
Enhanced prefix inclusion coding filter-encoding
algorithm for packet classification with ternary
content addressable memory

D. Pao, P. Zhou, B. Liu and X. Zhang

Abstract: Filter encoding can effectively enhance the efficiency of ternary content addressable
memory (TCAM)-based packet classification. It can minimise the range expansion problem,
reduce the TCAM space requirement and improve the lookup rate for IPv6. However, additional
complexity will incur inevitably in the filter table update operations. Although the average
update cost of the prefix inclusion coding (PIC) scheme is very low, the worst-case update cost
can be significantly higher. Major modifications to the PIC scheme to improve its update perform-
ance are presented. The new coding scheme is called PIC with segmented domain. By dividing the
field value domain into multiple segments, the mapping of field values to code points can be more
structural and help avoid massive code-point relocation in the event of new insertions. Moreover,
the simplified codeword lookup for the address fields can be implemented with embedded SRAM
rather than with TCAM. Consequently, the lookup rate of the search engine can be improved to
handle the OC-768 line rate.
1 Introduction

As the Internet is evolving towards multimedia-oriented and
quality-of-service aware applications, more advanced
packet processing is necessary for the next generation
Internet routers. Advanced routers that are capable of clas-
sifying packets into flows are called flow-aware routers [1].
A flow is usually defined by a five-tuple filter consisting of
the source and destination address prefix, source and desti-
nation port range and the protocol field. Three types of
matches, namely, prefix match, range match and exact
match can be specified. Usually, the address fields require
prefix match, the port number fields require range match
and the protocol field requires exact match. Many
high-speed packet classification methods have been pub-
lished in the literature [1, 2]. These methods can be
broadly divided into two categories, namely, algorithmic
approaches based on embedded SRAMwith dedicated hard-
ware devices [3–9] and approaches based on ternary
content addressable memory (TCAM) [10–17]. The
packet classification problem can be modelled as the classi-
cal point location problem in the computational geometry.
Let N be the number of regions (filters) and d be the
number of dimensions. It is well known that the point
location problem can be solved in O(log N) time with
O(Nd) space; or, in O(log Nd21) time with O(N) space.
In general, algorithmic approaches try to exploit the

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cdt:20060226

Paper first received 12th December 2006 and in revised form 13th May 2007

D. Pao and P. Zhou are with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong

B. Liu is with the Department of Computer Science and Technology, Tsinghua
University, Beijing, People’s Republic of China

X. Zhang is with the Department of Computer Science, Carnegie Mellon
University, USA

E-mail: d.pao@cityu.edu.hk
572
distribution of field values in the filter table in order to opti-
mise the classification rate and minimise the memory
required. As a result, incremental updates to the data struc-
tures are rather difficult. To accommodate new rules, the
data structures of the search engine need to be rebuilt; or,
the performance of the system will be degraded substan-
tially. Because of the flexibility and simplicity in the
lookup table management, TCAM has been widely used
in commercial routers [18] for the implementation of
various lookup functions, such as label lookup in MPLS,
IP address lookup and packet classification. According to
[19], over 6 million TCAM devices were deployed world-
wide in 2004. It is expected that TCAM will remain as
the dominant solution that will be used by the industry in
the foreseeable future. In this article, we focus on the
studies of TCAM-based packet classification.

TCAM allows three possible values to be stored in a
memory cell, that is, 0, 1 or x (don’t care). Fig. 1 depicts
the organisation of a typical TCAM-based lookup engine.
A filter is stored in one TCAM entry. The input search
key is compared with all the filters in parallel. There is a
match bit associated with each TCAM entry. The match
bit is set if the search key matches the filter. The priority
encoder built-in the TCAM will then return the lowest
address of the matching entries, and the corresponding
action is retrieved from the SRAM/DRAM.

Top-of-the-line TCAM device available today can
operate at 266 MHz with a capacity of 18 Mb [18]. There
are 72 I/O pins for entering the search key. The word
length is configurable to have 36, 72, 144, 288 and 576
bits. The device supports 133 million searches per second
(MSPS) for a 72-/144-bit search key. The lookup rate is
reduced to 66.5 MSPS for a 288-bit search key and
33.25 MSPS for a 576-bit search key. When TCAM is
applied to packet classification, a range value is converted
to multiple prefixes or entries with appropriate don’t care
bits. For example, the popular port range [1024–65 535]
will be decomposed into six distinct prefixes. If both the
IET Comput. Digit. Tech., 2007, 1, (5), pp. 572–580

source and destination port ranges are specified as �1024,
the given filter will occupy 36 TCAM entries. This is
known as the range expansion problem. Previous studies
have found that the number of physical entries is two to
six times the number of rules in a filter table [14].
High cost and high power consumption are the two major

disadvantages of TCAM-based lookup engines. An 18 Mb
TCAM costs more than US 200 and consumes up to 18 W
of power. A five-tuple IPv4 filter has 104 bits in length.
The filter length increases to 296 bits in IPv6. In a straightfor-
ward implementation of IPv6 packet classification, a 576-bit
word length is selected. Hence, an 18 Mb TCAM can store
only a filter table with about 10 K rules, and the lookup
rate is reduced to 33.25 MSPS, which is much lower than
the peak packet arrival rate of 78 MPPS for an OC-768
data link at 40 Gbps (assume 64-byte IPv6 packets).
Filter encoding [13, 15] is an effective approach to

enhance the efficiency of TCAM-based lookup engines in
terms of space, time and power dissipation. However,
once the fields are encoded, additional complexities incur
inevitably in the update process. Traditionally, rules are
updated manually and the update frequency is low.
However, filter tables are becoming more dynamic. Newer
systems are required to provide fast responses to hostile
network events, and automatic updates to the filter tables
are possible. Packet classification also finds application in
the implementation of content-based switches. A packet
classification engine is used to support packet header trans-
lation for TCP splicing at wire speed [20]. The filter table
needs to be updated frequently, as HTTP/SSL (secure
socket layer) sessions are established and/or closed down.
In this article, we shall present major extensions to our

previously proposed encoding scheme, called prefix
inclusion coding (PIC) [13] such that the worst-case
update cost to the filter table is substantially reduced.
Furthermore, the packet processing rate can be improved
by simplifying the codeword lookup operation. The
authors of [16, 17] proposed chip-level parallel processing
techniques to increase the system throughput by up to
four times that of a single chip. These parallel processing
techniques can also be applied to encoded filter tables if
required. However, the discussion of chip-level parallel
classification engine is beyond the scope of this paper.

2 Related works

2.1 Range expansion problem

The work of Liu [12] was one of the early proposals to
tackle the range expansion problem using encoding
scheme. His scheme uses 1 bit in the codeword to represent
a non-trivial range (range that contains more than one
point). If a 144-bit TCAM entry is used to store a 104-bit

Fig. 1 Organisation of TCAM-based lookup engine
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007
IPv4 filter, up to 40 arbitrary ranges can be encoded.
Since the number of arbitrary ranges can be much larger
than 40, the effectiveness of this approach is limited. Che
et al. [21] proposed an algorithm to dynamically select an
optimal subset of ranges to be encoded on the basis of
Liu’s approach so that the expansion factor could be mini-
mised. Lakshminarayanan et al. [10] proposed another
encoding scheme that would reduce range expansion by
expanding the port range field. The 16-bit port range field
is split into l chunks of sizes k0, k1 . . . , kl21. Each chunk
of ki bits is then encoded using 2ki 2 1 bits. These encoding
schemes may not be applicable to IPv6. For IPv6 packet
classification, it is not economical to use a 576-bit TCAM
entry to store a 296-bit filter. Hence, the general idea is to
compress the filter length to fit into shorter word length,
for example, 72 or 144 bits, in order to reduce the TCAM
space requirement rather than expanding the size of individ-
ual fields.

Spitznagel et al. [14] proposed to incorporate range com-
parators in each TCAM entry. The range comparator is an
iterative circuit that requires 32-gate delay to determine
whether the 16-bit port number matches the given range. In
today’s TCAM cell design [22], whether an entry matches
the input search key can be determined in one single-gate
delay. Power dissipation in a search operation is mainly
due to the pre-charging and discharging of the match lines.
Sophisticated current racing technique is employed to
reduce the voltage swing of the match line in order to
reduce the power dissipation during a search operation.
There is a very stringent requirement on the processing
time of individual TCAM cell. The excessive long delay
time of the range comparator circuit proposed by
Spitznagel et al. [14] will have negative impacts on the pro-
cessing time and power dissipation of the TCAM. How could
their proposal be incorporated in the physical implementation
of TCAM cell array requires further studies.

2.2 P2C-encoding scheme

The work of van Lunteren and Engbersen [15] was the
first encoding method that aimed at compressing the
overall filter length. Their method, called P2C, is based on
the concept of primitive-range hierarchy. Ranges are
mapped to different layers in the hierarchy such that
ranges on the same layer must be disjoint and are rep-
resented by non-zero codewords. By default, smaller
ranges are placed on the top of larger ranges. Three
coding styles are presented in [15]. We shall use the
sample prefixes shown in Table 1 to illustrate the idea. In
style I, primitive ranges in a layer are assigned distinct
non-zero codewords as shown in Fig. 2. The codewords
assigned to individual ranges are independent.

P2C style II allows two primitive ranges on the same layer
to be assigned a common code value if both ranges are sub-
ranges of two disjoint primitive ranges at other layers. For
example, ranges B, E and G are mapped to L2 as shown
in Fig. 2. They can be assigned the same code value (‘01’
in the example) since they are subranges of A, D and F,
respectively. The number of layers in the primitive range
hierarchy is limited by the physical implementation of the
codeword translation hardware. In P2C style III, primitive
ranges on different layers are merged if the number of
layers exceeds the limit; or, the length of the composite
codeword exceeds the physical limit. However, layer
merging may result in filter replication (because a range is
being represented by multiple patterns). In this example,
prefixes B and H are represented by two and three code-
words, respectively.
573

A certain number of spare bits are reserved to support the
dynamic addition of new prefixes/ranges. The spare bits
can be allocated to any primitive layers on demand. In prin-
ciple, P2C style I allows efficient incremental updates to the
filter table since the codewords assigned to individual pre-
fixes/ranges are independent. However, when the code
length of a layer is changed, the codewords for all ranges
mapped to that layer need to be modified. Spare bits in
the TCAM should be initialised to x (don’t care) instead
of 0 as suggested in [15]; otherwise it will induce dependen-
cies of the TCAM contents among overlapping ranges
mapped onto different layers. Consequently, the complexity
of insertion and deletion operations will be substantially
increased. For example, if one more range is mapped to
layer 1 and the code length for layer 1 is increased to
three bits, then the codewords of A, D and F need to be
updated. As a result, all the filters associated with prefixes
A, D and F also need to be updated.
The update complexity of P2C styles II and III is even

higher because of the dependency of codeword assignment
caused by the mapping of ranges to layers. For example, if
ranges A and D are removed, then B and E cannot share
the same code value. Whenever a range r is inserted or
deleted, all the ranges enclosed by r would have their code-
words modified. For example, if a prefix K ¼ 98.0.0.0/8 is
added, then the codewords of D, E, F, G, H, I and J are
affected. Moreover, the removal of a range r may also
affect other ranges not covered by r due to code value sharing.
Li et al. [11] proposed a modified encoding algorithm for

IPv6 on the basis of P2C. They observed that there are only a
few distinct patterns in the first 16 bits of IPv6 unicast
addresses. Hence, they proposed to encode only the first

Table 1: Sample prefixes and codeword assignment
using P2C

Prefix P2C-I P2C-II P2C-III

A: 39.50.0.0/16 01xxxxx 01xxxx 01xxx

B: 39.50.64.0/24 xx001xx 0101xx 01001, 0101x

C: 39.50.64.128/28 xxxxx01 010101 01010

D: 98.133.0.0/16 10xxxxx 10xxxx 10xxx

E: 98.133.116.0/24 xx101xx 1001xx 10001

F: 98.176.0.0/16 11xxxxx 11xxxx 11xxx

G: 98.176.8.0/24 xx011xx 1101xx 11001

H: 98.176.58.0/24 xx100xx 1110xx 1101x, 1110x, 11110

I: 98.176.58.16/30 xxxxx10 111001 11011

J: 98.176.58.128/30 xxxxx11 111010 11101

Fig. 2 P2C codeword assignment

L3 is merged with L2 in P2C-III
574
16 bits of the address fields by fixed-size 8-bit codewords.
For the port range fields, trivial ranges (ranges covering a
single point) and non-trivial ranges are mapped to specific
layers. To facilitate incremental updating, the code length
of each layer is predetermined and P2C style I is used.
The overall length of an encoded filter is 288 bits. A
drawback of using 288-bit word length is that the lookup
rate of the TCAM device is reduced to 66.5 MSPS. There
is also a potential risk for the needs to change to style II
or style III encoding in case the distribution of port ranges
cannot be accommodated by the predefined number of
layers and/or the predefined code length for that layer.
This scheme may have good update efficiency at the
expense of having slower lookup rate and higher TCAM
space requirement.

2.3 PIC-encoding scheme

The PIC scheme [13] is based on the inclusion property
among prefixes/ranges. Let p and q be two distinct pre-
fixes/ranges where the length of p is shorter than or equal
to the length of q. Let Cp and Cq be the codewords assigned
to p and q, respectively. The codeword assignment satisfies
the following three requirements:

(i) valid codeword must have a non-zero value.
(ii) The inclusion property is preserved. Cq is enclosed by
Cp iff q is enclosed by p.
(iii) If q is enclosed by p, then Cq must have a non-zero
suffix extension from Cp

Fig. 3 depicts the inclusion tree (i-tree) for the set of pre-
fixes listed in Table 1. The codeword assignment algorithm
is based on the codespace allocated to nodes of the i-tree. A
leaf node in the i-tree can be assigned a full-length code-
word, hence the code space occupied by a leaf node is
equal to 1. Since the codeword assigned to a child node
must have a non-zero suffix extension, the code space occu-
pied by an internal node is greater than or equal to 1 plus the
sum of the code space of its children. Wildcards are allowed
only towards the right-hand side of a codeword, hence the
code space occupied by an internal node must be a power
of 2. The minimum codeword length is then equal to log
of the code space occupied by the root. In the following
basic codeword assignment algorithm child nodes of the
same parent are ordered by the required code space in des-
cending order. The codeword assignment starts with the
child node requiring the largest amount of code space
(Fig. 4).

The incremental update cost of PIC is obviously lower
than that of P2C. First, in PIC, the removal of a range will
not affect the codeword assigned to any other ranges,
whereas in P2C, both insertion and deletion of ranges may

Fig. 3 Inclusion tree of the sample prefix set

Number next to a node is the code space allocated
Two times the required code spaces, (the number in bracket), are allo-
cated to node F and the root
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007

Fig. 4 PIC codeword assignment algorithm
require codeword re-assignment. Secondly, the insertion of
a range r in PIC will affect only some (instead of all) of the
ranges covered by r. In P2C, the code length of a layer may
be expanded due to insertions. When this happens, all the
ranges mapped to the given layer will be affected.
Thirdly, in P2C, the insertion of a new range may trigger
layer merging, which will induce codeword modifications
and rule replications. To facilitate dynamic insertions in
PIC, extra code space can be pre-allocated to internal
nodes of the i-tree. In the example shown in Fig. 3, the
code space allocated to node F and the root is two times
the required value. It has been shown in [13] that the
average cost for dynamic insertions can be very low, only
a few TCAM entries are modified for each insertion.
However, there exist some worst-case scenarios where the
update cost can be much higher. Consider the insertion of
a new prefix K ¼ 98.0.0.0/8, the structure of the i-tree
will need to be adjusted as shown in Fig. 5. The codewords
of prefixes D, E and F are modified.
The general reason for the need of large–scale codewords

re-assignment is that the nodes (prefixes) are mapped to the
code space by the order of the amount of the required code
space such that the minimum–length codeword can be
derived. When a new range that encloses some existing
ranges is added, relocation of code points may be necessary
in order to preserve the inclusion relation. We call this the
code-point relocation problem, and it is shown in Fig. 6.
The address space and code space can be represented by
number lines. Because of the insertion of the prefix K, the
code points assigned to D and E need to be relocated in
order to preserve the inclusion property. In Section 4, it
will be shown that most of the prefixes in a filter table are
longer than 16 bits. The insertion of 8-bit (or even shorter)
prefixes may lead to massive code-point relocation.

Fig. 5 Adjustments to the i-tree caused by the insertion a new
prefix K ¼ 98.0.0.0/8
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007
3 Enhanced PIC-encoding scheme

Besides the expensive worst-case update cost, there are
other practical issues of PIC that worth further studies. It
was suggested in [13] that the code tables for the two
address fields are implemented using TCAM. This approach
has the advantage that a pure TCAM-based classifier can be
built without the need of other special-purpose hardware.
Hence, it can easily be adopted in existing routers by updat-
ing the management software. Three TCAM accesses are
required for every classification, and up to five TCAM
accesses are required for IPv6 if the two-level codeword
lookup approach is adopted. Since the size of today’s
filter table is only up to about 10 K rules, the encoded
filter table and the two code tables can be stored in one
single TCAM. Consequently, the lookup rate is only fast
enough to handle OC-192 data link at 10 Gbps. This proces-
sing rate is sufficient for mid-range routers but not for the
most advanced routers with OC-768 data links at 40 Gbps.
A straightforward approach to improve the system through-
put is to use three separate TCAMs for codeword lookup
and classification. But this would be rather expensive.

Another implementation issue is related to the overall code
length. It has been found that the minimum overall code
length required for large filter tables is between 35 and 38
bits. When the spare bits and control bits for dynamic
updates are included, the optimal TCAM word length will
be about 48 bits. However, most of today’s TCAMs available
in the market support word lengths that are multiples of 36. If
72-bit TCAMword length is to be used, it is possible to refine
PIC to improve its performance in the lookup speed and
incremental updating. In the following subsection, we shall
first present our analysis of prefix and port range distribution.
On the basis of the observations of the field value distri-
bution, we shall derive an enhanced coding scheme called
PIC with segmented domain (PIC-SD).

Fig. 6 Code-point relocation
575

Table 2: Distribution of source prefixes by length

Prefix length, bit acl1 (756) acl2 (658) acl3 (2382) acl4 (2968) acl5 (3058) ipc1 (1818) fw1 (262) fw4 (275)

1–7 0 0 0 0 0 0 0 0

8 1 3 0 0 6 0 1 1

9–15 0 13 55 43 0 2 1 0

16 0 19 31 20 16 17 2 0

17–23 2 5 11 88 72 75 5 3

24 0 36 72 44 21 56 0 5

25–32 138 95 351 211 89 164 41 35

Size of the filer table is shown in brackets with the name of the filter table

Table 3: Distribution of destination prefixes by length

prefix length, bit acl1 (756) acl2 (658) acl3 (2382) acl4 (2968) acl5 (3058) ipc1 (1818) fw1 (262) fw4 (275)

1–7 6 0 0 0 0 0 0 0

8 3 4 0 12 0 0 0 1

9–15 1 24 0 16 0 0 0 0

16 9 37 6 2 0 51 0 0

17–23 24 6 6 9 0 46 4 14

24 13 58 24 33 0 122 0 40

25–32 147 101 238 649 650 210 38 38
3.1 Prefix and port range distribution

Real-life filter tables contain confidential information and
are not available in the public domain. Hence, our analysis
is based on synthetic filter tables generated using the rule set
generator developed by Taylor and Turner [23]. The gener-
ation of the synthetic rule set is guided by a seed file derived
from the real-life filter table such that the field value distri-
bution will resemble the real-life situation. A total of 12
seed files can be found in Taylor’s web site. The original
size of some of the seed files is relatively small, for
example, with less than 200 rules. These relatively small
filter tables are not included in our studies. Tables 2 and 3
summarise the prefix length distribution of the eight filter
tables. From these two tables one can observe that 8-bit pre-
fixes are found in most of the filter tables. In one extreme
case, 1-bit destination prefixes (0� and 1�) are found in
acl1. On the basis of these findings, we conclude that the
encoding scheme should be prepared to handle the insertion
of short prefixes. In the P2C method, the insertion or del-
etion of a 1-bit prefix will likely affect the codewords of
half of the prefixes, that is, half of the filters in the table
need to be updated.
576
The user application is represented by the source/
destination port number in TCP/IP. Port numbers in the
range 0–1023 are assigned to well-known applications
such as ftp, web browser, telnet and so on whereas port
numbers in the range 1024–65 535 are dynamically allocated
by the operating system. The port range 1024–65 535 is
commonly found in filter tables. The distribution of port
ranges is summarised in Table 4. One interesting observation
is that almost all of the filters in the ACL filter tables have the
source port number field specified as 1024–65 535 or simply
don’t care. On the other hand, ACL filter tables have a much
larger number of distinct destination port ranges compared
with the other two types of filter tables.

It can be seen from Table 4 that almost half of the arbitrary
port ranges within 1024–65 535 are distributed towards the
lower end, that is within 1024–4999. This can be explained
by the fact that some of the port ranges near the lower end
are being used by emerging applications, for example, port
numbers 1088–1089 are used by Java RMI. Most of the non-
trivial ranges found are narrow ranges that span a few points
to about a 100 points. Only a few wide ranges other than
1024–65 535 have been found. The values of these
wide ranges are (1025–65 535) found in acl1 and acl2;
Table 4: Distribution of destination (source) port ranges (not including the range 1024-65 535)

Port range 0–1023 1024-65 535

1024–4999 5000–9999 10 000–29 999 30 000–65 535

acl1 5 (0) 40 (0) 13 (0) 5 (0) 25 (0)

acl2 15 (0) 3 (0) 3 (0) 0 (0) 1 (0)

acl3 38 (1) 60 (0) 42 (0) 16 (0) 9 (0)

acl4 42 (0) 71 (0) 63 (0) 13 (0) 9 (0)

acl5 11 (0) 11 (0) 12 (0) 3 (0) 1 (0)

ipc1 22 (17) 10 (15) 16 (0) 0 (0) 1 (0)

fw1 25 (7) 4 (1) 5 (1) 1 (1) 1 (0)

fw4 22 (12) 3 (3) 7 (5) 8 (1) 0 (0)
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007

5001–65 535 found in acl1; 20 001–65 535 found in acl4.
The insertion of narrow port ranges can be handled efficiently
in PIC. However, the insertion of wide ranges may lead to the
code-point relocation problem.

3.2 PIC-SD-encoding scheme

First we shall discuss how to handle the insertion/deletion
of short prefixes. We divide the address space into 2k dis-
joint segments on the basis of the value of the first Kbits
of the IP address. Prefixes longer than k bits are distributed
to the corresponding bucket and PIC is applied to encode
prefixes in individual buckets separately. The codeword is
composed of the first k bits of the prefix followed by the
PIC codeword. Prefixes with k or fewer bits need not be
encoded. Since most of the prefixes in the filter tables are

Table 5: PIC-SD codeword assignment

Prefix PIC-SD (k ¼ 16)

A: 39.50.0.0/16 0010 0111 0011 0010 xxx

B: 39.50.64.0/24 0010 0111 0011 0010 11x

C: 39.50.64.128/28 0010 0111 0011 0010 111

D: 98.133.0.0/16 0110 0010 1000 0101 xxx

E: 98.133.116.0/24 0110 0010 1000 0101 111

F: 98.176.0.0/16 0110 0010 1010 0000 xxx

G: 98.176.8.0/24 0110 0010 1010 0000 011

H: 98.176.58.0/24 0110 0010 1010 0000 1xx

I: 98.176.58.16/30 0110 0010 1010 0000 111

J: 98.176.58.128/30 0110 0010 1010 0000 110

K: 98.0.0.0/8 0110 0010 xxxx xxxx xxx

The first 16 bits are extracted from the prefix and the last three
bits correspond to the PIC codeword

Table 6: Number of non-empty buckets

Number of non-empty bucket

Filter table Source prefix Destination prefix

acl1 4 82

acl2 20 60

acl3 53 37

acl4 33 122

acl5 19 67

ipc1 34 97

fw1 9 12

fw4 5 10
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007
between 16 and 24 bits, k is assumed to be equal to 16 in
the following discussion. Table 5 lists a possible assignment
of codewords to the prefix set of Table 1. Using this
approach, the insertion/deletion of prefixes with not more
than k bits will not affect the codeword assignment of
other prefixes.

We analyse the maximum code length of PIC-SD for the
eight filter tables with k ¼ 16. Table 6 shows the number of
non-empty buckets in the eight filter tables, and Table 7
shows the distribution of the required PIC code length. It
can be found that out of the 664 non-empty buckets, only
one bucket requires 8-bit code length, and nine buckets
require 7-bit code length. The rest can be encoded in 6
bits or less. The bucket requiring the longest code length
is found in acl1. This is a rather special case where
almost 60% of the source prefixes are localised in one
bucket. When the filter table grows, it is expected that the
prefixes will be spread out to a larger number of buckets.

Using this revised encoding scheme, the codeword
lookup process can be largely simplified. Assume the PIC
code length is B bits. We can first extract the first 16 bits
of the address A, denoted as AH, to probe into a hash
table. If we have a hash miss, then the search key is
formed by simply appending B zeros to AH. If there is a
hit in the hash table, a three-level (8-4-4) indexing structure
based on the method of [24] can be used to lookup the code-
word. We take bits 17–24 of A to access the 256-entry L1
index array. An array entry may store a codeword or a
pointer to an index array on the next level. If the selected
entry in the L1 index array is a pointer to an L2 index
array, then we take bits 25–28 to access the L2 index
array. Finally, if the selected L2 index entry is a pointer
to an L3 index array, we take bits 29–32 to access the L3
index array. Assume each entry in the multi-level index
array has 12 bits. The total amount of memory required to
implement the codeword lookup (not including the hash
table) is summarised in Table 8. The lookup hardware can
be organised as a pipeline to achieve one codeword
lookup per cycle.

Next we shall present a heuristic to alleviate the code-
point relocation problem for the port range field. In our
analysis of port ranges, we find that the basic range
R ¼ 1024–65 535 is very popular. In addition, for the
ACL filter tables with a larger number of distinct destination
port ranges, for example, acl1, acl3, acl4, we find that about
40–50% of the port ranges in R are within 1024–4999, and
about 30–40% are within 5000–9999. Two guard ranges
5000–65 535 and 10000–65 535 can be added to the
i-tree of the destination port field as shown in Fig. 7. By
inserting guard ranges into the i-tree, the mapping of port
ranges to code-points is more structural such that the code-
point relocation problem can be alleviated. The lower bound
of the guard range is elastic (can be adjusted). If there exists
Table 7: Distribution of PIC code length for non-empty buckets

PIC code length

One bit Two bits Three bits Four bits Five bits Six bits Seven bits Eight bits

158 115 119 120 108 34 9 1

Table 8: Amount of SRAM (KB) for address field codeword lookup

acl1 (756) acl2 (658) acl3 (2382) acl4 (2968) acl5 (3058) ipc1 (1818) fw1 (262) fw4 (275)

36.8 36.3 45.4 80.9 39.3 58.6 9.5 7.8

Size of the filter table is shown in bracket
577

some real port range, say 4800–5100 in the filter table that
overlaps with the lower end of the guard range, the lower
bound of the guard range will be adjusted to, say, 5100–
65 535. Also, if a wide range is to be inserted and the
range is close to a guard range, then the inserted range
can simply replace the guard range in the i-tree. The
guard range can even be removed during dynamic updates
if necessary. For ACL type of filter tables, there can be 30
or more ranges in 10 000–65 535. Hence, it is rec-
ommended that the amount of code space allocated to the
guard range (10 000–65 535) be at least 64. Extra code
space should also be allocated to the other guard ranges.
It is recommended that the code space allocated to 5000–
65 535 and 1024–65 535 be at least 256 and 1024,
respectively.

4 Performance evaluation

4.1 Code length and TCAM space requirement

Most of today’s TCAMs available in the market support
word lengths that are multiples of 36. If the length of an
encoded filter exceeds 36 bits, we need to store it in a
72-bit TCAM entry. For medium-to-large filter tables, the
use of 72-bit word length is necessary. Two control bits
are required to support concurrent table lookup and incre-
mental update operations [13]. Hence, we are left with 70
bits to store an encoded filter. Three bits are required to rep-
resent the protocol field. If k is set to 16 (prefixes with 16
bits or less are not encoded), and the PIC code length for
the address field can have up to 9 bits, we can use 17 bits
to encode the two port ranges in which the minimum code
length required to encode the two port range fields is
equal to 10 bits. The value of k can be adjusted within the
range of 12–16, depending on the characteristics of filter
tables. Table 9 compares the TCAM space requirements

Fig. 7 Structure of destination port i-tree with guard ranges

Table 9: TCAM space requirements

Filter table Conventional

approach, KB

PIC-SD, KB TCAM space

reduction, %

acl1 19.8 6.64 66.5

acl2 21.74 5.78 73.4

acl3 76.57 20.9 72.7

acl4 91.52 26.09 71.5

acl5 72.55 26.88 62.9

ipc1 44.17 15.98 63.8

fw1 16.2 2.3 85.8

fw4 32.95 2.42 92.7
578
of PIC-SD and the conventional approach without encod-
ing, where a filter is stored in a 144-bit TCAM word.

Today’s TCAM devices have built-in power management
support. The memory array can be partitioned into blocks of
2K � 72 bits. Power consumption in a search operation can
be reduced by only enabling a subset of memory blocks in
the device rather than searching the whole chip. Space
reduction offered by the filter-encoding scheme will cer-
tainly help to reduce the overall power consumption.

4.2 Incremental update cost

In this section, we shall compare the update cost of the orig-
inal PIC scheme and the refined PIC-SD scheme in terms of
the number of prefixes/ranges and the number of encoded
filters that would be affected by the insertion of a new
filter. Readers are referred to [13] for comparisons of PIC
with P2C and for the detailed procedure on how to update
the physical TCAM entries without locking the filter
table. Since we have two moderate sizes and three large
ACL filter tables, our studies will be based on these five
ACL filter tables. We use acl3 as the reference table and
insert incrementally to it the filters taken from other ACL
tables, say acl1. In our experiments, we found that the per-
formance of PIC-SD is quite stable but the worst-case
update cost of PIC may have some dependency on the inser-
tion order of the short prefixes. For example, there are
several short prefixes in acl1, for example, 1�, 11�, 101�,
01100�. The worst-case update cost can vary significantly
when these short prefixes are inserted in different order.
Five random insertion traces for acl1 are generated. To
have a fair comparison between PIC and PIC-SD, the
same insertion traces are applied to the two methods. The
evaluation process is repeated for the other three ACL
tables, that is, acl2, acl4 and acl5. A total of 20 experiments
are performed. At the end of the insertion process, the size
of the filter table grows by 28–128%.

Tables 10 and 11 show the average number and maximum
number of existing prefixes/ranges affected by the insertion
of a new filter. The worst-case value is the largest value out
of the five experiments, whereas the average value is the

Table 10: Average number of prefixes/ranges affected
by the insertion of a new filter

Source prefix Destination

prefix

Destination port

PIC PIC-SD PIC PIC-SD PIC PIC-SD

acl1 0.308 0.058 1.068 0.025 0.261 0.105

acl2 0.813 0.085 1.344 0.09 0.049 0.057

acl4� 0.742 0.062 0.6 0.066 0.024 0.013

acl5 0.176 0.013 0.205 0.137 0.003 0.003

Table 11: Maximum number of prefixes/ranges
affected by the insertion of a new filter

Source prefix Destination

prefix

Destination

port

PIC PIC-SD PIC PIC-SD PIC PIC-SD

acl1 57 5 438 5 90 18

acl2 49 9 78 6 3 8

acl4� 147 33 115 15 21 5

acl5 69 14 12 8 3 3
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007

overall average of the five experiments. We can see that the
average number of existing prefixes/ranges affected by an
insertion is very small for PIC, whereas the average of
PIC-SD is even smaller. In most of the cases, the insertion
of a new rule will not affect the coding of existing pre-
fixes/ranges. On the other hand, PIC-SD has very signifi-
cant improvement on the worst-case performance. We can
see that when the new filters are taken from acl1, more
than 400 destination prefixes can be affected by the inser-
tion of a short prefix in the original PIC algorithm. These
worst-case scenarios can be avoided in PIC-SD.
A prefix/range can be associated with multiple filters.

Hence, the number of filters affected by incremental inser-
tion is higher than the number of prefix/range. In some
extreme cases, a prefix/range can be associated with more
than 100 filters. If the codewords of some popular pre-
fixes/ranges are modified, a relatively large number (e.g.
more than 100) of filters may be affected. Table 12 shows
the average and maximum number of filters affected by
an insertion. In the original PIC algorithm, code space allo-
cated to an internal node of the i-tree can be up to four times
the minimum value. The minimum code length of the
source and destination address fields of acl3 are 12 and 10
bits, respectively. With the extra code space allocation,
the code length for the two address fields are 14 and 12
bits, respectively. There is one important point to note in
Tables 10–12. When the system inserts about 1700–2100
rules taken from acl4 to acl3, the source prefix code
length grows to 15 bits, that is, the filter table needs to be
reorganised. When this exception condition happens, the
experiment is stopped. If the experiments were not
stopped, the maximum number of filters affected by an
insertion for acl4 would be over 3000 (much larger than
321 as shown in Table 12). On the other hand, all the
2968 rules of acl4 can be accommodated using PIC-SD.
The required code length of the address field in PIC-SD
remains to be equal to 8 bits after all the insertions.
However, we would like to emphasise that if the PIC algor-
ithm was allowed to use the same overall code length of
PIC-SD (i.e. 70 bits), a lot more spare bits could be pre-
allocated to the address fields and the exception condition
should not have occurred.
Table 13 gives a more comprehensive picture of the

improvement of PIC-SD over PIC. It shows the number of
times out of the 20 experiments when an insertion of a

Table 13: Frequency count of insertions with high
update cost

Number of

filters affected

100–199 200–299 300–399 400–499 �500

PIC 106 15 6 7 20

PIC-SD 12 1 0 0 0

Table 12: Average and worst-case number of filters
affected by an insertion

Average case Worst-case

PIC PIC-SD PIC PIC-SD

acl1 6.3 0.64 1790 76

acl2 4.1 0.57 171 99

acl4� 3.1 0.43 321� 244

acl5 1.3 0.39 549 93

� represents an exception condition
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007
new filter causes 100 or more existing filters to be
updated. Actually, there are more than 37 000 insertions
performed in the 20 experiments. Only a very small percen-
tage of cases have high update costs, and PIC-SD can effec-
tively avoid most of these expensive cases. There is only
one instance out more than 37 000 insertions, in which
PIC-SD requires more than 200 filters to be updated. We
observe that some of the prefix/port range may have a rela-
tively large number of filters associated with it. If the code-
word of a popular prefix/port range is modified, all the
associated filters need to be updated.

5 Extension to IPv6

An IPv6 address has 128 bits. According to the Internet
Architecture Board (IAB) and Internet Engineering
Steering Group (IESG) recommendation [25], a unicast
IPv6 address consists of two components: a 64-bit
network/subnetwork ID and a 64-bit host ID. The IAB
and IESG [26] recommend that, in general, an address
block with a 48-bit prefix be allocated to a subscriber.
Very large subscribers could receive a 47-bit prefix or
slightly shorter prefix, or multiple 48-bit prefixes. A 64-bit
prefix may be allocated when it is known that one and
only one subnet is needed; a 128-bit prefix is allocated
when it is absolutely known that one and only one device
is connecting to the network. It is also recommended
64-bit prefixes be allocated to mobile devices. On the
basis of IAB and IESG recommendation, majority of the
IPv6 prefixes will have 48–64 bits in length.

We assume the organisation of networks/subnetworks in
companies will not be changed substantially when we
transit to IPv6. The prefix inclusion properties of IPv6
filter tables should be similar to today’s IPv4 filter tables.
Hence, an IPv6 filter can be encoded in not more than 72
bits using the original PIC. If PIC-SD is employed, we
shall opt for 144-bit TCAM word length. The address
space can be segmented using the first 44–48 bits.
Assuming that the PIC code length of the address field is
10 bits, we can have at least 26 bits to encode the port
number fields and the protocol field.

The address field in a filter specifies either a network/
subnetwork or a specific host. We expect the address field
is either a prefix with not more than 64 bits or a full-length
128-bit value. The codeword lookup is similar to the case
for IPv4, with some minor changes. Assume k ¼ 48. Two
hash tables, H48 and H128, are maintained by the system.
The system will search the two hash tables in parallel.
The first 48 bits of address A is used to search table H48,
and the full-length address is used to search table H128. If
there is a hit in H128, the returned value will be the
desired codeword. The search key for looking up the
TCAM is formed by appending the codeword to the first
48 bits extracted from address A. If there is a miss in
H128 and a hit in H48, we follow the same procedure as
in IPv4 to search the associated three-level indexing struc-
ture. If we have a miss in both H128 and H48, then the
search key is formed by taking the first 48 bits of A and
appends to it a string of zeros.

A 296-bit IPv6 filter needs to be stored in a 576-bit
TCAM word if it is not encoded. Assume a port range
expansion factor of 1.6 for ACL type of filter tables, an
IPv6 filter occupies on average 921 bits of TCAM space.
If the PIC-SD coding scheme is applied, an IPv6 filter
occupies only 144 bits of TCAM space, which is only
15% of the conventional approach without encoding. If
the port range-encoding method of Lakshminarayanan
et al. [10] is applied such that the port range expansion
579

problem can be minimised, the TCAM space required by
PIC-SD is only 25% of that approach. Besides the reduction
of TCAM space requirement, PIC-SD can also increase the
lookup rate by a factor of 4.

6 Concluding remarks

The efficiency of TCAM-based lookup engine, in terms of
space, time and power, can be improved substantially by
filter encoding. However, additional complexities will be
incurred in the table update operations. Incremental updat-
ing in PIC is easier than P2C. In P2C, the subset of ranges
affected by an insertion or deletion depends on the inclusion
property as well as the mapping of ranges to layers. In PIC,
no existing ranges will be affected by deletion. The subset
of ranges affected by an insertion can be localised to a
subtree in the i-tree, and it is easier to manoeuvre the
update process to minimise the cost. A major cause of per-
formance deficiency of PIC is the code-point relocation
problem because of the insertion of new ranges that encom-
pass a large number of existing ranges. A field domain seg-
mentation approach is proposed to overcome this problem.
In the new PIC-SD scheme, field domains are divided into
segments. The address field is divided into 2k disjoint seg-
ments using the first k bits of the address value. The port
range field is divided into several elastic segments by the
introduction of guard ranges. The segmentation of the
field domains can allow a more structural mapping of
field values to code points. From our experiments, we can
see that PIC-SD can reduce the average update cost by
more than 80%, and it can avoid almost all of the worst
cases in PIC. This is an important advantage of PIC-SD,
as the filter tables are expected to be more dynamic.
There can be further refinements to the codeword assign-

ment algorithm in order to enhance the utilisation of code
space. Code space utilisation may be low if there are
simple branches in the i-tree as shown in Fig. 8. One can
trade better code space utilisation with range decompo-
sition. By decomposing range B ¼ B0 < C, the code space
required by node A can be reduced by 50%, that is the
code length of node A can be shortened by 1 bit.
Another advantage of segmenting the address field is that

the codeword lookup can be simplified and implemented
using SRAM-based methods. The number of TCAM
access per classification can be reduced to 1, and the
lookup rate is increased. The peak packet arrival rate for
OC-768 at 40 Gbps is about 125 MPPS for IPv4 (40-byte
packets) and 78 MPPS for IPv6 (64-byte packets). Using
the PIC-SD-encoding scheme, lookup engine with a single
266 MHz TCAM capable of 133 MSPS (with 72/144-bit
search key) will be able to handle OC-768 line rate for
both IPv4 and IPv6 packet classification.
Since most of today’s commercial TCAM devices

support word lengths that are multiple of 36, the use of

Fig. 8 Tradeoff between code space utilisation and range
decomposition
580
72-bit word length in PIC-SD does not incur additional
cost compared with PIC if the length of the original PIC
codeword is longer than 36 bits. For the case of IPv6, the
use of 144-bit TCAM word length will only increase the
overall TCAM space by a small percentage. Because, in
PIC-SD, the codeword lookup for the address fields is
done using SRAM-based method. The increase in TCAM
space for the encoded filter table is offset by the savings
in TCAM space for the code tables.

7 References

1 Chao, H.J.: ‘Next generation routers’, Proc. IEEE, 2002, 90, (9),
pp. 1518–1558

2 Gupta, P., and McKeown, N.: ‘Algorithms for packet classification’,
IEEE Netw., 2001, 15, (2), pp. 24–32

3 Gupta, P., and McKeown, N.: ‘Packet classification on multiple
fields’. ACM SIGCOMM, 1999, pp. 147–160

4 Gupta, P., and McKeown, N.: ‘Classifying packets with hierarchical
intelligent cuttings’, IEEE Micro, 2001, 20, (1), pp. 34–41

5 Pao, D., and Liu, C.: ‘Parallel tree search: an algorithmic approach for
multi-field packet classification’, Comput. Commun., 30, (2),
pp. 302–314

6 Prakash, A., Kotla, R., Mandal, T., and Aziz, A.: ‘A high-performance
architecture and BDD-based synthesis methodology for packet
classification’, IEEE Trans. Comput.-Aided Des. Int. Circuits Syst.,
2003, 22, (6), pp. 698–709

7 Sangireddy, R., and Somani, A.K.: ‘High-speed IP routing with binary
decision diagrams based hardware address lookup engine’, IEEE J.
Sel. Areas Commun., 2003, 21, (4), pp. 513–521

8 Singh, S., Baboescu, F., Varghese, G., and Wang, J.: ‘Packet
classification using multidimensional cutting’. ACM SIGCOMM’03,
2003, pp. 213–224

9 Taylor, D.E., and Turner, J.S.: ‘Scalable packet classification using
distributed crossproducting of field labels’. IEEE INFOCOM, 2005

10 Lakshminarayanan, K., Rangarajan, A., and Venkatachary, S.:
‘Algorithms for advanced packet classification with ternary CAMs’.
ACM SIGCOMM’05, 2005, pp. 193–203

11 Li, W., Xi, Y., Liu, B., and Wang, X.: ‘Ultra high-speed IPv6 packet
classification using ternary CAMs’. Proc. IEE Irish Signals and
Systems Conf., 2005, pp. 129–134

12 Liu, H.: ‘Efficient mapping of range classifier into ternary-CAM’.
IEEE Symp. on High Performance Interconnects (Hotl’02), 2002

13 Pao, D., Li, Y.K., and Zhou, P.: ‘Efficient packet classification using
TCAMs’, Comput. Netw., 2006, 50, (18), pp. 3523–3535

14 Spitznagel, E., Taylor, D., and Turner, J.: ‘Packet classification using
extended TCAMs’. IEEE ICNP, 2003

15 van Lunteren, J., and Engbersen, T.: ‘Fast and scalable packet
classification’, IEEE J. Sel. Areas Commun., 2003, 21, (4), pp. 560–571

16 Zhang, X., Liu, B., Li, W., Xi, Y., Bermingham, D., and Wang, X.:
‘IPv6-oriented 4xOC-768 packet classification with deriving–merging
partition and field-variable encoding algorithm’. IEEE INFOCOM, 2006

17 Zheng, K., Che, H., Wang, Z., Liu, B., and Zhang, X.: ‘DPPC-RE:
TCAM-based distributed parallel packet classification with range
encoding’, IEEE Trans. Comput., 2006, 55, pp. 947–961

18 Cypress Semiconductors Co., http://www.cypress.com
19 Bolaria, J., and Gwenmap, L.: ‘A guide to search engines and

networking memory’. http://www.linleygroup.com/Reports/memory_
guide.html, April 2004

20 Apostolopoulos, G., Aubespin, D., Peris, V., Pradhan, P., and Saha, D.:
‘Design, implementation and performance of a content-based switch’.
IEEE INFOCOM, 2000, pp. 1117–1126

21 Che, H., Wang, Z., Zheng, K., and Liu, B.: ‘DRES: dynamic range
encoding scheme for TCAM coprocessors’. Technical Report,
University of Texas at Arlington, http://crystal.uta.edu/~hche/dres.pdf

22 Arsovski, I., Chandler, T., and Sheikholeslami, A.: ‘A ternary
content-addressable memory (TCAM) based on 4T static storage
and including a current-race sensing scheme’, IEEE J. Solid-State
Circuits, 2003, 38, (1), pp. 155–158

23 Taylor, D.E., and Turner, J.S.: ‘ClassBench: a packet classification
benchmark’. IEEE INFOCOM, 2005, http://www.arl.wustl.edu/~det3

24 Gupta, P., Lin, S., and McKeown, N.: ‘Routing lookups in hardware at
memory access speeds’. IEEE INFOCOM, 1998, pp. 1240–1247

25 Hinden, R., Deering, S., and Nordmark, E.: ‘IPv6 global unicast
address format’. Network Working Group RCF 3587, August 2003

26 Internet Architecture Board and Internet Engineering Steering Group:
‘IAB/IESG recommendations on IPv6 address allocations to sites’.
Network Working Group RFC 3177, September 2001
IET Comput. Digit. Tech., Vol. 1, No. 5, September 2007

