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DPPC-RE: TCAM-Based Distributed Parallel
Packet Classification with Range Encoding

Kai Zheng, Student Member, IEEE, Hao Che, Member, IEEE,
Zhijun Wang, Bin Liu, Member, IEEE, and Xin Zhang

Abstract—Packet classification has been a critical data path function for many emerging networking applications. An interesting
approach is the use of Ternary Content Addressable Memory (TCAM) to achieve deterministic, high-speed packet classification
performance. However, apart from high cost and power consumption, due to slow growing clock rate for memory technology, in
general, the traditional single TCAM-based solution has difficulty to keep up with fast growing line rates. Moreover, the TCAM storage
efficiency is largely affected by the need to support rules with ranges or range matching. In this paper, a distributed TCAM scheme that
exploits chip-level-parallelism is proposed to greatly improve the throughput performance. This scheme seamlessly integrates with a
range encoding scheme which not only solves the range matching problem, but also ensures a balanced high throughput performance.
A thorough theoretical worst-case analysis of throughput, processing delay, and power consumption, as well as the experimental
results show that the proposed solution can achieve scalable throughput performance matching up to OC768 line rate or higher. The
added TCAM storage overhead is found to be reasonably small for the five real-world classifiers studied.

Index Terms—Packet classification, range matching, TCAM.

1 INTRODUCTION

PACKET Classification has wide applications in network-
ing devices to support firewall, access control list
(ACL), and quality of service (QoS) in access, edge, and/
or core networks. It may involve various matching condi-
tions, e.g., longest prefix matching (LPM), exact matching,
and range matching, making it a complicated pattern
matching issue. Moreover, since it lies in the critical data
path (i.e, it has to act upon each and every packet at wire
speed), packet classification may create potential bottle-
necks in the router data path, particularly for high-speed
interfaces. For example, at OC192 (10Gbps) full line rate, a
line card needs to process about 31.25 Million Packets Per
Second' (Mpps) in the worst case when minimum sized
packets (40 bytes each) arrive back-to-back. As the
aggregate line rate to be supported by a line card is moving
toward OC768 (i.e., approximately 125 Mpps in the worst
case) [23], it poses significant challenges for the develop-
ment of packet classification mechanisms that match wire
speed forwarding performance.

1. 10Gbps/(40*8b) ~ 31.25 Mpps.
2. 40Gbps/(40*8b) ~ 125Mpps.
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The existing algorithmic approaches, including geo-
metric algorithms based on hierarchical tries [1], [2], [3],
[4], [5] and most heuristic algorithms [6], [7], [8], [9],
generally require a nondeterministic number of memory
accesses per lookup, making it difficult to use pipeline to
hide the memory access latency and, hence, limiting the
throughput performance. The algorithmic approach in [25]
allows deterministic time for lookup, i.e., O(log W) time per
lookup, where W is the length of the search key. However,
it is not fast enough to match high-speed interface and the
storage requirement depends on the parameter chosen. In
contrast, Ternary Content Addressable Memory (TCAM)-
based solutions are more viable for matching high-speed
line rates while making software design fairly simple. A
TCAM finds a matched rule in an O(1) clock cycle and,
therefore, offers the highest possible lookup/matching
performance. However, despite its superior performance,
it is still a challenge for a TCAM-based solution to match
OC768 line rate or higher. Even the high-end solutions
based on the state-of-the-art technologies, such as Cypress
Ayama 20K [20], cannot keep up with OC768 line rate. Note
that the I/O interface (2xLA-1) for Cypress Ayama 20K can
afford at most 100 million 144-bit search key per second.
Moreover, these solutions are generally not scalable and
expensive, given that the memory speed improves by only 7
percent each year while the optical wire speed is doubling
every 9-12 months [17].

In this paper, we develop a power efficient and scalable
solution that can match OC768 and higher line rates, based
on low-cost, low-speed TCAM technologies. Instead of
striving to reduce the access latency for a single TCAM, we
exploit Chip-Level-Parallelism (CLP) to achieve higher and
scalable throughput. However, a naive approach is costly,
given that TCAM is an expensive commodity, i.e., duplicat-
ing the databases to a set of uncoordinated TCAM chips. In

Published by the IEEE Computer Society
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TABLE 1
An Example of Rule Table with 5-Tuple Rules

SrcIP  DstIP Src Port Dst Port  Prot Action
L1 | 1.1xx | 222x any any 6 2> | AF
L2 | xxXxX | 2.2.XX any 256-512 6 > | BF
L3 | 33xx | XXXX >1023 512-1024 11 - | EF
L4 | xxxx | 444.x | 5000-6000 >1023 any | = | Accepted
L5 | xXxXX | XXXX <1023 any any | = | Discard

.............................. >

BF: Best effort Forwarding ~ AF: Assured Forwarding EF: Expedited Forwarding

one of our previous works [16], it was demonstrated that,
by making use of the structure of IPv4 route prefixes, a
multi-TCAM solution that exploits CLP can actually achieve
high throughput performance gain in supporting LPM with
low memory cost.

Another important benefit of using TCAM CLP is its
ability to effectively solve the range matching problem.
Spitznagel et al. [10] reported that today’s real-world Policy
Filtering tables involve significant percentages of rules with
ranges. Supporting rules with ranges or range matching
without exquisite measures in TCAM will lead to very low
TCAM storage efficiency, e.g., 16 percent as reported in [10].
Spitznagel et al. [10] proposed an extended-TCAM scheme
to improve the TCAM storage efficiency, in which TCAM
hierarchy and circuits for range comparisons are intro-
duced. Another widely adopted solution to deal with range
matching is to do a range preprocessing/encoding by
mapping ranges to a short sequence of encoded bits, known
as bit-mapping [11]. The application of the bit-map-based
range encoding for packet classification using a TCAM was
reported in [11], [12], [13], [14], [15]. A key challenge for
range encoding is the need to encode multiple fields in a
search key extracted from the packet to be classified at wire
speed. To achieve high speed search key encoding, parallel
search key field encoding was proposed in [11], [13], which,
however, assume the availability of multiple processors and
multiple memories for the encoding. To ensure the
applicability of the range encoding scheme to any commer-
cial network processors and TCAM coprocessors, the
authors of this paper proposed using TCAM itself for
sequential range encoding [15], which, however, reduces
the TCAM throughput performance. Using TCAM CLP for
range encoding provides a natural solution which solves
the performance issue encountered in [15].

However, extending the idea in [16] to allow TCAM CLP
for general policy filtering is anontrivial task for the following
tworeasons: 1) The structure of a general policy rule, suchasa
5-tuple rule, is much more complex than that of a route and it
does not follow a simple structure like a prefix and 2) it
requires matches on multiple dimensions (i.e., packet fields)
with different matching conditions, such as prefix, range, and
exact matches. Moreover, the search key is much longer than
that for LPM. In this paper, we propose an efficient TCAM
CLP scheme, called Distributed Parallel Packet Classification
with Range Encoding (DPPC-RE), for the typical 5-tuple
policy filtering. First, a rule database partitioning algorithm is
designed to allow different partitioned rule groups to be
distributed to different TCAMs with minimum redundancy.

Then, a greedy heuristic algorithm is proposed to evenly
balance the traffic load and storage demand among all the
TCAMs. On the basis of these algorithms and combined with
the range encoding ideas in [15], a fully adaptive algorithm is
proposed to deal with range encoding and load balancing
simultaneously. A thorough theoretical worst-case analysis
of throughput, processing delay, and power consumption, as
well as the experimental results, shows that the proposed
solution can achieve scalable throughput performance
matching OC768 line rate, with small TCAM storage over-
head and bounded worst-case delay performance.

2 TERMINOLOGY

Rules. A rule table or policy filtering table includes a set of
match conditions and their corresponding actions. We
consider the typical 104-bit 5-tuple match conditions, i.e.,
(SIP(1-32), DIP(1-32), SPORT(1-16), DPORT (1-16), and
PROT(1-8)%), where SIP, DIP, SPORT, DPORT, and PROT
represent source IP address, destination IP address, source
port, destination port, and protocol number, respectively.
DIP and SIP require prefix matching, SPORT and DPORT
generally require range matching, and PROT requires exact
matching. Except for fields with range matching, any other
field in a match condition can be expressed using a single
string of ternary bits, i.e., 0, 1, or “don’t care”*. Table 1 gives
an example of a typical 5-tuple rule table, here “x” =
ey’ a wildcard byte.

Rule Entry. TCAMs are organized in slots with fixed size
(e.g., 64 or 72); each rule entry takes one or more slots
depending on its size. Fig. 1 shows the implementation of
rules L; and Ls in a TCAM with 64-bit slots. Rule L; has no
range in any of its fields and, hence, it takes two slots with
24 free bits in the second slot. Each such rule in the TCAM
takes the minimum number of slots and is defined as a rule
entry. Ly has a range {256-512} in its destination port field.
This range cannot be directly expressed as a string of
ternary bits and must be partitioned into two subranges:
{256-511} and {512}, expressed as: 0000 0001 **** **** and
0000 0010 0000 0000. Such a range that must be expressed by
more than one ternary bit string is defined as the nontrivial
range. Hence, L, takes four slots (slots 3, 4, 5, and 6) or two
rule entries in the TCAM. In general, if ranges in the SPORT
and DPORT fields in a match condition take n and
m ternary strings, respectively, the match condition takes

3. The bits in the field are ordered with the first bit (MSB) lies in the
leftmost position.
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slot 1 1 1 X X 2 2 2 X AF
sot2 | x X X X 6 fiee bits

slot 3 X X X X 2 2 X X BF
slot4 | X X |sub—range I| 6 frde bits

slot 5 X X X X 2 2 X X BF
slots | X X |sub-rgnge2| 6 fipe bits

TCAM Associated
Memory

sub—range 1: 1.x or in bits: 0000000 ] #¥#¥ssss

sub—range 2: 2.0 or in bits: 000000 10 00000000

Fig. 1. Rules in a TCAM. Range {256-512} is split into two subranges,
{256-511} and {512}, and implemented as subrange 1 and subrange 2.
The other numbers represent the actual byte values.

n x m TCAM rule entries. This multiplicative expansion of
the TCAM usage to support range matching is the root that
causes low TCAM storage efficiency.

Range Encoding. An efficient solution to deal with range
matching is to map a range to a short sequence of encoded
bits, known as range encoding [15]. After range encoding, a
rule with encoded ranges only takes one rule entry, thus
improving TCAM storage efficiency.

Ny: rule table size, or number of rules in a rule table. V:
number of TCAM entries required to accommodate a rule
table without range encoding. N.: number of TCAM entries
required to accommodate a rule table with range encoding.

Search Key. A search key is a 104-bit string composed of a
5-tuple. For example, <1.1.1.1, 2.2.2.2, 1028, 30065, 11> is a
5-tuple search key. In general, a search key is extracted from
the packet header and passed to a packet classifier to match
against a 5-tuple rule set.

Matching. In the context of a TCAM-based solution as is
the case in this paper, matching refers to ternary matching
in the following sense: A search key is said to match a
particular match condition if, for each and every corre-
sponding bit position in both the search key and the match
condition, either of the following two conditions is met:
1) the bit values are identical or 2) the bit in the match
condition is “don’t care” or *.

So far, we have defined the basic terminologies for rule
matching. Now, we establish some important concepts
upon which the distributed TCAM is developed.

ID. The idea of the proposed distributed TCAM is to
make use of a small number of bits extracted from certain
bit positions in the search key and match condition as IDs to
1) divide rules into groups, which are mapped to different
TCAMs, and 2) direct a search key to a specific TCAM for
Rule-Matching. In this paper, we use P number of bits
picked from given bit positions in the DIP, SIP, and/or
PROT fields of a match condition as the rule ID, denoted

Rule-ID, for the match condition and use P number of bits
extracted from the corresponding search key positions as the
key ID, denoted Key-ID, for the search key. For example,
suppose P =4 and they are extracted from SIP(1), DIP(7),
DIP(16), and PROT(8). Then, the rule-ID for the match
condition <1.1.x.x, 2.x.X.X, X, X, 6> is “01*0” and the Key-ID
for the search key <1.1.1.1,2.2.2.2, 1028, 34556, 17> is “0101.”
ID Groups. We define all the match conditions having the
same Rule-ID as a Rule-ID group. Since a Rule-ID is
composed of P ternary bits, the match conditions or rules
are classified into 3” Rule-ID groups. If “*” is replaced with
“2,” we get a ternary value for the Rule-ID which uniquely
identifies the Rule-ID group (note that the numerical value
for different Rule-IDs are different). Let RID; be the Rule-
ID with value j and RG| represent the Rule-ID group with
Rule-ID value j. For example, for P = 4, the Rule-ID group
with Rule-ID “00*1” is RG; since the Rule-ID value
Jj={0021}; = 7. Accordingly, we define the set of all the
Rule-ID groups with their Rule-IDs matching a given Key-
ID as a Key-ID group. Since each Key-ID is a binary value,
we use this value to uniquely identify this Key-ID group. In
parallel to the definitions for Rule-ID, we define Key-ID
KID; with value ¢ as a Key-ID group KG;. We have a total
number of 27 Key-ID groups. With the above definitions, we
have KG; = Ug;p. maten k10, 2Gj- For instance, suppose P =
2 and SIP(16) and DIP(16) are chosen as ID bits. Then, the
Rule IDs of the five rules introduced in Table 1 are “10,”
“*0,” “1*,” “*0,” and “**,” respectively. Table 2 depicts the
Key-ID group and Rule-ID group hierarchy of rule set.
Distributed ~ Storage Expansion Ratio. Since Key-ID
groups may overlap with one another, we have:
> IKG;| > |U; KG,|, where |A| represents the number of
elements in set A. In other words, using Key-ID to partition
rules and distribute them to different TCAM introduces
redundancy. To formally characterize this effect, we further
define Distributed storage Expansion Ratio (DER) as
DER = D(N,K)/N, where D(N,K) represents the total
number of TCAM entries required to accommodate N rules
when rules are distributed to K different TCAMs. Here,
DER characterizes the redundancy introduced by the
distributed storage of rules with or without range encoding.
Throughput and Traffic Intensity. In this paper, we use
throughput, traffic intensity, and throughput ratio as
performance measures of the proposed solution. Two
measurements can be adopted to quantify Throughput.
One is the number of packets classified per unit time
(denoted packet per second or pps), which denotes the ability
of the classification engine to handle packets, and the other is
the number of packets classified per clock cycle (denoted as
packets per cycle or ppc), which actually denotes the level of
parallelism of the classification engine. It is an important
measure of the processing power of the proposed solution.

TABLE 2
ID Groups Hierarchy of the Five Rules Introduced in Table 1
Key-ID Groups KG, (“10”)
Rule-ID Groups | RG, (“10”) RG, (“*0) RG,(“1¥7) | RG, (“++)
Rule No. L1 L2 L4 L3 LS
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Traffic intensity is used to characterize the workload in the
system. As the designis targeted at OC768 line rate, we define
traffic intensity as the ratio between the actual trafficload and
the worst-case traffic load at OC768 line rate, i.e., 125 Mpps.
Throughput ratio is defined as the ratio between Throughput
and the worst-case traffic load at OC768 line rate. The
following theorem states under what conditions the pro-
posed solution maintains the original packet ordering:

Theorem 1. The original packet ordering for any given
application flow is maintained if packets with the same Key-
ID are processed in order.

Proof. First, note that packet ordering should be maintained
only for packets belonging to the same application flow
and an application flow is, in general, identified by the
5-tuple. Second, note that packets from a given applica-
tion flow must have the same Key-ID by definition.
Hence, the original packet ordering for any given
application flow is maintained if packets with the same
Key-ID are processed in order. 0

3 ALGORITHMS AND SOLUTIONS

The key problems we aim to solve are 1) how to make use of
CLP to achieve high packet classification performance with
minimum cost and 2) how to combine CLP with TCAM
range encoding schemes to improve the TCAM storage
efficiency (consequently controlling the cost and power
consumption). A scheme called Distributed Parallel Packet
Classification with Range Encoding (DPPC-RE) is pro-
posed. The idea of DPPC is the following: First, by
appropriately selecting the ID bits, a large rule table is
partitioned into several Key-ID groups of similar sizes.
Second, by applying certain load balancing and storage-
balancing heuristics, the rules (Key-ID groups) are dis-
tributed evenly to several TCAM chips. As a result, multiple
packet classifications corresponding to different Key-ID
groups can be performed simultaneously, which signifi-
cantly improves throughput performance without incurring
much additional cost. The idea of RE is to encode the range
fields of the rules and the corresponding fields in a search
key into bit-vectors, respectively. In this way, the number of
ternary strings (or TCAM entries) required to express a rule
with nontrivial ranges can be significantly reduced (e.g., to
only one string), improving TCAM storage efficiency. In
DPPC-RE, the TCAM chips that are used to perform Rule-
Matching are also used to perform search key encoding.
This not only offers a natural way for parallel search key
encoding, but also makes it possible to develop efficient
load balancing schemes (which will be revealed soon in
Section 3.4), making DPPC-RE a practical solution. In what
follows, we introduce DPPC-RE in detail.

3.1 ID-Bit Selection

The objective of ID-bit selection is to minimize the number
of redundant rules (introduced due to the overlapping
among Key-ID groups) and to balance the size of the Key-ID
groups (large discrepancy of the Key-ID group sizes may
result in low TCAM storage utilization). A brute-force
approach to solve the above optimization problem would
be to traverse all of the P-bit combination out of W-bit rules
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Fig. 2. ID-bit selection result of rule database set #5.

to get the best solution. However, since the value of W is
relatively large (104 bits for the typical 5-tuple rules), the
complexity is generally too high to do so. Hence, we
introduce a series of empirical rules based on the analysis of
the five real-world databases [18] that are used throughout
the rest of the paper to simplify the computation as follows:

1. Since the fields DPORT and SPORT in a rule may
have nontrivial ranges which need to be encoded,
we choose not to take these two fields into account
for ID-bit selection.

2. According to the analysis of several real-world rule
databases [18], over 70 percent of the rules are with
nonwildcarded PROT field, and over 95 percent of
these nonwildcarded PROT fields are either TCP(6)
or UDP(17) (approximately 50 percent are TCP).
Hence, one may select either the eighth or the fifth
bit (TCP and UDP have different values at these two
bit positions) of the PROT field as one of the ID bits.
All the rest of the bits in the PROT field have a fixed
one-to-one mapping relationship with the eighth or
fifth bits and do not lead to any new information
about the PROT.

3. Note that rules with wildcard(s) in their Rule-IDs are
actually those incurring redundant storage. The
more wildcards a rule has in its Rule-ID, the more
Key-ID groups it belongs to and, consequently, the
more redundant storage it incurs. In the five real-
world rule databases, there are over 92 percent of the
rules whose DIP values are prefixes no longer than
25 bits and over 90 percent of the rules whose SIP
values are prefixes no longer than 25 bits. So, we
choose not to use the last 7 bits (i.e., the 26th to 32nd
bits) of these two fields since they are wildcards in
most cases.

Based on these three empirical rules, the traversal is
simplified as follows: Choose an optimal (P — 1)-bit
combination (we can afford to perform a brute-force search
since only 50 out of 104 bits are considered) out of 50 bits of
DIP and SIP fields (DIP(1-25), SIP(1-25)), and then combine
these (P — 1) bits with PROT(8) or PROT(5) to form the P-
bit ID. Fig. 2 shows an example of the ID-bit selection for
Database #5 [18] (the largest database, with 1,550 rules,
among the five databases studied in this paper). We use an
equally weighted sum of two objectives, i.e., the minimiza-
tion of the variance among the sizes of the Key-ID groups
and the total number of redundant rules, to find the 4-bit
combination: PROT(5), DIP(1), DIP(21), and SIP(4).* We find
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that, although the sizes of the Rule-ID groups are
unbalanced, the sizes of the Key-ID groups are quite
similar, which allows memory-efficient schemes to be
developed for the distribution of rules to TCAMs.

3.2 Distributed Table Construction

The next step is to evenly distribute the Key-ID groups to
K TCAM chips and to balance the classification load among
them. For clarity, we first describe the mathematical model
of the distributed table construction problem as follows: Let
S be the set of all the rules, Q) be the set of the Key-ID
groups placed in TCAM #k (k=1,2,...,K), W[j,j=
1,...,2"7 be the frequency of KID; appearances in the
search keys, indicating the Rule-Matching load ratio of Key-
ID group KG;, RM[k] be the Rule-Matching load ratio that
is assigned to TCAM #k, namely, RM[k] := >, W], G[K]
be the number of rules distributed to TCAM #k, namely,
Glk] = |Ugc,co, KGil, and C; be the maximum number of
rules each TCAM can contain (capacity tolerance). The
optimization problem for distributed table construction is
given by: To find a K-division {Qy, k=1, ..., K} of the Key-
ID groups that:

xGIk];

](G[k] S Of,.

Consider each Key-ID group as an object and each
TCAM chip as a knapsack. We find that the problem is
actually a variance of the Weighted-Knapsack problem, which
can be proven to be NP-hard (please refer to the appendix
in [16] for a detailed discussion). Note that the problem has
multiple objectives, which cannot be handled by conven-
tional greedy methods. In what follows, by partitioning the
original problem into two cases and defining the corre-
sponding priority rule of the two objectives under certain
considerations in each case, we turn the original multiple-
objective optimization problem into a single-objective one.
Then, we further develop a systemic heuristic to solve the
problem.

3.2.1 Distributed Table Construction Scheme (DTCS)

Parameter Initiation (PI). The number of TCAM chips, K,
may be set at an integer value, which should be no less than
[Thryeq/Thrrcan |, where Thr,, is the throughput objective
to be achieved and Thrrcan is the throughput a single
TCAM chip can provide. This will guarantee that the
requested throughput performance is met. Also note that a
larger K value may result in higher expected system
performance, but also in higher expected cost (e.g., caused
by DER). Import all ID bits selection and traffic load
information. For k from 1 to K, let Q;, = ®, RM[k] = 0, and
Gk] =0.

Note that, if the two objectives are consistent with each
other, the optimization problem may actually be trans-
formed into a single objective problem, which is much
easier to solve. Therefore, for generality, we consider in the
following discussion that the two objectives compete with

4. The leftmost bit is the least significant bit.

i) sort {i,i=1,2,..., 2P }1in decreasing order of IKG;| and
record the result as { Kid[1],...,Kid[2P 1}

ii) for i from 1 to 2P do

sort {k,k=l.,...,K} in increasing order of G[k]and

record as { Sc[1],Sc[2]....,Sc[K ]} ;

for k from 1 to K do

if RM[Sc[k1+W[Kid[i]]I<L; then
0Sclk1=95c k]UKGKiari:
Gl Sclk =108k
RM [Sc[k1l=RM [Sc[k1]+W[Kid[i]];

iii) output {Qf .k=l....K}and {RM[k].k=1,...K}.

Fig. 3. The pseudocode for CFA.

each other, i.e., the Key-ID groups with relatively large traffic
load ratio tend to have relatively small capacity requirement.
On the other hand, as will be revealed soon in Section 3.4
(according to the FA algorithm in that subsection), whether
the condition Maxj—1.. x RM[k] < 2/K can be satisfied or not
determines whether or not the classification trafficload can be
perfectly balanced. Thus, we develop the Capacity First
Algorithm (CFA) and the Load First Algorithm (LFA)
corresponding to the two cases, respectively.

3.2.2 The CFA Phase

We first consider minimizing Maxi—, xG[k] the primary
objective, while minimizing Maxj—, . xRMIk] serves as a
secondary objective by introducing a constraint set
RMIk] < Li,k=1,..., K. In the proposed scheme, variable
L, is initially set to be the minimum threshold, i.e., 1/K, and
would be loosened when no feasible solution can be found
in CFA. Suppose that CFA terminates without a feasible
solution in the current loop; in other words, no matter
which TCAM a certain Key-ID groups, e.g., KG;, is
allocated to, constraint RM[k] + WTi] < L; does not hold.
In this case, we define AL := Miny— g RM[k] + WTi] — L,
and just loosen L; by AL. Namely, we always keep L, the
possible minimum value for producing a feasible solution.
On the other hand, in CFA, the Key-ID groups with
relatively more rules will be distributed first and the
current Key-ID group will be assigned to the TCAM with
the least number of rules under the load constraint. The
pseudocode of the CFA is shown in Fig. 3.

3.2.3 The LFA Phase

After running CFA, if Mazj—, xRM[k] < 2/K holds, the
result from CFA is final and the process of DTCS terminates.
Otherwise, we turn to the phase of LFA in which we consider
minimizing Maxj— .. g RM]k] as the primary objective, while
the objective of minimizing Maxj— .. xGk] is relaxed to a
constraint,ie., G[k] < Cy,k=1,..., K. We explore the trade-
off between the two objectives by adjusting C,. In practice,
we set C; = Maxy—1,. xGk], which is obtained in the CFA
phase initially, and loosen it adaptively until a feasible
solution is found in LFA. More specifically, we loosen C; in
the same manner as L, in CFA to always keep it the
minimum value for a feasible solution. In LFA, we allocate
K Key-ID groups at a time and call such a process a round.
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i) sort {i,i=1.....2P } in decreasing order of W[i] and record the
result as (Kid[1],...Kid[2P 1} ; Let N' = N'=[27 /K |;

if N'xK <2 then
N=N'+1;
for i from 2” +1 to (N'+1)K
define W[Kid[i]]=0,l KG ,,,, =01;

ii) for i from 1 to N do
sort {k,k=l,...,K} in increasing order of RM[k]and record
as {Sc[1]....,Sc[K1};
Take { Kid[(i—1)K+1],...,Kid[(i—1) K+ K ]} to be allocated in the
current round; pointer = (i—1) K+1;
for k from 1 to K do

1 Q¢ 111 Y XCkidf pointer 'S € then

QSc[kJ = QSr[kJ U KGKid[paint er]?
GLSclk11=0sc(k 1l
RM [Sclk]l = RM[Sclk]]+ W[Kid] point er]]; pointer++;

iii) output { Q) .k=1,...K } and {RM[k].k=1,..K} .

Fig. 4. The pseudocode for LFA.

Note that K may not exactly divide 2”, so there may be
n(n < K) Key-ID Groups left after a certain number of
rounds. In this case, we still call these residual Key-ID
Groups a round by adding (K — n) virtual Key-ID Groups
whose Wi] and |KG;| are all 0. The Key-ID groups with
relatively larger traffic load ratio will be assigned to TCAM
first. Each Key-ID group will be assigned to the TCAM
chips with relatively lower load. The pseudocode of the
LFA is shown in Fig. 4.
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Based on these two algorithms, the flow of the
distributed algorithm is depicted in Fig. 5 and summarized
as the following: At the beginning, CFA is run. If no feasible
solution is found in a loop, the constraint L; is loosened
iteratively. Whenever a feasible solution is found, the
inequality L, <2/K is checked: If it holds, return final
results; otherwise, run LFA to get the final result.
Theoretical analysis of DTCS will be presented in Section 5.
Here, we again use the rule database set #5 as an example
(more results for the DERs on the other four rule databases
will be discussed in Section 5.6). Suppose that the traffic
load distribution among the Key-ID groups is as depicted in
Fig. 6, which is selected intentionally to have a large
variance to create a difficult case for load balancing. Note
that the ID-bits are PROT(5), DIP(1), DIP(21), and SIP(4) as
obtained in the last subsection and constraint C; = 560. For
K =5, the final result is depicted in Table 3 (the maximum
traffic load ratio is 24.4% < 2/K = 40%). We note that the
numbers of rules assigned to different TCAMs are very
close to one another. The DER is C; x K /N, = 1.80, mean-
ing that only about 80 percent more TCAM entries are
required (note that K*100% are required in the case when
the rule table is duplicated and assigned to each TCAM). As
we shall see shortly, using the load balancing scheme
proposed in Section 3.4, this kind of traffic distribution can
be perfectly balanced.

3.3 Solutions for Range Matching

Range matching is a critical issue for effective use of TCAM
for policy filtering. The real world databases in [10] showed
that TCAM storage efficiency can be as low as 16 percent
due to the existence of a large number of rules with ranges.
We apply our earlier proposed Dynamic Range Encoding

N
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ID Bits

PI v
Reset
> CFA
Loosen L,
No
Feasible?

Yes

Reset

C = MaxGlk]
Reset
> LFA
Loosen C; l
No Yes

Load Information
(Traffic Load Ratio of the

T
o A

Rule Database
(Key-ID Group Size)

ID Bits
P
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Fig. 5. Distributed table construction scheme.
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Fig. 6. Traffic load distribution among the Key-ID (Key-ID groups).

Scheme (DRES) [15] to distributed TCAMs to improve the
TCAM storage efficiency. DRES [15] makes use of the free
bits in each rule entry to encode a subset of ranges selected
from any rule field with ranges. An encoded range is
mapped to a code vector implemented using the free bits
and the corresponding field is wild carded. Hence, a rule
with encoded ranges can be implemented in one rule entry,
reducing the TCAM storage usage. To match an encoded
rule, a search key is preprocessed to generate an encoded
search key. This preprocess is called Key-Encoding.
Accordingly, the process in a TCAM with range encoding
includes two steps: key-encoding and rule-matching. DRES
uses the TCAM coprocessor itself for key-encoding to
achieve wire speed performance. If the encoded ranges
come from S fields, S separate range tables are needed for
key-encoding. The S range tables as well as the rule table
can be allocated in the same or different TCAMs. The key-
encoding involves S fields matching against the corre-
sponding S range tables to get an encoded search key. Then,
the encoded search key is matched against the rule table to
get the final result. In summary, a rule match with range
encoding requires S range table lookups and one rule table
lookup.

Similarly to DRES, suppose that low-end TCAM chips
with 133 MHz clock rate and 64-bit slot size are adopted.
For typical 104-bit 5-tuple rules, ranges only appear in the
source and destination port fields and, hence, only two range
tables are needed. For a TCAM with 64-bit slot size, each rule
takes twoslots and leaves 24 free bits for range encoding. Each
Rule-Matching takes two TCAM matches (each slot takes
one). In each range table, a range takes one slot and a range
matching incurs one TCAM lookup. In summary, there are a
total number of four TCAM matches per search key search
(two for key encoding and another two for rule-matching).
With a 133 MHz TCAM at 133 million lookups per second,
DRES can barely support OC192 wire speed performance. In
this paper, the distributed TCAM scheme that exploits CLP
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to increase the TCAM lookup performance is proposed to
support line rates higher than OC192, e.g., OC768.
Moreover, a slower TCAM technique may be adopted in
the distributed TCAM scheme, e.g., the 100 MHz TCAM
chips, and, therefore, result in saving in terms of both cost
and power consumption. In Section 4, we will present the
details on how to incorporate DRES into the proposed
distributed solution.

3.4 Adaptive Load-Balancing Scheme

Note that the DPPC formulation is static in the sense that,
once the Key-ID groups are populated in different TCAMs,
the performance is pretty much subject to traffic pattern
changes. The inclusion of range encoding provides us with
a very efficient way to dynamically balance the traffic in
response to traffic pattern changes. The key idea is to
duplicate range encoding tables to all the TCAMs and, hence,
allow a key-encoding to be performed using any one of the
TCAMs to dynamically balance the load. Since the size of the
range tables is small, e.g., no more than 15 entries for all five
real-world databases, duplicating range tables to all the
TCAMs does not impose a distinct overhead. Again, we first
define some mathematical terms. Let D[k] be the overall
traffic load ratio assigned to TCAM #k (k=1,2,...,K),
which includes two parts, i.e., the key-encoding traffic load
ratio and the rule-matching traffic load ratio, with each
contributing 50 percent of the load, according to Section 3.3.
Let KE[k] and RMJk] be the key-encoding and rule-
matching traffic ratio allocated to TCAM #k,
(k=1,2,...,K), respectively. Note that RM[k] is deter-
mined by the DTCS process (refer to Section 3.2). Let A[i, k],
Al k] > 0,4,k =1,...,K,> . Ali,k] = 1, be the Adjustment
Factor Matrix, where A[i, k] is defined as the percentage
(ratio) of the key-encoding tasks allocated to TCAM #i, for
the corresponding Rule-Matching tasks which are per-
formed in TCAM #k. Then, the dynamic load balancing
problem is formulated as follows:

Decide Afi, k], i,k =1,..., K, when Minimize:
Max—

AAAAA

The following algorithm is proposed to solve the above
problem.

3.4.1 Full Adaptation (FA)

The idea of FA is to use a counter to keep track of the
current number of backlogged tasks in the buffer at each

TABLE 3
Distributed Table Construction Result, Derived from CFA at K =5
TCAM Key-ID Groups (Table Contents) Number of Number of Traffic Load
Rule-ID Groups Rules Ratio %
#1 11(1011) | 2(0010) 0(0000) 36 478 159
#2 8(1000) 7(0111) 4(0100) 40 439 20.7
#3 15(1111) | 10(1010) | 14(1110) 40 361 18.3
#4 9(1001) 3(0011) | 13(1101) | 12(1100) 36 556 24.4
#5 5(0101) 6(0110) 1(0001) 36 494 20.7
Distributed storage Expansion Ratio (DER) 560*5/1550=2800/1550=1.80

No iteration is needed.
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Fig. 7. DPPC-RE architecture.

TCAM chip. Whenever a packet arrives, the corresponding
key-encoding task is assigned to the TCAM which has the
smallest counter value. In this case, the values of Ak, ] are
not fixed (dynamic). The expression of D[k] is given by:

D[k] = 0.5 x RM[K] + 0.5 x (A[k, 1] x RM[1]] + ...
+ Alk, K] x RM[K]).

Note that 0 < A[k,i] <1, i=1,...,K, and we have
0.5 x RM[k] < D[k] <1, k=1,..., K. Taking A[i, k] as tun-
able parameters, it is clear that the equations:

1/K = D[k] = 0.5 x RM[K] + 0.5 x (A[k, 1] x RM[1] + ...
+ Alk, K] x RMIK]),k=1,... K,

must have feasible solutions when 0.5 x RM[k] < 1/K, i.e,
RMk <2/K, k=1,..., K.

This means that if the conditions RMIk] < 2/K,
k=1,...,K, hold, the overall traffic load ratio can be
perfectly balanced (i.e., the objective value is 1/K) in the
presence of traffic pattern changes. Further discussions on
the performance of FA are presented in Section 5.
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4 IMPLEMENTATION OF THE DPPC-RE SCHEME

The detailed implementation of the DPPC-RE mechanism is
depicted in Fig. 7. Besides the TCAM chips and the
associated SRAMs to accommodate the match conditions
and the associated actions, three major additional compo-
nents are included in cooperating with the TCAM chips, i.e.,
a distributor, a set of processing units (PUs), and a mapper.
Some associated small buffer queues are used as well. Now,
we describe the components in detail.

4.1 Distributor

This component is actually a scheduler. It partitions the
traffic to be loaded among the TCAM chips. More
specifically, it performs three major tasks. First, it extracts
the key-ID from the 5-tuple search key received from a
network processing unit (NPU). The Key-ID is used as an
identifier to dispatch the rule-matching keys to the
associated TCAM. The 5-tuple key is pushed into the rule-
matching FIFO (RM FIFO) queue of the corresponding
TCAM (solid arrows in Fig. 7). Second, the distributor
distributes the key-encoding traffic among the TCAM chips,
according to the FA algorithm. The corresponding informa-
tion, i.e.,, the SPORT and DPORT, is pushed into the
KE FIFO of the TCAM selected (dashed arrows in Fig. 7).
Third, the distributor maintains K serial numbers (S/N) or
S/N counters, one for each TCAM. An S/N is used to
identify each incoming packet (or, more precisely, each
incoming 5-tuple). Whenever a packet arrives, the distri-
butor adds “1” (cyclical with modulus equal to the RM FIFO
depth) to the S/N counter for the corresponding TCAM the
packet is mapped to. A tag is defined as the combination of
an S/N and a TCAM number (CAMID). This tag is used to
uniquely identify a packet and its associated rule-matching
TCAM. The format of the tag is depicted in Fig. 8a. As we
shall explain shortly, the tag is used by the mapper to return
the key-encoding results back to the correct TCAM and to
allow the PU for that TCAM to establish the association of
these results with the corresponding 5-tuple key in the rule-
matching queue.

4.2 RM FIFO, KE FIFO, Key Buffer, and Tag FIFO

A Rule-Matching FIFO (RM FIFO) is a small FIFO queue
where the information for rule-matching of the incoming
packets is held. The format of each unit in the RM FIFO is
given in Fig. 8b (the numbers in the brackets indicate the
number of memory bits needed for the fields). A key-
encoding FIFO (KE FIFO) is a small FIFO queue where the
information used for key-encoding is held. The format of

[ SING) | CAMIDB) |

[PROT(3) | DIP(32) | SIP(32) | DPORI(16) | SPORT(16) | Tag(®) |

(@)

(b)

[ DPORT(16) [ SPROT(16)

[ Tag® |

[ Valid() | DPK(3) [ SPK(®) |

(©)

(d)

Fig. 8. Format of tag, RM FIFO, KE FIFO, and Key Buffer. (a) Tag format. (b) RM FIFO format. (c) KE FIFO format. (d) Key Buffer format. SPK/DPK:

encoded source/destination port key.
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each unit in the KE FIFO is given in Fig. 8c. Differently from
the RM and KE FIFOs, a key buffer is not a FIFO queue, but
a fast register file accessed using an S/N as the address. It is
where the results of key-encoding (encoded bit vectors of
the range fields) are held. The size of a key buffer equals the
size of the corresponding RM FIFO, with one unit in the key
buffer corresponding to one unit in the RM FIFO. The
format of each unit is given in Fig. 8d. The Valid bit is used
to indicate whether the content is available and up-to-date.
Note that the tags of the key cannot be passed through
TCAM chips during the matching operations. Hence, a tag
FIFO is designed for each TCAM chip to keep the tag
information when the associated keys are being matched.

4.3 The Processing Unit

Each TCAM is associated with a processing unit (PU). A PU
performs the following two functions: First, it schedules the
rule-matching and key-encoding tasks assigned to the
corresponding TCAM, aiming at maximizing the utilization
of the corresponding TCAM. Second, it ensures that the
results of the incoming packets assigned to this TCAM are
returned in order. In what follows, we elaborate on these
two functions.

4.3.1 Scheduling between Rule-Matching and
Key-Encoding Tasks

Note that, for any given packet, the rule-matching operation
cannot take place until the key-encoding results are
returned. Hence, it is apparent that the units in an
RM FIFO would wait for a longer time than the units in a
KE FIFO. For this reason, rule-matching tasks should be
assigned higher priority than key-encoding tasks. However,
our analysis indicates that a strict-sense priority scheduler
may lead to nondeterministically large processing delay. So,
we introduce a weighted-round-robin scheme in the
PU design. More specifically, each type of tasks gains
higher priority in turn based on an asymmetrical round-
robin mechanism. In other words, the key-encoding tasks
will gain higher priority for one turn (one turn represents
two TCAM accesses, for either a rule-matching operation or
two successive key-encoding operations) after n turns with
the higher priority assigned to rule-matching tasks. Here, n
is defined as the round-robin-ratio. As we shall see in
Section 5.2, this scheduling algorithm will ensure that the
maximum processing delay experienced by each packet is
upper bounded.

4.3.2 Ordered Processing

Apparently, the order of the returned results from a specific
TCAM is determined by the processing order of the rule-
matching operation. Since a rule-matching buffer is a FIFO
queue, the results will be returned in the same order as the
packet arrivals, although the key-encoding tasks of the
packets may not be processed in their original sequence.’
As a result, if the key-encoding result for a given rule-
matching unit returns earlier than those units in front of it,
this rule-matching unit cannot be executed. Specifically, the

5. This is because the key encoding tasks whose rule-matching is
processed in a specific TCAM may be assigned to different TCAMs to be
processed based on the FA algorithms.

PU for a given TCAM maintains a pointer pointing to the
position in the Key Buffer that contains the key-encoding
result corresponding to the unit at the head of the RM FIFO.
The value of the pointer equals the S/N of unit at the head
of RM FIFO. In each TCAM cycle, PU queries the valid bit of
the position that the pointer points to in the key buffer. If
the bit is set, meaning that the key-encoding result is ready,
and it is rule-matching’s turn for execution, PU reads the
key-encoding results out from the key buffer and the
5-tuple information out from the RM FIFO queue, and
launches the rule-matching operation. Meanwhile, the
valid-bit of the current unit in the key buffer is reset and
the pointer is incremented by 1 in a cyclical fashion. Since
the S/N for a packet in a specific TCAM is assigned
cyclically by the distributor, the pointer is guaranteed to
always point to the unit in the key buffer that corresponds
to the head unit in the RM FIFO.

4.4 Mapper

The function of this component is to manage the result
returning process of the TCAM chips. According to the
processing flow of an operation, the mapper has to handle
three types of results, i.e., the key-encoding phase-I results
(for the SPORT field), the key-encoding-phase-II results (for
the DPORT field), and the rule-matching results. The type
of the result is encoded in the result itself. If the result from
any TCAM is a rule-matching result, the mapper returns it
to the NPU directly. If it is a key-encoding-phase-I result,
the mapper stores it in a latch and waits for the Phase II
result, which will come in the next cycle. If it is a key-
encoding-phase II result, the mapper uses the tag informa-
tion from the Tag FIFO to determine: 1) which key buffer
(according to the CAMID segment) this result should be
returned to and 2) which unit in the key buffer (according to
the S/N segment) this result should be written into. Finally,
the mapper combines the two results (of phases I and II)
into one and returns it.

4.5 An Example of the Processing Flow

Suppose that the ID-bit selection is based on rule database #5
and the four ID-bits are PROT(4), DIP(1), DIP(21), and
SIP(4). The distributed rule table is given in Table 2 (in
Section 3.2). Given a packet PO with 5-tuple, <166.111.140.1,
202.205.4.3, 15335, 80, 6>, the processing flow is the
following (also shown in Fig. 7):

1. The4-bitKey-ID “0010” is extracted by the distributor.

2. According to the distributed rule table given by
Table 2, key-ID group “0010” is stored in TCAM#1
(i.e., with CAMID “001”). Suppose that the current
S/N value of TCAM#1 is “00101(5),” then the
CAMID “001” and the updated S/N “00110(5+1)"”
are combined into the tag with value “00110001.”
Then, the 5-tuple, together with the tag, is pushed
into the RM FIFO of TCAM#1.

3. Suppose that the current queue sizes of the five KE
FIFOs are 2, 0, 1, 1, and 1, respectively. According to
the FA algorithm, the key-encoding operation of
packet PO is to be performed in TCAM#2. Then, the
two range fields <15535, 80>, together with the tag,
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are pushed into the KE FIFO associated with
TCAM#2.

4. Suppose that now it is the turn for key-encoding or
no rule-matching task is ready for execution, PU#2
pops off the head unit (<15535, 80>+Tag<00100110>)
from the KE FIFO and sends them to TCAM#2 to
perform the two range encodings successively.
Meanwhile, the corresponding tag is pushed into
the Tag FIFO.

5. When both results are received by the mapper, it
combines them into one and pops the head unit from
the tag FIFO.

6. The CAMID field “001” in the tag indicates the result
should be sent back to the key buffer of TCAM#1,
while the S/N field “00110” indicates that it should
be stored in the sixth unit of the key buffer.
Meanwhile, the corresponding valid bit is set.

7. Suppose that all the packets before packet PO have
been processed and PO is now the head unit in the
RM FIFO of TCAM#1. Note that packet PO has S/N
“00110”. Hence, when it is the rule-matching’s turn,
PU#1 probes the valid bit of the sixth unit in the key
buffer.

8. When PU#1 finds that the bit is set, it pops the head
unit from the RM FIFO (the 5-tuple) and reads the
contents out from the sixth unit of the key buffer (the
encoded key of the two ranges) and then launches a
rule-matching operation in TCAM#1. Meanwhile,
the valid bit of the sixth unit in the key buffer is reset
and the pointer of PU#1 is incremented by one and
points to the seventh unit.

9. When the mapper receives the rule-matching result,
it returns the result to the NPU, completing the
whole process cycle for packet P0.

5 PERFORMANCE EVALUATION

5.1 Throughput

After a thorough investigation into the original problem, we
find that it is very hard to provide precise theoretical
analysis for the performance evaluation of DTCS (more
precisely, LFA algorithm in DTCS). However, with some
reasonable assumptions made, which are derived from
numerous experiments and observations, we are able to
evaluate the worst-case throughput performance of the
proposed DTCS as the following:

Assumption 1. Suppose that, for any KG;, j=1,...,2" and a
given capacity constraint Cy, we have |KG,| < 0.5C; and
Wi <2 x (1/2F) = 1/2F1 (AD).

This assumption is derived from the key observation
that, although it is possible that the Key-ID group with a
relatively large number of rules or heavy traffic load ratio
may exist, it is unlikely to see one, in practice, which
occupies more than half of the TCAM capacity or whose
traffic load ratio exceeds more than twice the average traffic
load ratio of each ID group.

Assumption 2. Sorting W[j],j = 1,...,2% in decreasing order
and denoting the result as W'[j],j = 1,...,2F and defining
W'[2F +1] = 0, we then have
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W > W2 >.. W2 > w)2f +1]=o0.

Define 6; = W'[i] — W'[i + 1],i = 1,...,2F. We assume that:

Zi:m,.“,?" bi < Zi:l ,,,,,

2P —p 41~ 2P ’
2K <z < 2F (A2).

This assumption is based on the statistical results
which indicate that §; tends to be relatively trivial when
¢ is large enough (e.g., ¢>2K). This can also be
intuitively yet rationally illustrated as follows: Since
6t = W'[i] — W'[i + 1] < W'[i], when i becomes larger, the
value of W'[i] gets smaller and, therefore, &; accordingly
tends to be smaller. (A2) indicates that, since ¢; tends to get
smaller as i grows larger, the mean value of the last (2P -
x+1)6; (i.e., 6, i=ux,...,2F) tends to be smaller than the
mean value of all § (ie, i=1,...,2F). Noting that

we further have

2P —x 41
(A2) & ZP(SZ- e szsi,
i1=x,...,2 i=1,...,2
2P _x 41

2K <z <2l &« W'[z] <

Assumption 3. Let 3 be the difference between the maximum
and minimum numbers of key-ID groups allocated to the
TCAM chips using the algorithm in this paper. In light of
numerous experimental results, we find (3 is always small. Note
that, in the typical case when K =5 and P = 4, each TCAM
gets only 27/ K = 3.2 key-ID groups on average and, as will be
illustrated shortly, each TCAM at least gets two key-ID groups.
Hence, we assume (3 < 3 in the following deduction (A3).

CFA Evaluation. As mentioned above, according to the
FA scheme described in Section 3.4, the traffic load can be
bound to be satisfied if the distributed table construction
result is derived from CFA. Therefore, the throughput of
DPPC-RE can be guaranteed to be K times that of the single
chip solution.

LFA Evaluation. The performance evaluation for LFA is
not as straightforward as that of CFA. Fortunately, we find
that, by partitioning the entire process of LFA into two
distinct phases, it is possible to deduce the worst-case
performance phase by phase based on the three assump-
tions. First, recall (see Fig. 5) that, in each round of the LFA,
K key-ID groups are allocated. Then, we denote by « the
number of rounds where key-ID groups are allocated when
the capacity constraint Maz;—;, xG[k] < C; actually has no
effect. For instance, according to Al, we have a > 2, i.e,, in
the first two rounds of the LFA allocation, this constraint is
always guaranteed to be satisfied.

Phase 1 (Rounds from 1 to «). In this phase, the distribution
process works without being restricted by the capacity
constraint and the difference between the maximum and
minimum RM{[i], denoted by Ay, accumulated to the end of
this phase is no larger than 1/2F71, ie., A; < 1/2P7L,
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Proof. Denote A, as the difference between the maximum
and minimum RM i] accumulated to the end of Round z,
1 <z < o Note that, according to LFA, in Phase 1, each
TCAM must be allocated exactly one key-ID group in
each round and, for any pair of TCAMs, the one with a
larger RM]i] at the end of the previous round must be
allocated a smaller W'[i] in the current round. Thus, in
any round z, 1 < z < ¢, the difference between allocated
traffic load ratios of any two TCAMs must not
accumulate from one round to the next and, therefore,
A, is no larger than either 1) the difference between the
maximum and minimum W[i]s within this round or 2)
Ay, ie., for Vo,l1 <z <a, Ay < Maz;c, W[(i — 1)K +
1] — W'[iK]} or A, < A,_;. Note that Vi,

Wi — 1)K+ 1] - W[iK] < W[(i — 1)K +1] < 1/2F!

and A; = W'[1] - W/[K] < 1/2F71; therefore, it can be
justified, using mathematical induction, that
Vo, 1 <z <al, <1/2P71. S0, Ay = A, <1/2PL O

Phase 2 (The rest of the process). In this phase, the capacity
constraint works. Note, that until the end of Phase 1, each
TCAM is allocated an identical number of key-ID groups.
According to Assumption 3, the difference between the final
numbers of allocated key-ID groups of any two TCAMs must
be no more than 2. So, the worst case is that the first two, i.e.,
the largest two, W'[aK + 1], W'[aK + 2] among the key-1D
groups that have not been assigned yet are allocated to the
TCAM chip with the largest traffic load ratio (accumulative to
the end of Phase 1). Moreover, the final difference, denoted by
Ay, may be even larger since the TCAM with the largest traffic
load ratio may keep getting the relatively larger W'[i] in the
rest rounds. Note that this expansion of Ay in each round must
be no larger than W'[aK + 3].So, in the worst case,

”— qK —2
Ay < Ay + W[aK +1] + W[aK + 2] + LO‘TJ
x W'aK + 3].
Particularly, according to Al and A2,
2P _ (aK+1)+1
WlaK + 1]+ Wak +2] < 2— @ 2P+ ) Ly
2P — (aK +2)+1
+ 57 wl1]
2P+l _oqK — 1 1
= 2P X opP-1"
Similarly,
P_ K —
{%J x W'aK +3] <
{QP—aK—QJ 2P _ K —2 1
X X .
K 2P 2P—1

So,
1 2P+l _oqK —1
Ang(K,P,a):QPq <1+ 5P +
1
2P —aK —2| 2P —aK -2 ()
X .
K 2P

44444

that when: 1) The traffic load ratios of the rest of the K — 1

TCAMs are all Ay less than the maximum one and 2) o = 2,
OF(K ,P.q)

since 5o <0 and o <2. In this case, the following
equality holds:
Max;—;,.., KRM[Z] + (K — 1)(M(11‘2':1 _____ ](RM[Z] — Az) =1.

Therefore, we get, in the worst case,

. 1 K-1

,,,,,

According to (1), for the typical case when P =4 and
K =5, we have A; <21.88% and, according to (1),
Mag;—y.. x RM[i] < 37.50% < 40% = 2/K. It means that,
based on the FA scheme described in Section 3.4, the traffic
load can also be perfectly balanced if the distributed table
construction is derived from LFA, under the three reason-
able assumptions. Therefore, the throughput of DPPC-RE
can be guaranteed to be K times that of the single chip
solution (KX ppc).

5.2 Worst-Case Processing Delay

We derive a performance upper bound for DPPC-RE. Note
that the maximum delay of the process is a very important
measure of the DPPC-RE scheme, which impacts overall
fast data path performance in terms of packet delay and loss
(note that DPPC-RE may cause a slight loss of packets when
the system is heavily loaded). Fortunately, we find that the
processing delay of the DPPC-RE scheme is upper
bounded. Denote the depth of the RM FIFO and the
KE FIFO as D, and Dy, respectively, the round-robin-ratio
(defined in Section 4) as n, the TCAM cycle as T, and the
maximum processing latency of a key-encoding operation
as T.. Then, we have:

Theorem 2. T}, < Dy, x 2(n+ 1) x T...

Proof. According to the weighted round-robin mechanism
(described in Section 4.3), the key-encoding tasks, if
there are any, will be processed in at most every n+ 1
turns (each turn is either a rule-matching or key-
encoding operation). Since each rule-matching or key-
encoding operation takes two TCAM access cycles, the
head unit of a KE FIFO would be processed within
2(n+ 1)T.. Note that the depth of the KE FIFO is Dj.
Hence, in the worst case, the tail unit in the KE FIFO
needs to wait Dy x 2(n+1) TCAM cycles until the
corresponding key-encoding task finishes. Therefore,
TkSDkXQ(n-i-l)XTF O

Theorem 3. Suppose that, at a specific instant T,, the key-
encoding results for the first q units in an RM FIFO
are all returned. Let the time instant when the rule-
matching task of the qth unit finishes be Ttipsn. Then,
Tfinish < Tn + ((I+ Lq/nJ + ]-) X 2 X 11(
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Proof. Since the key-encoding results for the first ¢ units are
all returned, there is no need for rule-matching to wait
for key-encoding results until time 7;,;s,. According to
the weighted round-robin mechanism, in the worst case,
q rule-matching tasks would be interrupted by at most
lg/n| +1 key-encoding tasks. Note that each rule-
matching or key-rncoding operation takes two TCAM
access cycles. So, in this case, (¢ + |g/n] +1) x 2 x T, is
needed until the rule-matching task of the gth unit
finishes. Hence, Tinisi, < T, + (¢ + |g/n] +1) x 2 x T..0

Theorem 4. Let T; denote the processing delay of an operation.
Then, T, satisfies:

Ty <[Dpx2x(n+1)+ (D, + |D,/n] +1) x 2] xT..

Proof. First, the processing delay of an operation is
actually the processing delay of the corresponding
rule-matching operation (the last step of the opera-
tion). For any given packet PO, suppose that the
instant it arrives is T, and, at that instant, there are
g —1 units in the RM FIFO at the TCAM where the
rule-matching task for PO is to be performed
(namely, it is the g¢th unit). Note that the instant
when all the key-encoding results for the first ¢ units
in this RM FIFO are returned (denoted as T),) is
actually the instant when the last key-encoding result
for the first ¢ units is returned (denoted as T)).
According to Theorem 2, T! — T, < Dy x 2(n+1) x T,
so T, =T, <T,+ Dy x2(n+ 1) x T,. Suppose that, at
the instant T7,, packet PO is in the ¢'th position.
According to Theorem 3, we further have

sz'nishST;L'i_(q/—’_Lq//nJ +1) XZXJ—::STG+D1§X2
X(n+1)xT.+(d +[d/n] +1) x2xT.

Note that ¢’ < D,; therefore,
Trinish < To + D, x 2(n+ 1) + (D, + | D,y /n] + 1) x 2] x T...
Therefore,
Ty = Tinish — Ta < [Dp x 2% (n+1)

+ Dy + [Dr/n] +1) x 2] x T,..
O

For the typical case when D, =4, D, = 8, n = 3, we have
Ty <54 xT,.

5.3 Power Efficiency

TCAM is a fully associated memory. When the search key is
presented at the input, all TCAM entries are triggered
simultaneously for the matching. This, therefore, results in
very high power consumption. Hence, power consumption
for TCAM has traditionally been one of the major concerns.
With the improvement of TCAM technique, some of the
latest products, e.g., the Cypress Ayama 10K/20K NSE
Series TCAM [20], have the ability (powered by the function
called MiniKey) to let the designer categorize the entries into
groups. For each matching, by providing the ID of the entry
group, the matching can be limited within the correspond-
ing entry group, i.e., only the entries belonging to this group
will be triggered, hence saving power. Many works have
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been proposed based on such a technique [22], [26], [27]. For
instance, Zane et al. [22] developed a power efficient route
lookup engine, called CoolCAM. Benefiting from such new
features of TCAMs, CoolCAM uses both trie-based and bit-
selection-based table partitioning schemes to reduce the
number of entries triggered during a TCAM match and
achieves a power reduction factor of about 7.55 when
adopting eight TCAM partitions.

Compared with CoolCAM, which relies only on the new
features of TCAM, DPPC-RE comes with the ability to
further optimize TCAM power efficiency and achieves a
better power reduction factor. First, according to the DTCS
scheme, each TCAM contains only a small portion of the
policy table, including several Key-ID groups. Hence, for
each matching operation, merely a portion of the policy
rules would be matched. Supposing that the rules are
evenly allocated among the TCAM chips, the power
consumption is reduced by a factor of ;7% = iy -
Second, with the MiniKey function, we may simply let the
rules in each key-ID groups be an entry group. Then, for
each matching, the power consumption can be reduced by a
factor of D(N{f}'() o7 = Dgfzszf, e.g., = 12,5 in the example
described in Section 3, where P = 4, N = 2,180, N, = 1, 550,
K =5,and DER = 1.80, assuming that the sizes of different
Key-ID groups are similar.

5.4 Database Updating

A rule table is dynamically managed by adding new rules
and/or deleting old rules from time to time. Moreover,
these rule updates may result in an encoded range table
update to maximize the TCAM storage efficiency. Hence,
how to effectively handle rule and range table update is a
key issue in the proposed algorithms. In [19], we proposed a
lock-free algorithm, called the Consistent Policy Table
Update Algorithm (CoPTUA), for rule update in a single
TCAM. The basic idea of CoPTUA is to maintain a
consistent and error-free rule table during the rule update
process, thus eliminating the need for TCAM rule table
locking while ensuring the correct rule-matching. CoPTUA
is further extended to design a lock-free algorithm for range
table update in [15]. In this section, we show that the lock-
free rule and range table update algorithms can be easily
incorporated into DPPC-RE, thus eliminating the possible
negative performance impact of range and rule table
update. In DPPC-RE, a rule may be placed in 1) only one
TCAM or 2) multiple TCAMSs, as we stated in Section 2. In
case 1, the rule update (addition or deletion) process is the
same as that in the single TCAM case [19]. In case 2, the rule
update may not be finished at the same time in different
TCAMs. However, any search key can only be classified in
one TCAM, which is maintained as a consistent table
during the update process, and, hence, no inconsistency is
introduced due to the different activating time of the
updated rule in different TCAMs. The encoded range
update process in DPPC-RE is similar to that of the single
TCAM case described in [15]. The only difference is that the
range tables are duplicated in every TCAM. What we need
to keep in mind is that any rule table can be updated only
after all range tables are updated for encoding a newly
selected range and any range table can be updated only
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Fig. 9. Simulation results (throughput and delay).

after all rule tables are updated by unencoding an encoded
range. It is not difficult to realize that the consistency of rule
and range tables is maintained during the encoded range
update process.

The rule update may result in a variation in lookup
throughput and the number of rules among different
TCAMs. We set two thresholds for each TCAM. One is
lookup throughput, which is determined based on the
worst-case analysis. When the lookup throughput in a
TCAM reaches the threshold value, a rule group with heavy
lookup throughput will be exchanged with a rule group
with relatively light lookup throughput from another
TCAM. If no such rule group can be exchanged due to
space capacity constraint, the LFA-CFA algorithm will be run
to reconstruct the tables. The other threshold is the number of
rules in a TCAM. Similarly to the single TCAM case, some
empty rule entries have to be kept for rule update purpose.
When the number of empty rule entries is less than the
threshold, e.g., 1 percent C}, a rule group of a large number of
rules will be exchanged with a rule group of a small number of
rules from the TCAM with the least number of rules, while
maintaining the lookup threshold of each TCAM within a
given value. If no rule group can be exchanged, the LFA-CFA
will be run to reconstruct the table. Due to the slow rule
update rate (from once in a few seconds to oncein a few days),
the reconstruction rate is low.

5.5 Simulation Results

The performance of the proposed solution is evaluated by
simulation. We assume the traffic arrival process is Poisson
and the traffic load distribution among key-ID groups is
given in Fig. 6. The following parameters are used in the
simulation: K = 5, RM FIFO queue size = 8, Key Buffer size
= 8, KE FIFO queue size = 4, and Round-Robin-Ratio = 3.

5.5.1 Throughput and Delay Performance

The simulation results are given in Fig. 9. First of all, we
find that the throughputs are perfectly guaranteed even
when the system is heavily loaded (traffic intensity tends to
100 percent, i.e., 125 Mpps. In the case when K =5 and
100 MHz TCAM chips are adopted, this index actually
equals 5 ppc), showing that the traffic load is well balanced
by the DPPC-RE mechanism. The minimum delay for each
packet classification is 10 TCAM cycles (five for rule-
matching and five for key-encoding). In general, however,
additional cycles are needed because of the queuing effect.
We focus on the performance when the system is heavily
loaded. The lower two subplots in Fig. 9 show the delay
distribution for the back-to-back mode (i.e., traffic intensity

TABLE 4
Simulation Results of Changing Traffic Pattern
Case Table constructed| Traffic change Before (%) After (%)
from to
I Pattern I Pattern IT 99.76 99.96
I Pattern IT Pattern 1 100 99.63

= 100 percent). We find that more than 95 percent of the
packets are processed within 21 (TCAM) cycles. Suppose
that the TCAM chips work at 100MHz and the delay is
around 210~260 ns for the majority of the packets,
indicating that both delay and delay jitters are reasonably
small. Also, note that we have proven in Section 5.2 that the
worst-case delay for each packet classification has an upper
bound of about 50 TCAM cycles, i.e., 500 ns.

5.5.2 Impact of Traffic Pattern Changes

In order to measure the stability and adaptability of the
DPPC-RE scheme when the traffic pattern changes over
time, we run the following simulations at the back-to-back
mode (i.e., traffic intensity = 100 percent). The traffic pattern
depicted in Fig. 6 is denoted as Pattern I (uneven
distribution) and the uniform distribution is denoted as
Pattern II. We first construct the distributed table according
to one of the patterns and measure the throughput
performance under this traffic pattern. Then, we change
the traffic to the other pattern and get the throughput
performance again without reconstructing the distributed
table. The associated simulation setups and the results are
given in Table 4. We find that, although the traffic pattern
changes significantly, the throughput performance just
decreases slightly® (<1 percent) in all the cases. This means
that FA excels in adaptive load balancing and the DPPC-RE
scheme copes with the changes of traffic pattern well.

5.6 Comparison with Other Schemes

In this part, we assume that common 100 MHz TCAM chips
are adopted to implement the packet classification engine
since a single 100MHz TCAM chip cannot provide OC768
wire speed. So, CLP must be adopted to achieve this goal.
Depending on the method of achieving CLP (to use
distributed storage or to duplicate the table) and, whether
we adopt key-encoding or not, there would be four different
possible schemes. They are:

1. Duplicate Table + No Key-Encoding. Two 100 MHz
TCAM chips should be used in parallel to achieve
125 Mpps, with each containing a full, unencoded
rule table (with N entries). A total number of K x N
TCAM entries are required. It is the simplest one to
implement and offers deterministic performance
(i.e., with zero loss rate and fixed processing delay).

2. Duplicate Table + Key-Encoding. Five 100 MHz TCAM
chips should be used in parallel to achieve 125 Mpps,
with each containing an encoded rule table (with
N, entries). A total number of K x N, TCAM entries

6. In Case 1, the throughput even increases, which indicates that the
change of the pattern even has a positive effect on the performance. This
may be caused by the use of the greedy (i.e., not optimum) algorithm for
table construction.
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TABLE 5
Comparison of Expansion Ratios
Database #1 #2 #3 #4 #5
Original Rules (V) 279 183 158 264 1550
Expanded Rules (V) 949 553 415 1638 2180
After KE (V,) 279 183 158 264 1550
Expansion Ratio to Support OC768
Duplicate+NoKE(K=2) 6.80 6.04 5.98 12.40 2.82
Duplicate+KE(K=5) 5.08 5.11 5.10 5.14 5.03
Distributed+KE (K=5) 1.59 1.70 1.82 2.19 1.53
Distributed+NoKE(K=2) 5.18 4.46 343 7.81 1.69

are required. It also offers lossless, deterministic

performance.
3. Distributed Storage + Key-Encoding (DPPC-RE). Five
100 MHz TCAM chips should be used in parallel.
The total number of TCAM entries required is N, x
DER (which is not linearly proportional to K). It
may incur slight loss when heavily loaded.
Distributed Storage + No Key-Encoding. Two 100 MHz
TCAM chips should be used in parallel. The total
number of TCAM entries required is N x DER.
Without a dynamic load balancing mechanism
(which can only be employed when adopting key-
encoding), its performance is undeterministic and
massive loss may occur when the system is heavily
loaded or the traffic pattern changes.

The TCAM Expansion Ratio ERs (defined as the ratio of
the total number of TCAM entries required to the total
number of rules in the rule database) are calculated for all
the five real-world databases based on these four schemes.
The results are given in Table 5. Apparently, Distributed +
KE, or DPPC-RE, significantly outperforms all three of the
other schemes in terms of the TCAM storage efficiency.

Obviously, DPPC-RE exploits the trade-off between
deterministic performance and high statistical throughput
performance, while the schemes with table duplication gain
high deterministic performance at significant memory cost.
The combination of distributed storage and range encoding
(i.e., the DPPC-RE scheme) provides a very good balance in
terms of the worst-case performance guarantee and low
memory cost, making it an attractive solution.

On the other hand, we should also notice that, although
DPPC-RE provides a good trade-off between storage require-
ment and scalable performance, it requires additional specific
hardware assistance. Moreover, the mapper should work at
the speed K times faster than that of the memory chips (e.g.,
as far as 100 MHz TCAM is concerned, the mapper should
work at approximately K*100 MHz). Fortunately, thanks to
modern ASIC technology, which can work at multiple GHz
clockrate [21], the mapper, which is simple in function, can be
easily implemented with low cost.

6 CONCLUSION

Insufficient memory bandwidth for a single TCAM chip
and large expansion ratio caused by the range matching
problem are the two important issues that have to be solved
when adopting TCAM to build a high performance and low

cost packet classifier for next generation multigigabit router
interfaces. In this paper, a distributed parallel packet
classification scheme with range encoding (DPPC-RE) is
proposed to achieve OC768 wire speed packet classification
with minimum TCAM cost. DPPC-RE includes a rule
partition algorithm to distribute rules in different TCAM
chips with minimum redundancy and a heuristic algorithm
to balance the traffic load and storage demand among all
TCAMs. The implementation details are given. A thorough
theoretical worst-case analysis of throughput, processing
delay, and power consumption, as well as the experimental
results, shows that the proposed solution can provide
scalable throughput (e.g., 125 Mpps in the presented
prototype), matching OC768 line rate or even higher, with,
e.g., 50~119 percent additional TCAM resource, found for
the five real-world classifiers.
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