
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1403–1414

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1403

Stack-Pointer Networks for Dependency Parsing

Xuezhe Ma
Carnegie Mellon University
xuezhem@cs.cmu.edu

Zecong Hu∗

Tsinghua University
huzecong@gmail.com

Jingzhou Liu
Carnegie Mellon University

liujingzhou@cs.cmu.edu

Nanyun Peng
University of Southern California

npeng@isi.edu

Graham Neubig and Eduard Hovy
Carnegie Mellon University

{gneubig, ehovy}@cs.cmu.edu

Abstract

We introduce a novel architecture for de-

pendency parsing: stack-pointer networks
(STACKPTR). Combining pointer net-

works (Vinyals et al., 2015) with an in-

ternal stack, the proposed model first

reads and encodes the whole sentence,

then builds the dependency tree top-down

(from root-to-leaf) in a depth-first fashion.

The stack tracks the status of the depth-

first search and the pointer networks se-

lect one child for the word at the top of

the stack at each step. The STACKPTR

parser benefits from the information of the

whole sentence and all previously derived

subtree structures, and removes the left-

to-right restriction in classical transition-

based parsers. Yet, the number of steps for

building any (including non-projective)

parse tree is linear in the length of the sen-

tence just as other transition-based parsers,

yielding an efficient decoding algorithm

with O(n2) time complexity. We evalu-

ate our model on 29 treebanks spanning 20

languages and different dependency anno-

tation schemas, and achieve state-of-the-

art performance on 21 of them.

1 Introduction

Dependency parsing, which predicts the existence

and type of linguistic dependency relations be-

tween words, is a first step towards deep language

understanding. Its importance is widely recog-

nized in the natural language processing (NLP)

community, with it benefiting a wide range of

NLP applications, such as coreference resolu-

tion (Ng, 2010; Durrett and Klein, 2013; Ma et al.,

∗Work done while at Carnegie Mellon University.

2016), sentiment analysis (Tai et al., 2015), ma-

chine translation (Bastings et al., 2017), informa-

tion extraction (Nguyen et al., 2009; Angeli et al.,

2015; Peng et al., 2017), word sense disambigua-

tion (Fauceglia et al., 2015), and low-resource lan-

guages processing (McDonald et al., 2013; Ma and

Xia, 2014). There are two dominant approaches to

dependency parsing (Buchholz and Marsi, 2006;

Nivre et al., 2007): local and greedy transition-
based algorithms (Yamada and Matsumoto, 2003;

Nivre and Scholz, 2004; Zhang and Nivre, 2011;

Chen and Manning, 2014), and the globally opti-

mized graph-based algorithms (Eisner, 1996; Mc-

Donald et al., 2005a,b; Koo and Collins, 2010).

Transition-based dependency parsers read

words sequentially (commonly from left-to-right)

and build dependency trees incrementally by

making series of multiple choice decisions. The

advantage of this formalism is that the number of

operations required to build any projective parse

tree is linear with respect to the length of the sen-

tence. The challenge, however, is that the decision

made at each step is based on local information,

leading to error propagation and worse perfor-

mance compared to graph-based parsers on root

and long dependencies (McDonald and Nivre,

2011). Previous studies have explored solutions

to address this challenge. Stack LSTMs (Dyer

et al., 2015; Ballesteros et al., 2015, 2016) are

capable of learning representations of the parser

state that are sensitive to the complete contents of

the parser’s state. Andor et al. (2016) proposed a

globally normalized transition model to replace

the locally normalized classifier. However, the

parsing accuracy is still behind state-of-the-art

graph-based parsers (Dozat and Manning, 2017).

Graph-based dependency parsers, on the other

hand, learn scoring functions for parse trees and

perform exhaustive search over all possible trees

for a sentence to find the globally highest scoring



1404

tree. Incorporating this global search algorithm

with distributed representations learned from neu-

ral networks, neural graph-based parsers (Kiper-

wasser and Goldberg, 2016; Wang and Chang,

2016; Kuncoro et al., 2016; Dozat and Manning,

2017) have achieved the state-of-the-art accura-

cies on a number of treebanks in different lan-

guages. Nevertheless, these models, while accu-

rate, are usually slow (e.g. decoding is O(n3)
time complexity for first-order models (McDonald

et al., 2005a,b) and higher polynomials for higher-

order models (McDonald and Pereira, 2006; Koo

and Collins, 2010; Ma and Zhao, 2012b,a)).

In this paper, we propose a novel neural net-

work architecture for dependency parsing, stack-
pointer networks (STACKPTR). STACKPTR is

a transition-based architecture, with the corre-

sponding asymptotic efficiency, but still main-

tains a global view of the sentence that proves es-

sential for achieving competitive accuracy. Our

STACKPTR parser has a pointer network (Vinyals

et al., 2015) as its backbone, and is equipped

with an internal stack to maintain the order of

head words in tree structures. The STACKPTR

parser performs parsing in an incremental, top-

down, depth-first fashion; at each step, it gener-

ates an arc by assigning a child for the head word

at the top of the internal stack. This architecture

makes it possible to capture information from the

whole sentence and all the previously derived sub-

trees, while maintaining a number of parsing steps

linear in the sentence length.

We evaluate our parser on 29 treebanks across

20 languages and different dependency annotation

schemas, and achieve state-of-the-art performance

on 21 of them. The contributions of this work are

summarized as follows:

(i) We propose a neural network architecture for

dependency parsing that is simple, effective,

and efficient.

(ii) Empirical evaluations on benchmark datasets

over 20 languages show that our method

achieves state-of-the-art performance on 21

different treebanks1.

(iii) Comprehensive error analysis is conducted

to compare the proposed method to a strong

graph-based baseline using biaffine atten-

tion (Dozat and Manning, 2017).

1Source code is publicly available at https://
github.com/XuezheMax/NeuroNLP2

2 Background

We first briefly describe the task of dependency

parsing, setup the notation, and review Pointer

Networks (Vinyals et al., 2015).

2.1 Dependency Parsing and Notations
Dependency trees represent syntactic relationships

between words in the sentences through labeled

directed edges between head words and their de-

pendents. Figure 1 (a) shows a dependency tree

for the sentence, “But there were no buyers”.

In this paper, we will use the following notation:

Input: x = {w1, . . . , wn} represents a generic

sentence, where wi is the ith word.

Output: y = {p1, p2, · · · , pk} represents a

generic (possibly non-projective) dependency tree,

where each path pi = $, wi,1, wi,2, · · · , wi,li is a

sequence of words from the root to a leaf. “$” is

an universal virtual root that is added to each tree.

Stack: σ denotes a stack configuration, which

is a sequence of words. We use σ|w to represent

a stack configuration that pushes word w into the

stack σ.

Children: ch(wi) denotes the list of all the chil-

dren (modifiers) of word wi.

2.2 Pointer Networks
Pointer Networks (PTR-NET) (Vinyals et al.,

2015) are a variety of neural network capable of

learning the conditional probability of an output

sequence with elements that are discrete tokens

corresponding to positions in an input sequence.

This model cannot be trivially expressed by stan-

dard sequence-to-sequence networks (Sutskever

et al., 2014) due to the variable number of input

positions in each sentence. PTR-NET solves the

problem by using attention (Bahdanau et al., 2015;

Luong et al., 2015) as a pointer to select a member

of the input sequence as the output.

Formally, the words of the sentence x are fed

one-by-one into the encoder (a multiple-layer bi-

directional RNN), producing a sequence of en-
coder hidden states si. At each time step t, the

decoder (a uni-directional RNN) receives the input

from last step and outputs decoder hidden state ht.
The attention vector at is calculated as follows:

eti = score(ht, si)
at = softmax (et)

(1)

where score(·, ·) is the attention scoring function,

which has several variations such as dot-product,



1405

��

$

��

But

��

there

��

were

��

no

��

buyers

��

��

��

��

��

��

��

��

��

��

$
were 

$

there
were

$
were

$

but
were

$

0 0��

2

3

����

0 ���� 0 ���� 0 ���� �� ����

���� ���� ���� ����

4

3

2

(b)

$ But there were no buyers

(a)

Figure 1: Neural architecture for the STACKPTR network, together with the decoding procedure of an

example sentence. The BiRNN of the encoder is elided for brevity. For the inputs of decoder at each

time step, vectors in red and blue boxes indicate the sibling and grandparent.

concatenation, and biaffine (Luong et al., 2015).

PTR-NET regards the attention vector at as a prob-

ability distribution over the source words, i.e. it

uses ati as pointers to select the input elements.

3 Stack-Pointer Networks

3.1 Overview

Similarly to PTR-NET, STACKPTR first reads the

whole sentence and encodes each word into the

encoder hidden state si. The internal stack σ is

always initialized with the root symbol $. At each

time step t, the decoder receives the input vector

corresponding to the top element of the stack σ
(the head word wp where p is the word index), gen-

erates the hidden state ht, and computes the atten-

tion vector at using Eq. (1). The parser chooses a

specific position c according to the attention scores

in at to generate a new dependency arc (wh, wc)
by selecting wc as a child of wh. Then the parser

pushes wc onto the stack, i.e. σ → σ|wc, and goes

to the next step. At one step if the parser points wh

to itself, i.e. c = h, it indicates that all children

of the head word wh have already been selected.

Then the parser goes to the next step by popping

wh out of σ.

At test time, in order to guarantee a valid de-

pendency tree containing all the words in the in-

put sentences exactly once, the decoder maintains

a list of “available” words. At each decoding step,

the parser selects a child for the current head word,

and removes the child from the list of available

words to make sure that it cannot be selected as a

child of other head words.

For head words with multiple children, it is pos-

sible that there is more than one valid selection

for each time step. In order to define a determin-

istic decoding process to make sure that there is

only one ground-truth choice at each step (which

is necessary for simple maximum likelihood esti-

mation), a predefined order for each ch(wi) needs

to be introduced. The predefined order of chil-

dren can have different alternatives, such as left-

to-right or inside-out2. In this paper, we adopt

the inside-out order3 since it enables us to utilize

second-order sibling information, which has been

proven beneficial for parsing performance (Mc-

Donald and Pereira, 2006; Koo and Collins, 2010)

(see § 3.4 for details). Figure 1 (b) depicts the ar-

chitecture of STACKPTR and the decoding proce-

dure for the example sentence in Figure 1 (a).

3.2 Encoder

The encoder of our parsing model is based on the

bi-directional LSTM-CNN architecture (BLSTM-

CNNs) (Chiu and Nichols, 2016; Ma and Hovy,

2016) where CNNs encode character-level infor-

mation of a word into its character-level repre-

2Order the children by the distances to the head word on
the left side, then the right side.

3We also tried left-to-right order which obtained worse
parsing accuracy than inside-out.



1406

sentation and BLSTM models context informa-

tion of each word. Formally, for each word, the

CNN, with character embeddings as inputs, en-

codes the character-level representation. Then the

character-level representation vector is concate-

nated with the word embedding vector to feed into

the BLSTM network. To enrich word-level infor-

mation, we also use POS embeddings. Finally, the

encoder outputs a sequence of hidden states si.

3.3 Decoder

The decoder for our parser is a uni-directional

LSTM. Different from previous work (Bahdanau

et al., 2015; Vinyals et al., 2015) which uses word

embeddings of the previous word as the input to

the decoder, our decoder receives the encoder hid-

den state vector (si) of the top element in the stack

σ (see Figure 1 (b)). Compared to word embed-

dings, the encoder hidden states contain more con-

textual information, benefiting both the training

and decoding procedures. The decoder produces a

sequence of decoder hidden states hi, one for each

decoding step.

3.4 Higher-order Information

As mentioned before, our parser is capable of uti-

lizing higher-order information. In this paper, we

incorporate two kinds of higher-order structures

— grandparent and sibling. A sibling structure

is a head word with two successive modifiers, and

a grandparent structure is a pair of dependencies

connected head-to-tail:

NO OP PQ
YZ[\ZV] ]̂_VSẀZ\S

To utilize higher-order information, the de-

coder’s input at each step is the sum of the encoder

hidden states of three words:

βt = sh + sg + ss

where βt is the input vector of decoder at time

t and h, g, s are the indices of the head word

and its grandparent and sibling, respectively. Fig-

ure 1 (b) illustrates the details. Here we use the

element-wise sum operation instead of concatena-

tion because it does not increase the dimension of

the input vector βt, thus introducing no additional

model parameters.

3.5 Biaffine Attention Mechanism
For attention score function (Eq. (1)), we adopt the

biaffine attention mechanism (Luong et al., 2015;

Dozat and Manning, 2017):

eti = hTt Wsi +UTht +VT si + b

where W,U,V, b are parameters, denoting the

weight matrix of the bi-linear term, the two weight

vectors of the linear terms, and the bias vector.

As discussed in Dozat and Manning (2017), ap-

plying a multilayer perceptron (MLP) to the out-

put vectors of the BLSTM before the score func-

tion can both reduce the dimensionality and over-

fitting of the model. We follow this work by using

a one-layer perceptron to si and hi with elu (Clev-

ert et al., 2015) as its activation function.

Similarly, the dependency label classifier also

uses a biaffine function to score each label, given

the head word vector ht and child vector si as in-

puts. Again, we use MLPs to transform ht and si
before feeding them into the classifier.

3.6 Training Objectives
The STACKPTR parser is trained to optimize the

probability of the dependency trees given sen-

tences: Pθ(y|x), which can be factorized as:

Pθ(y|x) =
k∏

i=1
Pθ(pi|p<i,x)

=
k∏

i=1

li∏

j=1
Pθ(ci,j |ci,<j , p<i,x),

(2)

where θ represents model parameters. p<i denotes

the preceding paths that have already been gener-

ated. ci,j represents the jth word in pi and ci,<j

denotes all the proceeding words on the path pi.
Thus, the STACKPTR parser is an autoregressive

model, like sequence-to-sequence models, but it

factors the distribution according to a top-down

tree structure as opposed to a left-to-right chain.

We define Pθ(ci,j |ci,<j , p<i,x) = at, where atten-

tion vector at (of dimension n) is used as the dis-

tribution over the indices of words in a sentence.

Arc Prediction Our parser is trained by optimiz-

ing the conditional likelihood in Eq (2), which is

implemented as the cross-entropy loss.

Label Prediction We train a separated multi-

class classifier in parallel to predict the depen-

dency labels. Following Dozat and Manning

(2017), the classifier takes the information of the



1407

head word and its child as features. The label clas-

sifier is trained simultaneously with the parser by

optimizing the sum of their objectives.

3.7 Discussion

Time Complexity. The number of decoding

steps to build a parse tree for a sentence of length

n is 2n−1, linear in n. Together with the attention

mechanism (at each step, we need to compute the

attention vector at, whose runtime is O(n)), the

time complexity of decoding algorithm is O(n2),
which is more efficient than graph-based parsers

that have O(n3) or worse complexity when using

dynamic programming or maximum spanning tree

(MST) decoding algorithms.

Top-down Parsing. When humans comprehend

a natural language sentence, they arguably do it

in an incremental, left-to-right manner. How-

ever, when humans consciously annotate a sen-

tence with syntactic structure, they rarely ever pro-

cess in fixed left-to-right order. Rather, they start

by reading the whole sentence, then seeking the

main predicates, jumping back-and-forth over the

sentence and recursively proceeding to the sub-

tree structures governed by certain head words.

Our parser follows a similar kind of annotation

process: starting from reading the whole sentence,

and processing in a top-down manner by finding

the main predicates first and only then search for

sub-trees governed by them. When making latter

decisions, the parser has access to the entire struc-

ture built in earlier steps.

3.8 Implementation Details

Pre-trained Word Embeddings. For all the

parsing models in different languages, we initial-

ize word vectors with pretrained word embed-

dings. For Chinese, Dutch, English, German and

Spanish, we use the structured-skipgram (Ling

et al., 2015) embeddings. For other languages we

use Polyglot embeddings (Al-Rfou et al., 2013).

Optimization. Parameter optimization is per-

formed with the Adam optimizer (Kingma and Ba,

2014) with β1 = β2 = 0.9. We choose an ini-

tial learning rate of η0 = 0.001. The learning

rate η is annealed by multiplying a fixed decay

rate ρ = 0.75 when parsing performance stops in-

creasing on validation sets. To reduce the effects

of “gradient exploding”, we use gradient clipping

of 5.0 (Pascanu et al., 2013).

Dropout Training. To mitigate overfitting, we

apply dropout (Srivastava et al., 2014; Ma et al.,

2017). For BLSTM, we use recurrent dropout (Gal

and Ghahramani, 2016) with a drop rate of 0.33

between hidden states and 0.33 between layers.

Following Dozat and Manning (2017), we also use

embedding dropout with a rate of 0.33 on all word,

character, and POS embeddings.

Hyper-Parameters. Some parameters are cho-

sen from those reported in Dozat and Manning

(2017). We use the same hyper-parameters across

the models on different treebanks and languages,

due to time constraints. The details of the chosen

hyper-parameters for all experiments are summa-

rized in Appendix A.

4 Experiments

4.1 Setup

We evaluate our STACKPTR parser mainly on

three treebanks: the English Penn Treebank

(PTB version 3.0) (Marcus et al., 1993), the

Penn Chinese Treebank (CTB version 5.1) (Xue

et al., 2002), and the German CoNLL 2009 cor-

pus (Hajič et al., 2009). We use the same experi-

mental settings as Kuncoro et al. (2016).

To make a thorough empirical comparison with

previous studies, we also evaluate our system on

treebanks from CoNLL shared task and the Uni-

versal Dependency (UD) Treebanks4. For the

CoNLL Treebanks, we use the English treebank

from CoNLL-2008 shared task (Surdeanu et al.,

2008) and all 13 treebanks from CoNLL-2006

shared task (Buchholz and Marsi, 2006). The ex-

perimental settings are the same as Ma and Hovy

(2015). For UD Treebanks, we select 12 lan-

guages. The details of the treebanks and experi-

mental settings are in § 4.5 and Appendix B.

Evaluation Metrics Parsing performance is

measured with five metrics: unlabeled attachment

score (UAS), labeled attachment score (LAS), un-

labeled complete match (UCM), labeled complete

match (LCM), and root accuracy (RA). Following

previous work (Kuncoro et al., 2016; Dozat and

Manning, 2017), we report results excluding punc-

tuations for Chinese and English. For each experi-

ment, we report the mean values with correspond-

ing standard deviations over 5 repetitions.

4http://universaldependencies.org/



1408

Figure 2: Parsing performance of different variations of our model on the test sets for three languages,

together with baseline BIAF. For each of our STACKPTR models, we perform decoding with beam size

equal to 1 and 10. The improvements of decoding with beam size 10 over 1 are presented by stacked

bars with light colors.

Baseline For fair comparison of the parsing per-

formance, we re-implemented the graph-based

Deep Biaffine (BIAF) parser (Dozat and Manning,

2017), which achieved state-of-the-art results on a

wide range of languages. Our re-implementation

adds character-level information using the same

LSTM-CNN encoder as our model (§ 3.2) to the

original BIAF model, which boosts its perfor-

mance on all languages.

4.2 Main Results

We first conduct experiments to demonstrate the

effectiveness of our neural architecture by compar-

ing with the strong baseline BIAF. We compare

the performance of four variations of our model

with different decoder inputs — Org, +gpar, +sib
and Full — where the Org model utilizes only the

encoder hidden states of head words, while the

+gpar and +sib models augments the original one

with grandparent and sibling information, respec-

tively. The Full model includes all the three infor-

mation as inputs.

Figure 2 illustrates the performance (five met-

rics) of different variations of our STACKPTR

parser together with the results of baseline BIAF

re-implemented by us, on the test sets of the three

languages. On UAS and LAS, the Full variation

of STACKPTR with decoding beam size 10 outper-

forms BIAF on Chinese, and obtains competitive

performance on English and German. An interest-

ing observation is that the Full model achieves the

best accuracy on English and Chinese, while per-

forms slightly worse than +sib on German. This

shows that the importance of higher-order infor-

mation varies in languages. On LCM and UCM,

STACKPTR significantly outperforms BIAF on all

languages, showing the superiority of our parser

on complete sentence parsing. The results of our

parser on RA are slightly worse than BIAF. More

details of results are provided in Appendix C.

4.3 Comparison with Previous Work

Table 1 illustrates the UAS and LAS of the

four versions of our model (with decoding beam

size 10) on the three treebanks, together with

previous top-performing systems for comparison.

Note that the results of STACKPTR and our re-

implementation of BIAF are the average of 5 rep-

etitions instead of a single run. Our Full model

significantly outperforms all the transition-based

parsers on all three languages, and achieves bet-

ter results than most graph-based parsers. Our



1409

English Chinese German
System UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 91.8 89.6 83.9 82.4 – –
Ballesteros et al. (2015) T 91.63 89.44 85.30 83.72 88.83 86.10
Dyer et al. (2015) T 93.1 90.9 87.2 85.7 – –
Bohnet and Nivre (2012) T 93.33 91.22 87.3 85.9 91.4 89.4
Ballesteros et al. (2016) T 93.56 91.42 87.65 86.21 – –
Kiperwasser and Goldberg (2016) T 93.9 91.9 87.6 86.1 – –
Weiss et al. (2015) T 94.26 92.41 – – – –
Andor et al. (2016) T 94.61 92.79 – – 90.91 89.15
Kiperwasser and Goldberg (2016) G 93.1 91.0 86.6 85.1 – –
Wang and Chang (2016) G 94.08 91.82 87.55 86.23 – –
Cheng et al. (2016) G 94.10 91.49 88.1 85.7 – –
Kuncoro et al. (2016) G 94.26 92.06 88.87 87.30 91.60 89.24
Ma and Hovy (2017) G 94.88 92.98 89.05 87.74 92.58 90.54
BIAF: Dozat and Manning (2017) G 95.74 94.08 89.30 88.23 93.46 91.44
BIAF: re-impl G 95.84 94.21 90.43 89.14 93.85 92.32
STACKPTR: Org T 95.77 94.12 90.48 89.19 93.59 92.06
STACKPTR: +gpar T 95.78 94.12 90.49 89.19 93.65 92.12
STACKPTR: +sib T 95.85 94.18 90.43 89.15 93.76 92.21
STACKPTR: Full T 95.87 94.19 90.59 89.29 93.65 92.11

Table 1: UAS and LAS of four versions of our model on test sets for three languages, together with top-

performing parsing systems. “T” and “G” indicate transition- and graph-based models, respectively. For

BIAF, we provide the original results reported in Dozat and Manning (2017) and our re-implementation.

For STACKPTR and our re-implementation of BiAF, we report the average over 5 runs.

(a) (b) (c)

Figure 3: Parsing performance of BIAF and STACKPTR parsers relative to length and graph factors.

POS UAS LAS UCM LCM
Gold 96.12±0.03 95.06±0.05 62.22±0.33 55.74±0.44
Pred 95.87±0.04 94.19±0.04 61.43±0.49 49.68±0.47
None 95.90±0.05 94.21±0.04 61.58±0.39 49.87±0.46

Table 2: Parsing performance on the test data of

PTB with different versions of POS tags.

re-implementation of BIAF obtains better perfor-

mance than the original one in Dozat and Man-

ning (2017), demonstrating the effectiveness of the

character-level information. Our model achieves

state-of-the-art performance on both UAS and

LAS on Chinese, and best UAS on English.

On German, the performance is competitive with

BIAF, and significantly better than other models.

4.4 Error Analysis

In this section, we characterize the errors made by

BIAF and STACKPTR by presenting a number of

experiments that relate parsing errors to a set of

linguistic and structural properties. For simplicity,

we follow McDonald and Nivre (2011) and report

labeled parsing metrics (either accuracy, precision,

or recall) for all experiments.

4.4.1 Length and Graph Factors
Following McDonald and Nivre (2011), we ana-

lyze parsing errors related to structural factors.

Sentence Length. Figure 3 (a) shows the ac-

curacy of both parsing models relative to sen-

tence lengths. Consistent with the analysis in Mc-

Donald and Nivre (2011), STACKPTR tends to

perform better on shorter sentences, which make

fewer parsing decisions, significantly reducing the

chance of error propagation.

Dependency Length. Figure 3 (b) measures

the precision and recall relative to dependency

lengths. While the graph-based BIAF parser

still performs better for longer dependency arcs

and transition-based STACKPTR parser does bet-

ter for shorter ones, the gap between the two sys-

tems is marginal, much smaller than that shown



1410

Bi-Att NeuroMST BIAF STACKPTR Best Published
UAS [LAS] UAS [LAS] UAS [LAS] UAS [LAS] UAS LAS

ar 80.34 [68.58] 80.80 [69.40] 82.15±0.34 [71.32±0.36] 83.04±0.29 [72.94±0.31] 81.12 –
bg 93.96 [89.55] 94.28 [90.60] 94.62±0.14 [91.56±0.24] 94.66±0.10 [91.40±0.08] 94.02 –
zh – 93.40 [90.10] 94.05±0.27 [90.89±0.22] 93.88±0.24 [90.81±0.55] 93.04 –
cs 91.16 [85.14] 91.18 [85.92] 92.24±0.22 [87.85±0.21] 92.83±0.13 [88.75±0.16] 91.16 85.14
da 91.56 [85.53] 91.86 [87.07] 92.80±0.26 [88.36±0.18] 92.08±0.15 [87.29±0.21] 92.00 –
nl 87.15 [82.41] 87.85 [84.82] 90.07±0.18 [87.24±0.17] 90.10±0.27 [87.05±0.26] 87.39 –
en – 94.66 [92.52] 95.19±0.05 [93.14±0.05] 93.25±0.05 [93.17±0.05] 93.25 –
de 92.71 [89.80] 93.62 [91.90] 94.52±0.11 [93.06±0.11] 94.77±0.05 [93.21±0.10] 92.71 89.80
ja 93.44 [90.67] 94.02 [92.60] 93.95±0.06 [92.46±0.07] 93.38±0.08 [91.92±0.16] 93.80 –
pt 92.77 [88.44] 92.71 [88.92] 93.41±0.08 [89.96±0.24] 93.57±0.12 [90.07±0.20] 93.03 –
sl 86.01 [75.90] 86.73 [77.56] 87.55±0.17 [78.52±0.35] 87.59±0.36 [78.85±0.53] 87.06 –
es 88.74 [84.03] 89.20 [85.77] 90.43±0.13 [87.08±0.14] 90.87±0.26 [87.80±0.31] 88.75 84.03
sv 90.50 [84.05] 91.22 [86.92] 92.22±0.15 [88.44±0.17] 92.49±0.21 [89.01±0.22] 91.85 85.26
tr 78.43 [66.16] 77.71 [65.81] 79.84±0.23 [68.63±0.29] 79.56±0.22 [68.03±0.15] 78.43 66.16

Table 3: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art

parsers. Bi-Att is the bi-directional attention based parser (Cheng et al., 2016), and NeuroMST is the

neural MST parser (Ma and Hovy, 2017). “Best Published” includes the most accurate parsers in term of

UAS among Koo et al. (2010), Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al.

(2014), Zhang and McDonald (2014), Pitler and McDonald (2015), and Cheng et al. (2016).

in McDonald and Nivre (2011). One possible

reason is that, unlike traditional transition-based

parsers that scan the sentence from left to right,

STACKPTR processes in a top-down manner, thus

sometimes unnecessarily creating shorter depen-

dency arcs first.

Root Distance. Figure 3 (c) plots the precision

and recall of each system for arcs of varying dis-

tance to the root. Different from the observation

in McDonald and Nivre (2011), STACKPTR does

not show an obvious advantage on the precision

for arcs further away from the root. Furthermore,

the STACKPTR parser does not have the tendency

to over-predict root modifiers reported in McDon-

ald and Nivre (2011). This behavior can be ex-

plained using the same reasoning as above: the

fact that arcs further away from the root are usu-

ally constructed early in the parsing algorithm of

traditional transition-based parsers is not true for

the STACKPTR parser.

4.4.2 Effect of POS Embedding
The only prerequisite information that our pars-

ing model relies on is POS tags. With the goal of

achieving an end-to-end parser, we explore the ef-

fect of POS tags on parsing performance. We run

experiments on PTB using our STACKPTR parser

with gold-standard and predicted POS tags, and

without tags, respectively. STACKPTR in these ex-

periments is the Full model with beam=10.

Table 2 gives results of the parsers with differ-

ent versions of POS tags on the test data of PTB.

The parser with gold-standard POS tags signifi-

cantly outperforms the other two parsers, show-

ing that dependency parsers can still benefit from

accurate POS information. The parser with pre-

dicted (imperfect) POS tags, however, performs

even slightly worse than the parser without us-

ing POS tags. It illustrates that an end-to-end

parser that doesn’t rely on POS information can

obtain competitive (or even better) performance

than parsers using imperfect predicted POS tags,

even if the POS tagger is relative high accuracy

(accuracy > 97% in this experiment on PTB).

4.5 Experiments on Other Treebanks

4.5.1 CoNLL Treebanks

Table 3 summarizes the parsing results of our

model on the test sets of 14 treebanks from the

CoNLL shared task, along with the state-of-the-

art baselines. Along with BIAF, we also list the

performance of the bi-directional attention based

Parser (Bi-Att) (Cheng et al., 2016) and the neural

MST parser (NeuroMST) (Ma and Hovy, 2017)

for comparison. Our parser achieves state-of-the-

art performance on both UAS and LAS on eight

languages — Arabic, Czech, English, German,

Portuguese, Slovene, Spanish, and Swedish. On

Bulgarian and Dutch, our parser obtains the best

UAS. On other languages, the performance of our

parser is competitive with BIAF, and significantly

better than others. The only exception is Japanese,

on which NeuroMST obtains the best scores.



1411

Dev Test
BIAF STACKPTR BIAF STACKPTR

UAS LAS UAS LAS UAS LAS UAS LAS
bg 93.92±0.13 89.05±0.11 94.09±0.16 89.17±0.14 94.30±0.16 90.04±0.16 94.31±0.06 89.96±0.07
ca 94.21±0.05 91.97±0.06 94.47±0.02 92.51±0.05 94.36±0.06 92.05±0.07 94.47±0.02 92.39±0.02
cs 94.14±0.03 90.89±0.04 94.33±0.04 91.24±0.05 94.06±0.04 90.60±0.05 94.21±0.06 90.94±0.07
de 91.89±0.11 88.39±0.17 92.26±0.11 88.79±0.15 90.26±0.19 86.11±0.25 90.26±0.07 86.16±0.01
en 92.51±0.08 90.50±0.07 92.47±0.03 90.46±0.02 91.91±0.17 89.82±0.16 91.93±0.07 89.83±0.06
es 93.46±0.05 91.13±0.07 93.54±0.06 91.34±0.05 93.72±0.07 91.33±0.08 93.77±0.07 91.52±0.07
fr 95.05±0.04 92.76±0.07 94.97±0.04 92.57±0.06 92.62±0.15 89.51±0.14 92.90±0.20 89.88±0.23
it 94.89±0.12 92.58±0.12 94.93±0.09 92.90±0.10 94.75±0.12 92.72±0.12 94.70±0.07 92.55±0.09
nl 93.39±0.08 90.90±0.07 93.94±0.11 91.67±0.08 93.44±0.09 91.04±0.06 93.98±0.05 91.73±0.07
no 95.44±0.05 93.73±0.05 95.52±0.08 93.80±0.08 95.28±0.05 93.58±0.05 95.33±0.03 93.62±0.03
ro 91.97±0.13 85.38±0.03 92.06±0.08 85.58±0.12 91.94±0.07 85.61±0.13 91.80±0.11 85.34±0.21
ru 93.81±0.05 91.85±0.06 94.11±0.07 92.29±0.10 94.40±0.03 92.68±0.04 94.69±0.04 93.07±0.03

Table 4: UAS and LAS on both the development and test datasets of 12 treebanks from UD Treebanks,

together with BIAF for comparison.

4.5.2 UD Treebanks
For UD Treebanks, we select 12 languages — Bul-

garian, Catalan, Czech, Dutch, English, French,

German, Italian, Norwegian, Romanian, Russian

and Spanish. For all the languages, we adopt the

standard training/dev/test splits, and use the uni-

versal POS tags (Petrov et al., 2012) provided in

each treebank. The statistics of these corpora are

provided in Appendix B.

Table 4 summarizes the results of the

STACKPTR parser, along with BIAF for compari-

son, on both the development and test datasets for

each language. First, both BIAF and STACKPTR

parsers achieve relatively high parsing accuracies

on all the 12 languages — all with UAS are higher

than 90%. On nine languages — Catalan, Czech,

Dutch, English, French, German, Norwegian,

Russian and Spanish — STACKPTR outperforms

BIAF for both UAS and LAS. On Bulgarian,

STACKPTR achieves slightly better UAS while

LAS is slightly worse than BIAF. On Italian

and Romanian, BIAF obtains marginally better

parsing performance than STACKPTR.

5 Conclusion

In this paper, we proposed STACKPTR, a

transition-based neural network architecture, for

dependency parsing. Combining pointer networks

with an internal stack to track the status of the

top-down, depth-first search in the decoding pro-

cedure, the STACKPTR parser is able to capture

information from the whole sentence and all the

previously derived subtrees, removing the left-

to-right restriction in classical transition-based

parsers, while maintaining linear parsing steps,

w.r.t the length of the sentences. Experimental re-

sults on 29 treebanks show the effectiveness of our

parser across 20 languages, by achieving state-of-

the-art performance on 21 corpora.

There are several potential directions for future

work. First, we intend to consider how to conduct

experiments to improve the analysis of parsing er-

rors qualitatively and quantitatively. Another in-

teresting direction is to further improve our model

by exploring reinforcement learning approaches to

learn an optimal order for the children of head

words, instead of using a predefined fixed order.

Acknowledgements

The authors thank Chunting Zhou, Di Wang and

Zhengzhong Liu for their helpful discussions.

This research was supported in part by DARPA

grant FA8750-18-2-0018 funded under the AIDA

program. Any opinions, findings, and conclusions

or recommendations expressed in this material are

those of the authors and do not necessarily reflect

the views of DARPA.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of CoNLL-
2013. Sofia, Bulgaria, pages 183–192.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of ACL-2016 (Volume 1: Long Papers).
Berlin, Germany, pages 2442–2452.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.



1412

In Proceedings of ACL-2015 (Volume 1: Long Pa-
pers). Beijing, China, pages 344–354.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR-2015.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of EMNLP-2015. Lisbon, Portugal, pages
349–359.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack lstm parser. In Proceedings of
EMNLP-2016. Austin, Texas, pages 2005–2010.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Simaan. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of EMNLP-2017.
Copenhagen, Denmark, pages 1957–1967.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of EMNLP-2012. Jeju Island, Korea, pages
1455–1465.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceeding of CoNLL-2006. New York, NY, pages
149–164.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP-2014. Doha,
Qatar, pages 740–750.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. In Proceedings
of EMNLP-2016. Austin, Texas, pages 2204–2214.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics 4:357–370.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289 .

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of ICLR-2017 (Volume 1: Long
Papers). Toulon, France.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of EMNLP-2013. Seattle, Washington, USA,
pages 1971–1982.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL-2015 (Volume
1: Long Papers). Beijing, China, pages 334–343.

Jason M Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of COLING-1996 (Volume 1). Association
for Computational Linguistics, pages 340–345.

Nicolas R Fauceglia, Yiu-Chang Lin, Xuezhe Ma, and
Eduard Hovy. 2015. Word sense disambiguation via
propstore and ontonotes for event mention detec-
tion. In Proceedings of the The 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation. Denver, Colorado, pages 11–15.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian

Padó, Jan Štěpánek, et al. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of CoNLL-
2009: Shared Task. pages 1–18.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of ACL-
2010. Uppsala, Sweden, pages 1–11.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of EMNLP-2010. Cam-
bridge, MA, pages 1288–1298.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one mst parser. In Proceedings of EMNLP-
2016. Austin, Texas, pages 1744–1753.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of ACL-
2014 (Volume 1: Long Papers). Baltimore, Mary-
land, pages 1381–1391.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
NAACL-2015. Denver, Colorado, pages 1299–1304.



1413

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
EMNLP-2015. Lisbon, Portugal, pages 1412–1421.

Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu,
Yuntian Deng, and Eduard Hovy. 2017. Dropout
with expectation-linear regularization. In Proceed-
ings of the 5th International Conference on Learn-
ing Representations (ICLR-2017). Toulon, France.

Xuezhe Ma and Eduard Hovy. 2015. Efficient inner-to-
outer greedy algorithm for higher-order labeled de-
pendency parsing. In Proceedings of EMNLP-2015.
Lisbon, Portugal, pages 1322–1328.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of ACL-2016 (Volume 1: Long Papers).
Berlin, Germany, pages 1064–1074.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective mst parsing. In
Proceedings of IJCNLP-2017 (Volume 1: Long Pa-
pers). Taipei, Taiwan, pages 59–69.

Xuezhe Ma, Zhengzhong Liu, and Eduard Hovy. 2016.
Unsupervised ranking model for entity coreference
resolution. In Proceedings of NAACL-2016. San
Diego, California, USA.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of ACL-2014. Baltimore, Maryland, pages
1337–1348.

Xuezhe Ma and Hai Zhao. 2012a. Fourth-order depen-
dency parsing. In Proceedings of COLING 2012:
Posters. Mumbai, India, pages 785–796.

Xuezhe Ma and Hai Zhao. 2012b. Probabilistic models
for high-order projective dependency parsing. Tech-
nical Report, arXiv:1502.04174 .

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of ACL-
2013 (Volume 2: Short Papers). Sofia, Bulgaria,
pages 617–622.

Andre Martins, Noah Smith, Mario Figueiredo, and
Pedro Aguiar. 2011. Dual decomposition with
many overlapping components. In Proceedings
of EMNLP-2011. Edinburgh, Scotland, UK., pages
238–249.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. In Proceedings of ACL-2005.
Ann Arbor, Michigan, USA, pages 91–98.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics 37(1):197–230.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of ACL-2013. Sofia, Bulgaria,
pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceeding of EACL-2006.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of HLT/EMNLP-2005. Vancouver, Canada, pages
523–530.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of
ACL-2010. Association for Computational Linguis-
tics, Uppsala, Sweden, pages 1396–1411.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution kernels on
constituent, dependency and sequential structures
for relation extraction. In Proceedings of EMNLP-
2009. Singapore, pages 1378–1387.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007. The CoNLL 2007 shared
task on dependency parsing. In Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL
2007. Prague, Czech Republic, pages 915–932.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings
of COLING-2004. Geneva, Switzerland, pages 64–
70.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neu-
ral networks. In Proceedings of ICML-2013. pages
1310–1318.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics 5:101–115.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
LREC-2012. Istanbul, Turkey, pages 2089–2096.

Emily Pitler and Ryan McDonald. 2015. A linear-time
transition system for crossing interval trees. In Pro-
ceedings of NAACL-2015. Denver, Colorado, pages
662–671.



1414

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The conll-
2008 shared task on joint parsing of syntactic and
semantic dependencies. In Proceedings of CoNLL-
2008. pages 159–177.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings ACL-2015 (Volume 1: Long
Papers). Beijing, China, pages 1556–1566.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional lstm. In Pro-
ceedings of ACL-2016 (Volume 1: Long Papers).
Berlin, Germany, pages 2306–2315.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
ACL-2015 (Volume 1: Long Papers). Beijing, China,
pages 323–333.

Nianwen Xue, Fu-Dong Chiou, and Martha Palmer.
2002. Building a large-scale annotated chinese cor-
pus. In Proceedings of COLING-2002. pages 1–8.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT . Nancy, France,
volume 3, pages 195–206.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of ACL-2014 (Volume 2: Short
Papers). Baltimore, Maryland, pages 656–661.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014. Greed is good if randomized: New
inference for dependency parsing. In Proceedings of
EMNLP-2014. Doha, Qatar, pages 1013–1024.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Portland, Oregon, USA, pages
188–193.


