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Vision: Recent decades have witnessed a phenomenal level of successes in machine learning (ML) algorithms
and their applications in many domains such as natural language processing (NLP) and computer vision (CV). To
make task-oriented predictions, the development of these ML systems heavily rely on extracting abstract infor-
mative features from real-world data that are represented in raw digital formats. For example, syntactic, semantic
and contextual information are essentially important for a wide range of NLP tasks such as information extrac-
tion (IE). Text documents, however, are stored by individual tokens of words or characters, upon which these
abstract information is hard to represent. Similar scenarios happen in image data — digital images are made up
of pixels, from which it is difficult to extract abstract features such as edge or shape that are crucial for tasks,
for instance, image classification. Classical approaches to extract instructive features mainly rely on task-specific
expertise and heuristically designed hand-crafted features, in an iterative feature-selection process. There are two
problems with that brute-force methodology: 1) the combinatorial nature of empirical feature selection process
makes it expensive to handcraft features; 2) The development of these features is commonly task-, domain-, or
even language-specific, preventing it from adapting to new tasks or domains.

I believe that representation learning techniques based on deep learning methods can fundamentally trans-
form the conventional feature designing paradigm. Representation learning can, in principle, automatically learn
representations that are mathematically and computationally convenient to process. Furthermore, beyond learn-
ing representations for specific tasks, representation learning allows us to identify and disentangle the underlying
causal factors, to tease apart the underlying dependencies of the data, so that it becomes easier to understand, to
classify, or to perform other tasks such as, even, controllable and interpretable data generation or manipulation.
My research focuses on fulfilling this transformation to enhance the effectiveness, efficiency, controllability
and interpretablility of representation learning, by developing and analyzing deep learning techniques. The
key contributions of my research are as follows:

e Supervised feature learning to get rid of feature engineering in ML tasks. We advanced the state-of-the-
art on linguistic structured predictions and cross-lingual transfer learning by proposing a general deep
neural architecture, BLSTM-CNNs, for learning representations of text. BLSTM-CNNs provide sentence
representations which are applicable across different structured prediction tasks, while eliminating the hand-
crafted feature engineering by end-to-end learning (§1.1).

e Representation learning via deep generative models. We developed deep generative models to improve both
data density estimation and latent representation learning for text and image data. The key idea is to learn
the intrinsic structure and valuable information of data via modeling the data generation process (§1.2).

e Controllable and interpretable representation learning. We theoretically and empirically analyzed the vari-
ants of neural architectures and their impacts on the internal representation, and investigated the information
represented in the internal layers of deep neural models to help understand how deep neural networks mem-
orize and process information (§1.3).

1 Ph.D. Research on Representation Learning

1.1 Learning Representations for Supervised Machine Learning Tasks

Supervised representation learning (a.k.a. feature
learning) aims to automatically learn representations
that are mathematically and computationally conve- Arséne Wenger was named manager of Arsenal in 1996 .
nient for machine learning algorithms on specific
tasks, to replace hand-crafted feature engineering.
Feature learning is challenging because it requires =
methods not only to support end-to-end learning of Arséne  Wengerwas named manager of Arsenal in 1996 .
features directly from task-oriented raw (labeled) data,
but also be applicable to a wide range of tasks.

My work on supervised representation learning is  Figure 1: An example sentence of named entity recogni-
in the area of deep neural models for linguistic struc-  tion and dependency parsing.
tured predictions (see Fig 1 for examples). Most of
these work have been based on a consistent deep neural architecture named bi-directional LSTM stacked
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(a) An examples of Named Entity Recognition.

(b) An examples of dependency parsing.



with Convolutional neural networks (BLSTM-CNNs) that I introduced in [6] for encoding input sentences.
BLSTM-CNNS is capable of capturing both character-level and word-level contextual information. Moreover,
BLSTM-CNNs provide sentence representations that are applicable across different structured prediction
tasks, while supporting the kind of end-to-end learning, saving us from hand-crafted feature engineering.
By stacking different structured decoding layers on top of BLSTM-CNNs, we proposed deep neural models for
linguistic structured prediction tasks including sequence labeling (BLSTM-CNNs-CRF) [6], graph-based depen-
dency parsing (NeuroMST Parser) [7] and transition-based dependency parsing (Stack-Pointer Parser) [8]. We
were excited to see these BLSTM-CNNSs based models have been used as standard benchmark approaches for
different linguistic structured prediction tasks across a wide variety of languages, and still remain at or near the
state of the art. We also found that BLSTM-CNNs improve cross-lingual transferability for dependency parsing
under zero-shot setting [1].

1.2 Learning Representations from/for Data Generation

‘What I cannot create, I do not understand.

Richard P. Feynman

Unlike supervised feature learning that learns representations for specific ML tasks, general-purpose representa-
tion learning aims to learn representations that help understand the intrinsic structures and valuable information
of data that benefit various tasks and objectives. I believe that learning informative representations from data goes
hand-in-hand with learning to generate the data themselves — the kinds of inductive bias imposed by a demand for
generating data are often precisely those that encourage effective/informative representation learning. Generative
models hold the promise to provide Al systems with a framework for all the many different intuitive concepts they
need to understand, giving them the ability to reason about these concepts in the face of uncertainty. My research
on this direction has focused on pushing the frontier of both generative models and representation learning —
learning representations from and for data generation.

Enhancing capability and efficiency of generative flows for data generation: developing expressive flow ar-
chitectures to improve the performance of density estimation on complex data and to accelerate generation process.
Generative flows typically warp a simple distribution into a complex one

by mapping points from the simple distribution to the complex data dis- "

tribution through a chain of invertible transformations (see Fig. 2). I  ° ‘
proposed MACOW [9], a novel architecture of invertible transforma- X )
tions which leverages masked convolutional neural networks, for im- ) Z=jo(x) N
age generation. MACOW enjoys the merits of stable training, efficient

sampling and state-of-the-art performance of density estimation on multi-
ple benchmarks of image generation. The resulting model reduces the
time complexity of image generation significantly from quadratic ((% x w)) to linear (O(h) or O(w)) with h
and w being the height and wide of the input image.

Figure 2: Diagram of generative flow.

Learning latent representation via variational auto-encoding: designing regularization methods for variational
auto-encoders (VAEs) to leverage inductive bias in learned latent spaces. My work aimed to make the latent
space in VAEs contain meaningful and desired information. I proposed mutual posterior-divergence regular-
ization [10], a novel regularization that is able to control the geometry of the latent space to accomplish
meaningful representation learning. This regularization technique turns out to be useful to tackle the posterior
collapse issue in VAEs, and capable of learning meaningful latent representations. Experimentally, we showed
that the learned latent representations can be directly applied to subsequent tasks such as image reconstruction,
supervised image classification and unsupervised image clustering.

Learning complex latent representation using generative flows: utilizing generative flows to learn expres-
sive latent representations. Previous work focused on learning compressed (low-dimensional) latent represen-
tations from data. My recent work introduced FlowSeq, a model that incorporates generative flows in
variational auto-encoding, to learn complex (high-dimensional) expressive latent representations for non-
autoregressive sequence generation [11]. Empowered by the capability of generative flows in modeling com-
plex distributions, we were excited to see FlowSeq can learn expressive latent representations which is capa-
ble of decoupling the dependencies between tokens in the target sequence, yielding effective and efficient non-
autoregressive sequence generation. More importantly, the intrinsically modularized nature of FlowSeq opens up
a whole new bag of possibilities of learning multilingual representations shared across different languages.




1.3 Learning Interpretable and Controllable Representations

The end-to-end training paradigm in deep neural models simplifies the feature engineering process while giving
the model flexibility to optimize for the desired task. This, however, often comes at the expense of model inter-
pretability, making it difficult to understand the role of its different components. Such deep neural models are
sometimes perceived as “black-box”, hindering research efforts and limiting their utility to society.

My work on interpretability has focused on three directions — (i) understanding how deep neural networks
(DNNs) memorize and process information by investigating the internal representations learned by DNNS; ii)
Theoretically and empirically analyzing the variants of neural architectures and their impacts on the internal rep-
resentations; (iii) Learning controllable and effective representations by developing better neural architectures that
optimizes the model interpretability.

Analyzing the impact of Dropout theoretically and empirically: My first work in this area theoretically in-
vestigated the impact of Dropout, a commonly used method to reduce over-fitting, on the training and inference
phases of deep neural networks. We formally studied the inference gap of dropout, and introduced the notion
of (approximate) expectation-linearity to measure and characterize this gap [5]. In particular, the proposed
measure of the inference gap can be used to regularize the standard dropout training objective, consistently leading
to improved performance on multiple benchmark datasets.

Investigating the internal representations of neural parsers: One part of my Ph.D dissertation empirically
explored the linguistic information represented in the internal representations in different neural depen-
dency parsing models [4], using the method of utilizing supervised learning tasks to probe the internal repre-
sentations in end-to-end models [2]. I proposed three groups of experiments to investigate the information
flow in deep neural models, i.e. how the various types of information are processed and propagated across
different layers.

2 Future Directions

Two broad themes run through the work I have outlined above: representation learning as a class of techniques
for machine learning, and representation learning as an explanatory device for understanding and con-
trolling learned models. I believe that the learning techniques of controllability and interpretability are closely
related to and mutually enhance the methodologies that encourage effective and robust generalization. Moving
forward, I will continue working along the previously mentioned themes and also branch out to explore problems
related to controllable and interpretable representation learning and its applications.

Advancing supervised representation learning for core NLP tasks: Supervised representation learning tech-
niques have led to a number of impressive empirical successes on ML, NLP and CV. Recent works that exploit
self-supervised pre-training models, followed by fine-tuning on specific task annotations, kept pushing the state-
of-the-art performance on a wide range of NLP and CV tasks. Of course, there are still plenty of unsolved
problems involving supervised representation learning! I’'m especially interested in continuing to explore the
supervised representation learning, probably equipped with pre-training models, on core NLP tasks involving
linguistic structured inference procedures such as syntactic and semantic parsing, co-reference resolution and lan-
guage generation. In particular, I want to study how to capture linguistically interpretable representations
and how to use them to enhance core NLP tasks, by combining representation learning technologies such
as self-supervised pre-training and computational linguistic theories in linguistic structure learning and
inference procedures.

Learning Mathematically Interpretable Interlingual Representations: Previous work on encoding texts from
different languages into shared interlingual representations is commonly achieved by parameter sharing and lex-
ical overlap [3]. However, the learned interlingual representation is not entirely language-independent and can
only capture shallow semantic information. In addition, these interlingual representations are highly unexplain-
able, and the success of applying them to NLP tasks often relies on the heuristic empirical results. I believe one
promising direction in the next 5 to 10 years is to learn interpretable interlingual representations that capture glob-
ally language-independent semantic meaning of texts. In my future research, I want to explore the possibilities
of utilizing the intrinsically modularized nature and shared common prior space to learn universal inter-
lingual representations. Furthermore, I hope to exploit the interlingual representation as an intermediate to
enhance a broad range of computational approaches to multilingual NLP, in particular for resource-limited
languages. In addition, since the prior space in FlowSeq [11] is a well-defined mathematical space, we attempt




to investigate the linguistic structures and properties by mapping the corresponding sentences in different
languages into the mathematical space.

Establishing theoretical framework towards controllable representation learning: Broadly, learning inter-
pretable and controllable representation assists in identifying and decoupling underlying causal factors of data,
making it feasible for controllable and interpretable data generation or manipulation. I think one of the key things
we have lost in the era of deep learning for representation learning is a well-established framework or theory to
formally link various neural architectures with the learned representations. Our analysis of representations
learned from different neural architectures and objectives, such as supervised structured prediction and unsuper-
vised generation, sheds preliminary empirical light on this. But there is a huge amount of work needed to establish
a theoretical basis for a better analysis and understanding of representation learning. More generally, I suspect
that the following two decades will be defined as much by what representation can accomplish for learning as by
what learning can accomplish for representation.
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