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Abstract— While the current TTS systems can deliver quite
acceptable segmental quality of synthesized speech for voice user
interface applications, its prosody is still perceived by users as
“robotic” or not expressive. In this paper, we investigate how to
improve TTS prosody prediction and detection. Conditional
Random Field (CRF), a discriminative probabilistic model for
the labeling the sequential data, is adopted. Rich syntactic and
acoustic, contextual features are used in building the CRF models.
Experiments performed on Boston University Radio Speech
Corpus show that CRF models trained on our proposed rich
contextual features can improve the accuracy of prosody
prediction and detection in both speaker-dependent and speaker-
independent cases. The performance is either comparable or
better than the best reported results.
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L INTRODUCTION

Prosody refers to the rhythm, stress, and intonation of
speech. The acoustic cues of prosody include variations in
syllable duration, loudness and pitch and they play an
important perceptual role in human speech communication. For
tonal language like Mandarin, the variation of pitch has an
additional lexical meaning, which is used to distinguish one
lexical entity from the other. For non-tonal languages like
English, pitch accent can express the focus and give additional
information. Boundary tone can differentiate a simple
statement sentence from a yes-no question. Prosody also
carries the information of a speaker’s emotion state, e.g.,
exciting or bored. However, it is still fairly enigmatic in
linguistic science research about how a person decides which
words to accentuate; what factors constrain the accent
placement and what function an accent serves in conveying
message. For speech synthesis, it is a great challenge to predict
the correct prosody labels from unrestricted text or detect
prosody event jointly with acoustic features.

Lots of studies on prosody prediction and detection have
been done to investigate the syntactic, semantic, and
discourse/pragmatic structure and its relevance to prosody
generation in speech production. The syntactic cues like part-
of-speech, syllable identity, syllable stress and their contextual
counterparts are commonly used for prosody label prediction
[1-10]. Pitch, segmental duration, intensity and other acoustic
correlates are generally adopted as assistants to prosody events

*Work performed as an intern in the Speech Group, Microsoft
Research Asia

detection [1-10]. Some informative features such as word class,
word predictability (language model) and term frequency,
inverse document frequency (TF-IDF) have been successfully
applied to prosody prediction [5, 6]. To model prosody, many
machine learning techniques have also been investigated.
Decision tree, neural network, Gaussian mixture model, and
hidden Markov models are generally applied to model prosody.
In [7], different classifiers were studied for prosody event
detection. Among them, the support vector machine (SVM) has
been claimed to perform better than other classifiers to model
syntactic evidence. In [8], it got better results over the
classification and regression trees (CART) by using bagging
and boosting ensemble learning approaches. Recently,
discriminate training approaches like maximum entropy model
and conditional random field (CRF) are tried for prosody
prediction and detection and good performance are reported [9,
10].

In this paper, our approach to prosody prediction is based
upon CRF modeling with rich, phonetic, text based or
syntactic, and acoustic features. The rest of paper is organized
as follows. In Section II, the corpus and tasks for our
experiments are reviewed. The principle of CRF and the
feature sets used for our CRF modeling are introduced in
Section IIT and IV, respectively. Experimental evaluations and
their results are presented in Section V. Conclusions are given
in Section VL

II.  CORPUS DESCRIPTION AND TASKS

We use speech data recorded by professional radio
announcers from Boston University Radio Speech Corpus
(BURSC) [11] for this study. The corpus is a database
annotated with the tones and break indices (ToBI) [12]
prosodic annotation system. Subsets of the corpus are
automatically labeled with phonetic alignments, part-of-speech
tags and hand-labeled prosodic markers. For our experiments,
we use a speaker-independent speech recognizer to obtain the
word, syllable and phone boundaries by force alignment. The
statistics of data for the six speakers is listed in Table 1.

In a TOBI framework, there are eight pitch accent types,
two intermediate phrase boundary tones, four intonational
phrase boundary tones and five break indices, where 3 for
intermediate phrase boundary and 4 for intonation phrase
boundary. We only focus on pitch accent and break prediction
/detection in our experiments since the phrase boundary tone is
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less variable in broadcast news style corpus like BURSC. In
order to streamline the task and to make the output result more
useful, we follow earlier approaches [8,9,12] by collapsing the
TOBI labels as follows:

e Pitch Accent

L* L*+'H L*tH > L*

'H* H+!H* L+!H* > IH*

H* L+H* > H*

Unaccent > X

e Break

break ending with a punctuation (, :.;?) > #
break (3,4) within a sub-sentence > 1
Otherwise >0

We assume it is both natural and acceptable to assign a break at
a punctuation mark, which is used to divide a long sentence
into several sub-sentences (phrases). It is then critical to predict
breaks reliably within a sub-sentence for real applications.
Therefore, we only predict and detect breaks within a sentence
or sub-sentence where no punctuation marks are given in our
experiments.

Table 1. The statistics of data used in our experiments

Female Male
F1A F2B F3A M1B M2B | M3B
#Utterances 76 147 33 71 51 23
#Sentences | 248 582 154 258 213 104
# Words 4386 |11110| 2732 5015 | 3608 | 1936
# Syllables | 7084 |18027| 4348 7977 | 5867 | 3085

# Breaks 1217 | 3422 754 1231 992 446
# Accent 2513 | 6159 | 1003 2784 | 2017 | 1091

There are two tasks performed in this study: predicting
prosody labels from raw text and detecting prosody events
from raw text along with corresponding acoustic signals.
Prediction task is the same as to generate prosodic labels in a
text-to-speech (TTS) system, while detection task is employed
to automatically annotate the training data of TTS since the
prosody annotation is a time-consuming work and human
annotations tend to be inconsistent annotations even among
experienced annotators. Each task is carried out on two data
sets: F2B, a speaker-dependent (SD) set, and speaker-
independent (SI) set.

III. PROSODY MODELING WITH CRF

The prosodic prediction and detection can be formulated as
a problem of sequential labeling. Given an utterance (a
sequence of words or syllables) with N tokens, the task is to
find the most probable sequence of tone and break indices for
N junctures after every token

3=arg{nax{P(j | T)} (D

For example, a possible break assignment of utterance “It
functions like an electronic officer.” is after the word
“functions”, the corresponding input/output vectors are:

T =<"1It"," functions","like"," an"," electronic"," officer","." >
j =<|VO"’Ul'Y’UO"’UOU’"0"7"#">

Here punctuations are not considered as “word”, while the
word precedes a punctuation is assigned a break “#”. 0 in the
break assignment vector represents a non-break juncture and 1
represents a break juncture. Similar input/output vectors are
defined in pitch accent problem.

The state-of-art model for perform sequential labeling is
conditional random field (CRF) [13], a graphical model for

computing the conditional probability p() |X) of a label
sequence ) , Y = Y, Vys..., ¥, » given observation sequence

X, X =X,,X,,...,X, . Linear chain CRF, a special form of
CREF, is used in this study. It has the form:

e OIS D R

1 i=l j=1

p;()ﬂ)_é): 7

where i is the position of input label sequence; Each feature
function f;(y,_y,;,X,1)is either a state function s(y;,X, ) or

a transition function #(y,_;,y;,X,i); ﬂj are parameters to be
estimated from training data and Z; (X) is for normalization.

CRFs are usually trained by maximizing the log-likelihood
over a given training set. Limited memory BFGS [14] is
adopted in training to solve this unconstrained convex
optimization problem.

Prosody modeling can be seen as relational learning [15].
There are two characteristics in relational data. One is that the
labels in a label sequence ( ), which we want to model, have
statistical dependencies. The other one is that each label often
has a rich set of features ( X ) that are useful for classification.
The main advantage of CRF is that it can include rich,
overlapping features. It incorporates the dependency among
observations and aims to solve the long distance dependency
problem. In CRF, features based on rich relationships between
input and output vectors are easily incorporated.

IV. FEATURES FOR PROSODY MODELING

We investigate features for prosody modeling. Features for
both pitch accent and break modeling include features
extracted from raw text and acoustic features extracted from
speech signals. There are total four features sets investigated:

e  Text feature set for pitch accent:
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s The phonetic form of the current syllable, the previous
two syllables, and the following two syllables;
= Binary indicators to label whether each of the current,

previous, and following syllables are lexically
stressed,;

= The position of the current, previous and next syllable
in a word;

= Part-of-speech of the current, two previous words and
the following two words;

= The current word, the two previous word and the
following two words;

= A composite features made up of part-of-speech and
stress of the current syllable;

= A composite features made up of part-of-speech and
the current syllable vowel,

= A composite features made up of current word and
stress of the current syllable

e Acoustic feature set for pitch accent:

= FO mean of previous two syllables, current and next
two syllables;

= Delta and delta-delta FO mean of the current syllable;

= FO Slope of previous two syllables, current and next
two syllables;

= Delta and delta-delta FO slope of the current syllable;

= A composite features made up of FO mean and FO
slope;

= Range of the current syllable’s FO

e  Text feature set for break:

= Word

= Number of syllables in the current word

= POS

= Punctuation

= Function word

= Capital

= Bigram LM

= Phrase dictionary

= Above features’ quin-context and combination

e Acoustic feature set for break:

= Silence after word,

= Duration of last syllable

s Duration of last stressed syllable

= Above features’ quin-context and combination

We propose some new features for prosody modeling listed
in the above feature sets. Prosody is a supra-segmental feature.
It is laid on top of groups of segments. The relative increase or
decrease of FO in comparing with neighbouring syllables
should be a relevant indicator of pitch accent. We add the
dynamic features (delta and delta-delta) of FO mean and slope
of a syllable to pitch accent modeling. In addition, according to
our analysis for the data annotated by break, we find that
current word and next word with a high bigram language
model (LM) probability, allows no break in between (i.e., read
as a continues chunk without break), as shown in Figure 1.

However, this phenomenon is much more distinctive in content
word pairs, not for function word pairs. In addition, a heuristic
assumption is that words within a phrase usually can’t assign a
break. It is also confirmed by native speakers’ speaking habit.
Therefore, we propose to use content word pair bigram
probabilities and a phrase dictionary in break modeling.

Fig 1. The histogram of break (smaller one) and non-break
(larger one) along with two content words bigram probabilities
(horizontal axis).

Acoustic features like FO are highly variable. Speaker
difference in FO can be affected by many factors, e.g. age,
gender and personal style. Even for the same speaker, the range
of FO can change from utterance to utterance. Normalization is
then necessary to minimize undesirable fluctuations. The FO
value of each frame is normalized (divided) by the mean of FO
of the whole sentence and the duration is normalized (divided)
by the mean syllable duration averaged over all speech data of
the speaker.

V. EXPEREIMTNS AND RESULTS

We use F2B’s data for speaker-dependent (SD) task. The
data proportion for training, developing and testing is roughly
4:1:1. The experiments for speaker-independent (SI) are carried
out with a cross-validation procedure, i.e., training on multiple
speakers, testing on a held-out speaker, and reporting the
average across the whole tests. Since F2B has much more data
than other speakers, she is always used in the training set. We
also leave 20% data out from training set for development.

CRF tool we used is CRF++ toolkit [16], a simple,
customizable, and open source implementation of CRFs for
segmenting/labeling sequential data. L-BFGS, a quasi-Newton
algorithm for large scale numerical optimization problem, is
used for training and L2 norm is adopted for regularization.
The features listed in Section IV all contribute to prosody
prediction and detection, confirmed by our brute force testing
with a super feature set. The CRF training control parameters,
e.g., the cut-off threshold for the features, are optimized with
the development set. CRF tools in natural language processing
area don’t support continuous features. The acoustic features
are then quantized into brackets which are also optimized with
the development set.
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To compare with results in other references [8,9], we use
accuracy as a performance evaluation measure and four
speakers’ (F1A, F2B,M1B and M2B)  cross-validation
procedure for SI model. The results of pitch accent prediction
and detection are shown in Table 2, where Sun’s [8] and
Levow’s [9] results were the best reported results with the
same data set and pitch accent types, as far as we know. The
performance of our pitch accent detection outperforms the
Sun’s SD model and Levow’s SI model by 0.78% and 3.28%,
respectively. By analyzing the results further, we find most
improvements are from our new acoustic features: dynamic
features of FO mean and slope of syllables.

Table 2. The results for pitch accent prediction and detection.

Accuracy (%) SD Sl
Features Sun’s [8] Our Levow’s [9] Our
Text 84.71 81.46 76.21 77.49
Acoustic 80.60 83.50 77.06 77.38
Text+Acoustic 87.17 87.95 79.65 82.93

In evaluating the break model, we use two metrics: 1)
precision, recall and f-score for break prediction within a sub-
sentence or sentence without punctuations; 2) whole accuracy
for break and non-break prediction. The results of break
prediction for SI and SD tasks are shown in Tables 3 and 4,
where our new features: phrase dictionary and content word
LM probability can improve the F-score from 70.2% to 72.0%.
We also show the evaluation results by using different ground
truth in Table 4. It is observed from the database that the break
assignment can be highly idiosyncratic and even random. As a
result, we count the predicted break as correct it matches any
one of four speakers. The four speakers uttered the same
sentence but with different breaks. A typical example:

Predictor: It functions | like an electronic probation officer.

F2B: It functions | like an electronic | probation officer.
FI1A: It functions | like an electronic | probation officer.
MIB: It functions | like an electronic probation officer .
M2B: It functions like an electronic probation officer .

The same sentence can be assigned by non, one or two breaks
by different speakers. From this point of view, we find the
performance of our break model is pretty good and it can be
applied to a real TTS system.

Table 3. The results of break prediction for SI task.

[Text Features | Precision (%) | Recall(%) | F-score(%)
Baseline 69.0 71.8 70.2
Our features 71.2 72.9 72.0

Table 4. The results of break prediction for SD task.

Ground Truth | Precision (%) | Recall(%) | F-score(%)
F2B 75.6 76.6 76.1
Four speakers 85.6 86.7 86.1

To compare with the results in reference [7], the newest
report on prosody modeling with BURSC data, we also use the

accuracy of break and non-break on the cross-validation
procedure of six speakers to evaluate the performance of break
model. The results are shown in Table 5 and they are
comparable or better than those in reference [7].

Table 5: The Accuracy of break prediction and detection for SI
task.

Accuracy (%) 5 fold (six speakers)
Features Jeon’s [7] Our
Text 89.76 91.18
Acoustic 84.89 84.78
Text+Acoustic 91.06 92.11

VI. CONCLUSIONS

Prosody modeling is a critical component for generating
expressive TTS speech. We use CRF for prosody modeling
with rich syntactic and acoustic, contextual features. The
experimental results on BURSC corpus show that our prosody
model can achieve 82.93% and 92.11% accuracy for pitch
accent and break detection, respectively.
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