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1 Basic Probability Inequalities

Ineuqlities are useful for bounding quantities that might otherwise be hard to com-
pute. They will also be used in the theory of convergence. In this lecture, we will
briefly describe some important and widely used probability inequalities.
We begin with the Markov’s Inequality which is widely used to link cdf with ex-
pectation.

Theorem 1 (Markov’s Inequality). Let X be a non-negative random variable
and suppose that E[X] exits. For any t > 0,

P(X > t) ≤ E[X]

t
(1)

Proof. Since X > 0, we have

E[X] =
∫∞
0 xp(x)dx =

∫ t
0 xp(x)dx+

∫∞
t xp(x)dx

≥
∫∞
t xp(x)dx ≥ t

∫∞
t p(x)dx

= tP(X > t)

Markov’s Inequality requires non-negative random variables. The following theo-
rem provides a general case for Markov’s Inequality by exploiting the commonly
used exponential trick, a.k.a Chernoff’s method:

Theorem 2 (Chernoff’s Method). Let X be a random variable. Then,

P(X > ε) ≤ inf
t≥0

e−tεE[etX ] (2)
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Proof. For any t > 0,
P(X > ε) = P(etX > etε)

Then, from Markov’s Inequality, for any t > 0

P(X > ε) ≤ e−tεE[etX ]

Thus,
P(X > ε) ≤ inf

t≥0
e−tεE[etX ]

Based on Markov’s Inequality, we derive the Chebyshev’s Inequality whcih links
cdf with variance,

Theorem 3 (Chebyshev’s Inequality). Let E[X] = µ and Var[X] = σ2. Then,

P(|X − µ| ≥ t) ≤ σ2

t2
(3)

Proof. From Markov’s Inequality,

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) ≤ E[(X − µ)2]
t2

=
σ2

t2

Base on the Chernoff’s Method, we have the Gausian Tail Inequality and further
introduce sub-Gaussian random variables.

Theorem 4 (Gaussian Tail Inequality). Let X ∼ N(µ, σ2). Then

P(|X − µ| > ε) ≤ 2e−ε
2/(2σ2) (4)

If X1, . . . , Xn ∼ N(µ, σ2), then

P(|Xn − µ| > ε) ≤ 2e−nε
2/(2σ2) (5)

Proof. Since X ∼ N(µ, σ2), we have that the mgf of X is:

MX(t) = E[etX ] = etµ+t
2σ2/2.

By applying the Chernoff method, we have

P(X − µ > ε) ≤ inf
t≥0

e−tεE[et(X−µ] = inf
t≥0

e−tε+t
2σ2/2,
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which is minimized when t = ε/σ2 which in turn yields the tail bound,

P(X − µ > ε) ≤ e−ε2/(2σ2)

By symmetry,
P(|X − µ| > ε) ≤ 2e−ε

2/(2σ2).

As X1, . . . , Xn ∼ N(µ, σ2), we have Xn ∼ N(µ, σ
2

n ),

P(|Xn − µ| > ε) ≤ 2e−ε
2/(2σ2/n) = 2e−nε

2/(2σ2) (6)

For better comprehension, we also give the Mill’s Inequality here, which gives a
sharper bound than the Gaussian Tail Inequality,

Theorem 5 (Mill’s Inequality). Let X ∼ N(0, 1). Then

P(|X| > ε) ≤
√

2

π

e−ε
2/2

ε
(7)

If X1, . . . , Xn ∼ N(0, 1), then

P(|Xn| > ε) ≤
√

2

π

e−nε
2/2

√
nε

(8)

Proof. The density of X is p(x) = 1√
2π
e−x

2/2, so we have p′(x) = −xp(x).
Hence,

P(X > ε) =
∫∞
ε p(x)dx =

∫∞
ε

xp(x)
x dx

≤ −1
ε

∫∞
ε p′(x)dx = −1

εp(x)|
∞
ε = 1

εp(ε)

= 1√
2πε
e−ε

2/2

By symmetry,

P(|X| > ε) ≤
√

2

π

e−ε
2/2

ε

As X1, . . . , Xn ∼ N(0, 1), we have Xn ∼ N(0, 1n). Thus,
√
nXn ∼ N(0, 1).

P(|Xn| > ε) = P(|
√
nXn| >

√
nε) ≤

√
2

π

e−nε
2/2

√
nε
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Sub-Gaussian Random Variables From the proof of the Gaussian Tail inequal-
ity, we see that a central property of Gaussian random variables which yields the
bound of tail is

E[et(X−µ)] = et
2σ2/2,

for all t ∈ R. Based on this property, we can define a class of random variables
whose tails decay faster than a Gaussian. Formally,

Definition 1 (Sub-Gaussion Random Variables). A random variable X with
mean µ is sub-Gaussian if there exists a positive number σ such that for all t ∈ R,

E[et(X−µ)] ≤ et2σ2/2. (9)

Gaussian random variables with variance σ2 satisfy the above condition with equal-
ity, so a σ-sub-Gaussian random variable basically just has an mgf that is dominat-
ed by a Gaussian with variance σ.
It is straightforward to go through the above tail bound to conclude that for a sub-
Gaussian random variable, we have the same two-sided exponential tail bound,

P(|X − µ| > ε) ≤ 2e−ε
2/(2σ2).

2 Hoeffding’s Inequality

Hoeffding’s inequality is similar in spirit to Markov’s inequality but it is a sharper
inequality, extending Markov’s Inequality to multivariate case. Before describing
Hoeffding’s Inequality, we begin with the following lemma:

Lemma 6. Suppose that E[X] = 0 and a ≤ X ≤ b. Then, for any t > 0,

E[etX ] ≤ et2(b−a)2/8 (10)

Proof. Since a ≤ X ≤ b, we can write X = a(1 − Z) + bZ, where Z = (Z −
a)/(b− a) and Z ∈ [0, 1]. Define function g(X) = etX . Then, we have that g is a
convex function. We have

etX = g(X) = g(a(1−Z)+bZ) ≤ (1−Z)g(a)+Zg(b) = b−X
b− a

eta+
X − a
b− a

etb

Taking expectations of both sides and using the fact that E[X] = 0, we get

E[etX ] ≤ b

b− a
eta − a

b− a
etb = eh(ω)
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where ω = t(b − a), h(ω) = γω + log(1 + γ − γeω) and γ = a/(b − a). One
can verity that h(0) = h′(0) = 0, and h′′(x) ≤ 1/4, ∀x > 0. By Taylor’s theorem,
there exists a ξ ∈ (0, ω) such that

h(ω) = h(0) + ωh′(0) +
ω2

2
h′′(ξ) ≤ ω

8
=
t2(b− a)2

8

Hence,
E[etX ] ≤ et2(b−a)2/8

Now we describe Hoeffding’s Inequality:

Theorem 7 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random
variables such that E[Xi] = µ and ai ≤ Xi ≤ bi. Then, for any ε > 0,

P(|Xn − µ| ≥ ε) ≤ 2e−ntε
n∏
i=1

et
2(bi−ai)2/8 (11)

Corollary 8. Let X1, . . . , Xn be iid random variables such that E[Xi] = µ and
a ≤ Xi ≤ b. Then, for any ε > 0,

P(|Xn − µ| ≥ ε) ≤ 2e−2nε
2/(b−a)2 (12)

Proof. Without loss of generality, we assume µ = 0. We have

P(|Xn| ≥ ε) = P(Xn ≥ ε) + P(−Xn ≥ ε)

Using Chernoff’s method, for any t > 0,

P(Xn ≥ ε) = P(
n∑
i=1

Xi ≥ nε) ≤ e−tnεE
[
et

∑n
i=1Xi

]
= e−tnε

n∏
i=1

E[etXi ]

From Lemma 6, E[etXi ] ≤ et2(bi−ai)2/8. So

P(Xn ≥ ε) ≤ e−tnε
n∏
i=1

et
2(bi−ai)2/8

By symmetry,

P(|Xn − µ| ≥ ε) ≤ 2e−ntε
n∏
i=1

et
2(bi−ai)2/8
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When X1, . . . , Xn are iid random variables, for nay t > 0

P(|Xn − µ| ≥ ε) ≤ 2e−ntε
n∏
i=1

et
2(bi−ai)2/8 = 2e−ntεet

2n(b−a)2/8

This is minimized by setting t = 4ε/(b− a)2, giving

P(|Xn − µ| ≥ ε) ≤ 2e−2nε
2/(b−a)2

3 Bernstein’s Inequality

Hieffding’s bound depends only on the bounds of the random variable but not expli-
cily on the variance of the random variables. The bound b− a provides a (possibly
loose) upper bound on the variance. One might at least hope that if the random
variables are bounded, and additionally have small variance, we might be able to
improve Hoeffding’s bound.
Such inequality is typically known as Bernstein’s inequality.

Theorem 9 (Bernstein’s Inequality). Let X1, . . . , Xn be iid random variables
such that E[Xi] = µ, Var[Xi] = σ2 and a ≤ Xi ≤ b. Then, for any ε > 0,

P(|Xn − µ| ≥ ε) ≤ 2e
− nε2

2σ2+(b−a)ε/3 (13)

It is not hard to verify that with small ε and σ2, Bernstein’s inequality provides a
sharper bound than Hoeffding’s inequality.

4 McDiarmid’s Inequality

So far we have focused on sums of random variables. McDiarmid’s inequality,
a.k.a. the Bounded Difference inequality, extends Hoeffding’s inequality to more
general functions g(x1, . . . , xn).

Theorem 10 (McDiarmid’s Inequality). LetX1, . . . , Xn be independent random
variables. Suppose that for i = 1, . . . , n,

sup
x1,...,xn,x′i

∣∣g(x1, . . . , xi−1, xi, xi+1, . . . , xn)− g(x1, . . . , xi−1, x′i, xi+1, . . . , xn)
∣∣ ≤ ci

Then,

P (g(X1, . . . , Xn)− E[g(X1, . . . , Xn)] ≥ ε) ≤ e−2ε
2/

∑n
i=1 c

2
i (14)
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Proof. DenoteZi = E[g(X1, . . . , Xn)|X1, . . . , Xi]−E[g(X1, . . . , Xn)|X1, . . . , Xi−1].
Then,

g(X1, . . . , Xn)− E[g(X1, . . . , Xn)] =

n∑
i=1

Zi

and E[Zi|X1, . . . , Xi−1] = 0. Using Chernoff’s method, for any t > 0,

P(g(X1, . . . , Xn)− E[g(X1, . . . , Xn)] ≥ ε) = P

(
n∑
i=1

Zi

)
≤ e−tεE

[
et

∑n
i=1 Zi

]
Moreover, we have

sup{Zi|X1, . . . , Xi−1} − inf{Zi|X1, . . . , Xi−1} ≤ ci

From Lemma 6, for any t > 0

E
[
etZi |X1, . . . , Xi−1

]
≤ et2c2i /8

Then,

E
[
et

∑n
i=1 Zi

]
= E

[
et

∑n−1
i=1 ZiE

[
etZn|X1,...,Xn−1

]]
≤ et

2c2n/8E
[
et

∑n−1
i=1 Zi

]
...

et
2
∑n
i=1 c

2
i

By taking t = 4ε∑n
i=1 c

2
i
,

P (g(X1, . . . , Xn)− E[g(X1, . . . , Xn)] ≥ ε) ≤ e−2ε
2/

∑n
i=1 c

2
i

5 Bounds on Expected Values and Variances

In this section, we visit the inequalities that provide bounds for the expected values
and variances.

Theorem 11 (Cauchy-Schwartz Inequality). If Var[X] < ∞ and Var[Y ] < ∞,
then

E[|XY |] ≤
√

E[X2]E[Y 2] (15)
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Theorem 12 (Jensen’s Inequality). If g is convex, then

E[g(x)] ≥ g(E[X]) (16)

If g is concave, then
E[g(x)] ≤ g(E[X]) (17)

Now we consider bounding the maximum of a set of random variables.

Theorem 13. Let X1, . . . , Xn be random variables. Suppose there exists σ > 0
such that for any t > 0,

E[etXi ] ≤ et2σ2/2

Then,

E

[
max
1≤i≤n

Xi

]
≤ σ

√
2 log n (18)

Proof. By Jensen’s Inequality, for any t > 0,

eE[tmax1≤i≤nXi] ≤ E
[
etmax1≤i≤nXi

]
= E

[
max1≤i≤n e

tXi
]

≤
n∑
i=1

E
[
etXi

]
≤ net

2σ2/2

Thus,

E

[
max
1≤i≤n

Xi

]
≤ log n

t
+
tσ2

2

The result follows by taking t =
√
2 log n/σ.

In order to bound variances, we describe the Bhatia–Davis inequality.

Theorem 14 (Bhatia–Davis Inequality). Suppose that a ≤ X ≤ b and E[X] = µ.
Then,

Var[X] ≤ (b− µ)(µ− a) ≤ 1

4
(b− a)2 (19)

Proof. for every x ∈ [a, b], we have 0 ≤ (x− a)(b− x), which gives us

x2 ≤ (b+ a)x− ab.

Then we have

Var[X] =
∫ b
a x

2p(x)dx− µ2

≤
∫ b
a ((b+ a)x− ab)p(x)dx− µ2

= (a+ b)µ− ab− µ2 = (b− µ)(µ− a)
≤ 1

4(b− a)
2
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