocol, namely the “Random Permutation Protocol”,

which achieves a fidelity of 1� 2m�2k

2m
2n

2n�1ε.

One can modify this protocol to eliminate communica-
tion. The resulting protocol has fidelity about 1� 3

4ε (there-
fore communication almost doesn’t help at all in this case).
We also have a lower bound that matches the protocol up to
exponentially small terms.

Theorem 3 (a) There exists a probabilistic 0-bit entan-

glement distillation protocol of fidelity1� 3
4

2n� 2
3

2n�1 ε
with respect to the fidelity model of parameterε.

(b) If 22n

22n�1
ε � 1

2, then any probabilistic 0-bit entangle-
ment distillation protocol has fidelity at most1�
3
4

22n

22n�1
ε with respect to the fidelity model of parameter

ε.

The proof to this theorem is postponed to Appendix A.

The situation for conditional fidelity is very different.
Ambainis et al. proved that good protocols exist with high
conditional fidelity. In particular, the following result can
be easily derived from [1]:

Theorem 4 [1] For every n and s< n, there exists prob-
abilistic s-bit entanglement distillation protocols of condi-
tional fidelity 1� 2�s=(1� ε) with respect to the fidelity
model of parameterε.

Proof’s sketch: Consider the “Simple Random Hash”
protocol in [1]. The original construction for this protocol
in [1] has(2n+2) bits of two-way communication. But a
close examination reveals that 1 bit of one-way communi-
cation suffices. In the original construction, Alice sends 2n
bits to Bob to establish a common random string, which are
not needed for a probabilistic protocol. In the original pro-
tocol, Bob also sends 1 bit of his measurement result back
to Alice. This bit can also be eliminated in our model, since
we allow one player (normally Alice) to output aSUCC or
FAIL symbol at the end of the protocol. We then repeat the
simplified 1-bit protocol fors rounds sequentially, and ob-
tain ans-bit protocol of conditional fidelity 1�2�s=(1�ε).
Notice that this protocol only consists of one-way commu-
nication. Also notice this protocol is ideal, in that if the
input is the perfect EPR pairsΦn, then the protocol always
succeeds.

Therefore, to achieve a conditional fidelity of 1�δ, only
log(1

δ )� log(1� ε) bits of communication is needed in the
fidelity error model. Next, we prove a lower bound on the
communication complexity.

Theorem 5 For any probabilistic s-bit protocol of ideal
success probability p, its conditional fidelity is at most
1� εp=2s+1 with respect to the fidelity model of parameter
ε.
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Immediately from the theorem, we obtain a log(1
δ )�

log(1
ε )�1 lower bound on the communication complexity

for ideal protocols of conditional fidelity 1�δ. In the usual
setting whereε is a constant, our lower bound matches the
upper bound from Theorem 4, up to an additive constant.
Interestingly, the theorem is proven for protocols that only
output 1 qubit pair. However, this lower bound matches the
upper bound of the Simple Random Hash protocol, which
in fact outputs many qubit pairs. In this sense, the commu-
nication complexity is quite independent from the yield of
the EDPs.

Proof: WLOG we assume the protocol only outputs one
qubit pair. Consider a particular input state

ρ0 = (1� ε0)Φn+ ε0 � I
22n (9)

It is a mixture of the perfect EPR pairsΦn (with probability
1� ε0) and the completely mixed stateI

22n (with probability

ε0). Notice thatF( I
22n ) = 1

22n . So if we setε0 = 22n

22n�1
ε, then

we haveF(ρ) = 1�ε. We shall prove that no deterministic,
s-bit protocol has fidelity more than 1�2�(s+1)εp over state
ρ0, which will imply that no probabilistic protocol can have
fidelity more than 1�2�(s+1)εp, too.

We fix a deterministic protocolP . WLOG, we assume
it proceeds inrounds: in each round, one of the two par-
ties (Alice or Bob) applies a super-operatorE to his or her
share of qubits, and then sends one (classical) bit to the
other party. The protocol consists ofs rounds, with one
bit in each round. Finally, Alice outputs the special symbol,
determining if the protocol succeeds or fails.

To analyze the behavior of the protocolP over the input
ρ0, we consider howP behaves over stateΦn and state I

22n ,
respectively. We usep (resp.q) to denote the probabilities
thatP succeeds over stateΦn (resp. I

22n ). Noticep is in fact
the ideal success probability of protocolP . Then it is easy
to see that

Fc(P (ρ0)) = (1� ε0)p �Fc(P (Φn))+ ε0q �Fc(P ( I
22n ))(1� ε0)p+ ε0q

(10)
Notice that we always haveFc(P (Φn)) � 1. Since I

22n is a

disentangled state,P ( I
22n ) is also disentangled.

By Lemma 1, we haveFc(P ( I
22n )) � 1=2. We shall

prove that

q� p2=2s; (11)

which will imply that

F(P (ρ0)) � (1� ε0)+ ε0p=2s+1(1� ε0)+ ε0p=2s

= 1� ε0p
2s+1(1� 2s

2s�1ε0p)� 1� εp=2s+1

Now we prove thatq � p2=2s. We analyze two cases
separately: in case I, the stateΦn is the input to the protocol;
in case II, the stateI

22n is the input to the protocol. For each
case, we keep track of the reduced density matrices of Alice

and Bob. In case I, we useτI;A
k andτI;B

k to denote the reduced
density matrices of Alice and Bob after thek-th round; in

case II, we useτII ;A
k andτII ;B

k , respectively. Fork = 0, we

define theτI;A
0 , τI;B

0 , τII ;A
0 , andτII ;B

0 to be the density matrices
at the moment that protocol starts.

We give more definitions: after thek-th round, there are
2k possibilities depending on the firstk bits communicated.

For any binary stringt 2 f0;1gk, we useσI;A
t (resp.σI;B

t ) to
denote the reduced density matrix of Alice (resp. Bob) after
thek-th round in case I, conditioned on that the firstk bits
communicated so far aret[0]; t[1]; :::; t[k�1]. We usepI

t to
denote the probability that this happens (that the firstk bits
aret[0]; t[1]; :::; t[k�1]). Obviously we havepI

t = pI
t;0+ pI

t;1

for any t 2 f0;1gk. Furthermore, we have the following
equalities

∑
t2f0;1gk

pI
t = 1 (12)

∑
t2f0;1gk

pI
t �σI;A

t = τI;A
k (13)

∑
t2f0;1gk

pI
t �σI;B

t = τI;B
k (14)

We defineσII ;A
t , σII ;B

t , andpII
t for case II, similarly.

We useξ to denote the empty string. So we havepI
ξ =

pII
ξ = 1.

One important observation is that when the protocol
starts, the reduced density matrices for Alice and Bob are
identical in both cases:

σI;A
ξ = σI;B

ξ = σII ;A
ξ = σII ;B

ξ = I
2n (15)

When the protocol proceeds, the reduced density matri-
ces in two cases will become different, since the stateΦn is
an entangled state, whileI

22n is not. However, they cannot
differ “too far”, as we shall prove in the following lemma.
(proof postponed to Appendix A).

Lemma 4 For all k = 0;1; :::;s� 1 and t 2 f0;1gk, pI
t �

σI;A
t � σII ;A

t and pIt �σI;B
t � σII ;B

t .

Now we are ready to prove (11). Afters bits are sent,
Alice will decide whether to succeed or fail. In case I,

10



we usert to denote the probability that Alice choose to
succeed conditioned on that the bits communicated are
t[0]; t[1]; :::; t[s� 1]. Notice we havepI

t �σI;A
t � σII ;A

t , and
thus by Lemma 4, we know that in case II, the success prob-
ability is at leastpI

t � rt .
Therefore, we have

p = ∑
t2f0;1gs

rt � pI
t (16)

q � ∑
t2f0;1gs

rt � pI
t � pI

t (17)

which implies that

q � ∑
t2f0;1gs

rt ��pI
t

�2
(18)� 1

2s

 
∑

t2f0;1gs

rt

! �" ∑
t2f0;1gs

rt ��pI
t

�2
#

(19)� 1
2s

 
∑

t2f0;1gs

rt � pI
t

!2

(20)= p2

2t (21)

This proves the theorem.
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A Proofs to the Results in the Fidelity Model

Proof: [to Theorem 3,a] Our protocol is a modification of the random permutation protocol of [1].
No-communication Random Permutation Protocol.

1. Using the shared random string, Alice and Bob generate a uniformly random permutationπ 2 S2n andx1 2 f�1;1g,
x2 2 f�1;1g, : : :, x2n 2 f�1;1g.

2. Alice and Bob apply the transformationU mappingU j ii= (�1)xi jπ(i)i to their qubits.

3. They output the first EPR pair and trace out the rest.

Note that if they are given the perfect stateΦn, thenU 
U jΦni= Φn and the output is a perfect EPR pair. If the starting
state is not perfect, then the first two steps “symmetrize” it.

Claim 5 Let ρ be the mixed state obtained after the first two steps. Then,

ρ = p0jΦnihΦn j+ p1ρ1+ p2ρ2+ p3ρ3

whereρ1 is a uniform mixture of2n statesj iij ii, ρ2 is a uniform mixture of2n(2n�1) states 1p
2
(j iij ji+ j jij ii), j 6= i, ρ3 is

a uniform mixture of2n(2n�1) states 1p
2
(j iij ji� j jij ii), j 6= i and p0, p1, p2, p3 2 R.

Proof: We divide the transformation into two parts:U = U 00U 0, U 0j ii = (�1)xi , U 00j ii = jπ(i)i. Let ρ0 be the intermediate

density matrix after applyingU 0. Then, the only nonzero entries inρ0 arej iij iihi jhi j, j iij iih j jh j j, j iij jihi jh j j, j iij jih j jhi j.
ApplyingU 00 after that makes all entries of each type equal.

Let a;b;c;d be their values. Then, we can setp0 = 2na, p1 = 2n(b�a), p2 = 2n(2n�1)(c+d), p3 = 2n(2n�1)(c�d).
We haveF(ρ0) = 1, F(ρ1) = 1

2n andF(ρ2) = F(ρ3) = 0. We note that

p0+ 1
2n p1 � 1� ε (22)

because each of statesU
U jψi has the same fidelity asjψi and fidelity is convex. We can rewrite (22) as2n�1
2n p1+ p2+ p3�

ε.
Outputting the first EPR pair and tracing out the rest transformsρ0 into a state of fidelity 1,ρ1 into a state of fidelity 1/2

andρ2 andρ3 into states of fidelity(2n�1�1)=2(2n�1). Thus, the final fidelity is 1�δ,

δ = 1
2

p1+ 3 �2n�1�1
2(2n�1) (p2+ p3)� 3 �2n�1�1

2(2n�1) ε = 3
4

2n�2=3
2n�1

ε:
Proof: [to Theorem 3,b] Let ρ be the mixture ofjΦnihΦn j with probability 1� 22n

22n�1
ε and the completely mixed state in

2n�2n dimensions with probability 22n

22n�1
ε. Since the perfect state has fidelity 1 and the completely mixed state has fidelity

1
22n , this state has fidelity 1� ε.

W.l.o.g., a no-communication protocol consists of Alice applying UA, Bob applyingUB and each of them outputting the
first qubit.

Let ρA be the density matrix of Alice’s first qubit if she starts withher system in 2n-dimensional completely mixed state. As
any density matrix on one qubit,ρA has can be decomposed into mixture of two orthogonal one-qubit states (its eigenstates)

ρA = λ1jψAihψA j+λ2jψ?
A ihψ?

A j
whereλ1;2 are the eigenvalues ofρA. Since eigenvalues of a density matrix must sum up to 1, we canassume thatλ1 = 1

2 +δA

andλ2 = 1
2 � δA, δA � 0. Let ρB be the density matrix of Bob’s first qubit if he starts with hissystem in 2n-dimensional

completely mixed state. We definejψBi, jψ?
B i, δB similarly. Letδ = max(δA;δB).
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Claim 6 If the starting state isΦn, the fidelity of the final state is at most1�δ2.

Proof: W.l.o.g. assume thatδ = δA.
Consider Alice’s part ofΦn. It is the completely mixed state on Alice’s 2n dimensional system. Therefore, Alice’s output

qubit will be in the stateρA. This means that the fidelity of the state output by Alice+Boband j00i+ j11i is at most the
fidelity betweenρA and 1

2I (density matrix of Alice’s part of1p
2
(j00i+ j11i)).

Let U be the unitary transformation that mapsj0i to jψAi andj1i to jψ?
A i. Then,

F(ρA; 1
2

I) = F(U�1ρAU; 1
2

I) = F

�� 1
2 +δ 0

0 1
2�δ

� ; 1
2

I

�= 1p
2

r
1
2
+δ+ 1p

2

r
1
2
�δ

!2 = 1
2
+r1

4
�δ2� 1

2
+�1

2
�δ2

�= 1�δ2:
Claim 7 If the starting state is the completely mixed state in22n dimensions, the fidelity of the final state is at most1

4 + ε.

Proof: Since the completely mixed state is the tensor product of completely mixed states of Alice and Bob, the final state
of output qubits isρA
ρB. This state is a mixture ofjψi
 jψ0i, wherejψi (or jψ0i) is one ofjψAi andjψ?

A i (or jψBi andjψ?
B i) with probabilities(1

2 �δA)(1
2�δB).

Notice that
1p
2
(j00i+ j11i) = 1p

2
(jψijψ�i+ jψ?ij(ψ?)�i)

for any one qubit statejψi. In particular, we can takejψi= jψAi. Leta= jhψ�
AjψBij2. Then, the fidelity of statesjψAi
jψBi

andjψ?
A i
 jψ?

B i is a
2 and the fidelity of statesjψAi
 jψ?

B i andjψ?
A i
 jψBi is 1�a

2 . Therefore, the overall fidelity of the
final state is

a
2

�(1
2
+δA)(1

2
+δB)+(1

2
�δA)(1

2
�δB)�+ 1�a

2

�(1
2
+δA)(1

2
�δB)+(1

2
�δA)(1

2
+δB)�= a

2

�
1
2
+2δAδB

�+ 1�a
2

�
1
2
�2δAδB

�� 1
2

�
1
2
+2δAδB

�� 1
4
+δ2:

Therefore, the fidelity of the protocol onρ4 is at most(1� 22n

22n�1
ε)(1�δ2)+ 22n

22n�1
ε(1

4
+δ2)� 1� 3

4
22n

22n�1
ε: (23)

If Alice and Bob share randomness, we can fix one valuer for randomness and takeUA andUB for this r. The bound of
equation (23) applies for any particularr, Therefore, it also applies on the average over allr.

Proof: [to Lemma 4] By induction. The base case is obvious. Now the inductive case. Consider the situation at the end
of thek-th round. Suppose the firstk bits sent aret[0]; t[1]; :::; t[k�1]. WLOG we assume that in the(k+1)-th round, Alice
applies a super-operatorE to her share of qubits, and send one bita to Bob.

First we consider the density matrix for Alice. Notice that in general,a is the result of the measurement fromE . Therefore,
we can “split”E into two positive super-operatorsE0 andE1, such that

E0(σI;A
t ) = pI

t;0

pI
t

�σI;A
t;0 (24)

E1(σI;A
t ) = pI

t;1

pI
t

�σI;A
t;1 (25)

E0(σII ;A
t ) = pII

t;0

pII
t

�σII ;A
t;0 (26)

E1(σII ;A
t ) = pII

t;1

pII
t

�σII ;A
t;1 (27)
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Intuitively, E0 corresponds to the case thata= 0 is sent, andE1 corresponds to the case thata= 1 is sent.
By inductive hypothesis, we have

pI
t �σI;A

t � σII ;A
t (28)

Combining (28), (24) and (26) with Claim 3 yields that

pI
t;0 �σI;A

t;0 = E0(pI
t �σI;A

t )� E0(σII ;A
t ) = pII

t;0

pII
t

�σII ;A
t;0 � σII ;A

t;0 (29)

Combining (28), (25) and (27) with Claim 3 yields that

pI
t;1 �σI;A

t;1 = E1(pI
t �σI;A

t )� E1(σII ;A
t ) = pII

t;1

pII
t

�σII ;A
t;1 � σII ;A

t;1 (30)

Now we consider the reduced density matrix for Bob. In case I,the qubits between Alice and Bob are entangled. Therefore,
the bit Alice sends to Bob carries some information about hisstate. In terms of the density matrix, Bob’s reduced density

matrix will “split” from σI;B
t to σI;B

t;0 andσI;B
t;1 . Notice that Bob doesn’t perform any operation to his qubits, and thus we have

σI;B
t = pI

t;0

pI
t

�σI;B
t;0 + pI

t;1

pI
t

�σI;B
t;1 (31)

In case II, the qubits between Alice and Bob are disentangled. Therefore, the bit sent by Alice carries no information about
Bob’s own state. Thus Bob’s reduced density matrix remains unchanged.2 Thus we have

σII ;B
t = σII ;B

t;0 = σII ;B
t;1 (32)

By inductive hypothesis, we have

pI
t �σI;B

t � σII ;B
t (33)

Combining (31), (32), and (33), we have

pI
t;0 �σI;B

t;0 � pI
t �σI;B

t � σII ;B
t = σII ;B

t;0 (34)

pI
t;1 �σI;B

t;1 � pI
t �σI;B

t � σII ;B
t = σII ;B

t;1 (35)

So the inductive case is proved.

2We assume that Alice and Bob don’t erase any information during the protocol.
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