

Overview

Goal: Learn a bi-directional mapping between images and their sentence-based descriptions

Usage:
- Bi-directional retrieval
- Caption generation

Key Motivation:
- Visual representations help build long-term memory
- A good caption should capture and help reconstruct the visual representation.

Evolving visual memory...

A girl and boy knocked down a tower.

Background

Previous RNN Model:

\[
P(w_s|V,W_{t-1}) = P(w_s|V_{t-1})P(V|W_{t-1})
\]

Training:
- Per stage model, every step tries to reconstruct the image
- Weight update from visual memory to image is performed from end to start

Retrieval:
- Given a sentence, evaluate the likelihood that it can be generated by using each image as an input
- Image to sentence retrieval is normalized by sentence length
- Using visual memory helps the performance

Generation:
- First sample sentence length from a prior
- With fixed length, sample the most likely caption

Conclusions

- Explicit visual memory is helpful
- Visual memory can be learned even with a single image per sentence
- Simple RNNs can remember long-term concepts
- Model is decomposable for bi-directional generation

Results

- Human Evaluation
 - 5.3% of our captions (Our Approach + VGG) are preferred to human captions, and 15.9% of equal quality

- **Caption generation**
 - A good caption should capture and help reconstruct the visual representation.

- **Visual Feature Reconstruction**
 - A long-term visual memory

- **Caption Generation**
 - First sample sentence length from a prior
 - With fixed length, sample the most likely caption

- **Our Model**
 - \[P(w_s, V|W_{t-1}) = P(w_s|V|W_{t-1})P(V|W_{t-1}) \]
 - Bi-directional retrieval
 - Caption generation

- **Visual Feature Reconstruction**
 - A good caption should capture and help reconstruct the visual representation.

- **Background**
 - Previous RNN Model:
 \[
P(w_s|V,W_{t-1}) = P(w_s|V_{t-1})P(V|W_{t-1})
\]
 - Training:
 - Per stage model, every step tries to reconstruct the image
 - Weight update from visual memory to image is performed from end to start
 - Retrieval:
 - Given a sentence, evaluate the likelihood that it can be generated by using each image as an input
 - Image to sentence retrieval is normalized by sentence length
 - Using visual memory helps the performance
 - Generation:
 - First sample sentence length from a prior
 - With fixed length, sample the most likely caption

- **Conclusions**
 - Explicit visual memory is helpful
 - Visual memory can be learned even with a single image per sentence
 - Simple RNNs can remember long-term concepts
 - Model is decomposable for bi-directional generation