
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs

Xiaolong Wang∗ Yufei Ye∗ Abhinav Gupta
The Robotics Institute, Carnegie Mellon University

Abstract

We consider the problem of zero-shot recognition: learn-
ing a visual classifier for a category with zero training ex-
amples, just using the word embedding of the category and
its relationship to other categories, which visual data are
provided. The key to dealing with the unfamiliar or novel
category is to transfer knowledge obtained from familiar
classes to describe the unfamiliar class. In this paper, we
build upon the recently introduced Graph Convolutional
Network (GCN) and propose an approach that uses both
semantic embeddings and the categorical relationships to
predict the classifiers. Given a learned knowledge graph
(KG), our approach takes as input semantic embeddings for
each node (representing visual category). After a series of
graph convolutions, we predict the visual classifier for each
category. During training, the visual classifiers for a few
categories are given to learn the GCN parameters. At test
time, these filters are used to predict the visual classifiers of
unseen categories. We show that our approach is robust to
noise in the KG. More importantly, our approach provides
significant improvement in performance compared to the cur-
rent state-of-the-art results (from 2 ∼ 3% on some metrics
to whopping 20% on a few).

1. Introduction
Consider the animal category “okapi”. Even though we

might have never heard of this category or seen visual ex-
amples in the past, we can still learn a good visual classi-
fier based on the following description: ”zebra-striped four
legged animal with a brown torso and a deer-like face” (Test
yourself on figure 1). On the other hand, our current recogni-
tion algorithms still operate in closed world conditions: that
is, they can only recognize the categories they are trained
with. Adding a new category requires collecting thousands
of training examples and then retraining the classifiers. To
tackle this problem, zero-shot learning is often used.

The key to dealing with the unfamiliar or novel category
is to transfer knowledge obtained from familiar classes to de-
scribe the unfamiliar classes (generalization). There are two

∗Indicates equal contribution.

Figure 1. Can you find “okapi” in these images? Okapi is ” zebra-
striped four legged animal with a brown torso and a deer-like
face”. In this paper, we focus on the problem of zero-shot learning
where visual classifiers are learned from semantic embeddings and
relationships to other categories.

paradigms of transferring knowledge. The first paradigm
is to use implicit knowledge representations, i.e. semantic
embeddings. In this approach, one learns a vector represen-
tation of different categories using text data and then learns
a mapping between the vector representation to visual clas-
sifier directly [33, 13]. However, these methods are limited
by the generalization power of the semantic models and the
mapping models themselves. It is also hard to learn semantic
embeddings from structured information.

The alternative and less-explored paradigm for zero-shot
learning is to use explicit knowledge bases or knowledge
graphs. In this paradigm, one explicitly represents the knowl-
edge as rules or relationships between objects. These rela-
tionships can then be used to learn zero-shot classifiers for
new categories. The simplest example would be to learn
visual classifiers of compositional categories. Given clas-
sifiers of primitive visual concepts as inputs, [32] applies
a simple composition rule to generate classifiers for new
complex concepts. However, in the general form, the rela-
tionships can be more complex than simple compositionality.
An interesting question we want to explore is if we can use
structured information and complex relationships to learn
visual classifiers without seeing any examples.

In this paper, we propose to distill both the implicit knowl-
edge representations (i.e. word embedding) and explicit
relationships (i.e. knowledge graph) for learning visual clas-
sifiers of novel classes. We build a knowledge graph where
each node corresponds to a semantic category. These nodes
are linked via relationship edges. The input to each node of
the graph is the vector representation (semantic embedding)
of each category. We then use Graph Convolutional Network

1



(GCN) [22] to transfer information (message-passing) be-
tween different categories. Specifically, we train a 6-layer
deep GCN that outputs the classifiers of different categories.

We focus on the task of image classification. We consider
both of the test settings: (a) final test classes being only zero-
shot classes (without training classes at test time); (b) at test
time the labels can be either the seen or the unseen classes,
namely “generalized zero-shot setting” [16, 6, 48]. We
show surprisingly powerful results and huge improvements
over classical baselines such as DeVise [13] , ConSE [33]
,and current state-of-the-art [5]. For example, on standard
ImageNet with 2-hop setting, 43:7% of the images retrieved
by [5] in top-10 are correct. Our approach retrieves 62:4%
images correctly. That is a whopping 18:7% improvement
over the current state-of-the-art. More interestingly, we
show that our approach scales amazingly well and giving
a significant improvement as we increase the size of the
knowledge graph even if the graph is noisy.

2. Related Work
With recent success of recognition systems, the focus has

now shifted to scaling these systems in terms of categories.
As more realistic and practical settings are considered, the
need for zero-shot recognition – training visual classifiers
without any examples – has increased. Specifically, the prob-
lem of mapping text to visual classifiers is very interesting.

Early work on zero-shot learning used attributes [11,
24, 19] to represent categories as vector indicating pres-
ence/absence of attributes. This vector representation can
then be mapped to learn visual classifiers. Instead of using
manually defined attribute-class relationships, Rohrbach et
al. [39, 37] mined these associations from different internet
sources. Akata et al. [1] used attributes as side-information to
learn a semantic embedding which helps in zero-shot recog-
nition. Recently, there have been approaches such as [36]
which trys to match Wikipedia text to images by modeling
noise in the text description.

With the advancement of deep learning, most recent ap-
proaches can be mapped into two main research directions.
The first approach is to use semantic embeddings (implicit
representations). The core idea is to represent each category
with learned vector representations that can be mapped to
visual classifiers [46, 43, 13, 40, 25, 15, 14, 18, 23, 4, 5].
Socher et al. [43] proposed training two different neural net-
works for image and language in an unsupervised manner,
and then learning a linear mapping between image repre-
sentations and word embeddings. Motivated by this work,
Frome et al. [13] proposed a system called DeViSE to train a
mapping from image to word embeddings using a ConvNet
and a transformation layer. By using the predicted embed-
ding to perform nearest neighbor search, DeViSE scales up
the zero-shot recognition to thousands of classes. Instead of
training a ConvNet to predict the word embedding directly,

Norouzi et al. [33] proposed another system named ConSE
which constructs the image embedding by combining an
existing image classification ConvNet and word embedding
model. Recently, Changpinyo et al [4] proposed an approach
to align semantic and visual manifolds via use of ‘phantom’
classes. They report state-of-the-art results on ImageNet
dataset using this approach. One strong shortcoming of
these approaches is they do not use any explicit relation-
ships between classes but rather use semantic-embeddings
to represent relationships.

The second popular way to distill the knowledge is to
use knowledge graph (explicit knowledge representations).
Researchers have proposed several approaches on how to
use knowledge graphs for object recognition [12, 42, 29, 34,
38, 9, 8, 28, 47, 45]. For example, Salakhutdinov et al. [42]
used WordNet to share the representations among different
object classifiers so that objects with few training examples
can borrow statistical strength from related objects. On the
other hand, the knowledge graph can also be used to model
the mutual exclusion among different classes. Deng et al. [9]
applied these exclusion rules as a constraint in the loss for
training object classifiers (e.g. an object will not be a dog
and a cat at the same time). They have also shown zero-
shot applications by adding object-attribute relations into
the graph. In contrast to these methods of using graph as
constraints, our approach used the graph to directly generate
novel object classifiers [32, 10, 2].

In our work, we propose to distill information both via
semantic embeddings and knowledge graphs. Specifically,
given a word embedding of an unseen category and the
knowledge graph that encodes explicit relationships, our
approach predicts the visual classifiers of unseen categories.
To model the knowledge graph, our work builds upon the
recently proposed Graph Convolutional Networks [22]. It
was originally proposed as a method for semi-supervised
learning in language processing. We extend it to our zero-
short learning problem by changing the model architecture
and training loss.

3. Approach
Our goal is to distill information from both implicit (word-

embeddings) and explicit (knowledge-graph) representations
for zero-shot recognition. But what is the right way to extract
information? We build upon the recent work on Graph Con-
volutional Network (GCN) [22] to learn visual classifiers. In
the following, we will first introduce how the GCN is applied
in natural language processing for classification tasks, and
then we will go into details about our approach: applying
the GCN with a regression loss for zero-shot learning.

3.1. Preliminaries: Graph Convolutional Network

Graph Convolutional Network (GCN) was introduced
in [22] to perform semi-supervised entity classification.

2



Figure 2. An example of our Graph Convolutional Network. It takes word embeddings as inputs and outputs the object classi�ers. The
supervision comes from the ground-truth classi�ersw2 andw3 highlighted by green. During testing, we input the same word embeddings
and obtain classi�er forx1 asŵ1 . This classi�er will be multiplied with the image features to produce classi�cation scores.

Given object entities, represented by word embeddings or
text features, the task is to perform classi�cation. For ex-
ample, entities such as “dog” and “cat” will be labeled as
“mammal”; “chair” and “couch” will be labeled “furniture”.
We also assume that there is a graph where nodes are entities
and the edges represent relationships between entities.

Formally, given a dataset withn entities (X; Y ) =
f (x i ; yi )gn

i =1 wherex i represents the word embedding for
entity i andyi 2 f 1; :::; Cg represents its label. In semi-
supervised setting, we know the ground-truth labels for the
�rst m entities. Our goal is to inferyi for the remaining
n � m entities, which do not have labels, using the word
embedding and the relationship graph. In the relationship
graph, each node is an entity and two nodes are linked if they
have a relationship in between.

We use a functionF (�) to represent the Graph Convolu-
tional Network. It takes all the entity word embeddingsX
as inputs at one time and outputs the SoftMax classi�cation
results for all of them asF (X ). For simplicity, we denote
the output for thei th entity asFi (X ), which is aC dimen-
sion SoftMax probability vector. In training time, we apply
the SoftMax loss on the �rstm entities, which have labels as

1
m

mX

i =1

L softmax(Fi (X ); yi ): (1)

The weights ofF (�) are trained via back-propagation with
this loss. During testing time, we use the learned weights
to obtain the labels for then � m entities withFi (X ); i 2
f m + 1 ; :::; ng.

Unlike standard convolutions that operate on local region
in an image, in GCN the convolutional operations compute
the response at a node based on the neighboring nodes de-
�ned by the adjacency graph. Mathematically, the convo-
lutional operations for each layer in the networkF (�) is
represented as

Z = ÂX 0W (2)

whereÂ is a normalized version of the binary adjacency

matrix A of the graph, withn � n dimensions.X 0 is the
input n � k feature matrix from the former layer.W is
the weight matrix of the layer with dimensionk � c, where
c is the output channel number. Therefore, the input to a
convolutional layer isn � k ,and the output is an � c matrix
Z . These convolution operations can be stacked one after
another. A non-linear operation (ReLU) is also applied after
each convolutional layer before the features are forwarded to
the next layer. For the �nal convolutional layer, the number
of output channels is the number of label classes (c = C).
For more details, please refer to [22].

3.2. GCN for Zero­shot Learning

Our model builds upon the Graph Convolutional Network.
However, instead of entity classi�cation, we apply it to the
zero-shot recognition with a regression loss. The input of our
framework is the set of categories and their corresponding
semantic-embedding vectors (represented byX = f x i gn

i =1 ).
For the output, we want to predict the visual classi�er for
each input category (represented byW = f wi gn

i =1 ).
Speci�cally, the visual classi�er we want the GCN to

predict is a logistic regression model on the �xed pre-trained
ConvNet features. If the dimensionality of visual-feature
vector isD , each classi�erwi for categoryi is also aD-
dimensional vector. Thus the output of each node in the
GCN is D dimensions, instead ofC dimensions. In the
zero-shot setting, we assume that the �rstm categories in
the totaln classes have enough visual examples to estimate
their weight vectors. For the remainingn � m categories, we
want to estimate their corresponding weight vectors given
their embedding vectors as inputs.

One way is to train a neural network (multi-layer percep-
tron) which takesx i as an input and learns to predictwi as
an output. The parameters of the network can be estimated
usingm training pairs. However, generallym is small (in
the order of a few hundreds) and therefore, we want to use
the explicit structure of the visual world or the relationships
between categories to constrain the problem. We represent

3



these relationships as the knowledge-graph (KG). Each node
in the KG represents a semantic category. Since we have a to-
tal of n categories, there aren nodes in the graph. Two nodes
are linked to each other if there is a relationship between
them. The graph structure is represented by then � n adja-
cency matrix,A. In this paper, we replace all directed edges
in the KG by undirected edges, which leads to a symmetric
adjacency matrix.

As Fig. 2 shows, we use a 6-layer GCN where each layer
l takes as input the feature representation from previous layer
(Z l � 1) and outputs a new feature representation (Z l ). For
the �rst layer the input isX which is ann � k matrix (k is
the dimensionality of the word-embedding vector). For the
�nal-layer the output feature-vector iŝW which has the size
of n � D ; D being the dimensionality of the classi�er or
visual feature vector.
Loss-function: For the �rstm categories, we have predicted
classi�er weightsŴ1:::m and ground-truth classi�er weights
learned from training imagesW1:::m . We use the mean-
square error as the loss function between the predicted and
the ground truth classi�ers.

1
m

mX

i =1

L mse(ŵi ; wi ): (3)

During training, we use the loss from them seen cate-
gories to estimate the parameters for the GCN. Using the
estimated parameters, we obtain the classi�er weights for
the zero-shot categories. At test time, we �rst extract the
image feature representations via the pre-trained ConvNet
and use these generated classi�ers to perform classi�cation
on the extracted features.

3.3. Implementation Details

Our GCN is composed of 6 convolutional layers with out-
put channel numbers as2048! 2048! 1024! 1024!
512! D , whereD represents the dimension of the object
classi�er. Unlike the 2-layer network presented in [22], our
network is much deeper. As shown in ablative studies, we
�nd that making the network deep is essential in generat-
ing the classi�er weights. For activation functions, instead
of using ReLU after each convolutional layer, we apply
LeakyReLU [26, 49] with the negative slope of0:2. Empiri-
cally, we �nd that LeakyReLU leads to faster convergence
for our regression problem.

While training our GCN, we perform L2-Normalization
on the outputs of the networks and the ground-truth clas-
si�ers. During testing, the generated classi�ers of unseen
classes are also L2-Normalized. We �nd adding this con-
straint important, as it regularizes the weights of all the
classi�ers into similar magnitudes. In practice, we also �nd
that the last layer classi�ers of the ImageNet pre-trained
networks are naturally normalized. That is, if we perform
L2-Normalization on each of the last layer classi�ers during

testing, the performance on the ImageNet 2012 1K-class
validation set changes marginally (< 1%).

To obtain the word embeddings for GCN inputs, we use
the GloVe text model [35] trained on the Wikipedia dataset,
which leads to 300-d vectors. For the classes whose names
contain multiple words, we match all the words in the trained
model and �nd their embeddings. By averaging these word
embeddings, we obtain the class embedding.

4. Experiment
We now perform experiments to showcase that our ap-

proach: (a) improves the state-of-the-art by a signi�cant
margin; (b) is robust to different pre-trained ConvNets and
noise in the KG. We use two datasets in our experiments. The
�rst dataset we use is constructed from publicly-available
knowledge bases. The dataset consists of relationships and
graph from Never-Ending Language Learning (NELL) [3]
and images from Never-Ending Image Learning (NEIL) [8].
This is an ideal dataset for: (a) demonstrating that our ap-
proach is robust even with automatically learned (and noisy)
KG; (b) ablative studies since the KG in this domain is rich,
and we can perform ablations on KG as well.

Our �nal experiments are shown on the standard Ima-
geNet dataset. We use the same settings as the baseline ap-
proaches [13, 33, 4] together with the WordNet [31] knowl-
edge graph. We show that our approach surpasses the state-
of-the-art methods by a signi�cant margin.

4.1. Experiments on NELL and NEIL
Dataset settings.For this experiment, we construct a new
knowledge graph based on the NELL [3] and NEIL [8]
datasets. Speci�cally, the object nodes in NEIL correspond
to the nodes in NELL. The NEIL dataset offers the sources
of images and the NELL dataset offers the common sense
knowledge rules. However, the NELL graph is incredibly
large1: it contains roughly 1.7M types of object entities and
around 2.4M edges representing the relationships between
every two objects. Furthermore, since NELL is constructed
automatically, there are noisy edges in the graph. Therefore,
we create sub-graphs for our experiments.

The process of constructing this sub-graph is straightfor-
ward. We perform Breadth-�rst search (BFS) starting from
the NEIL nodes. We discover paths with maximum length
K hops such that the �rst and last node in the path are NEIL
nodes. We add all the nodes and edges in these paths into our
sub-graph. We setK = 7 during BFS because we discover
a path longer than 7 hops will cause the connection between
two objects noisy and unreasonable. For example, “jeep”
can be connected to “deer” in a long path but they are hardly
semantically related.

Note that each edge in NELL has a con�dence value that
is usually larger than0:9. For our experiments, we create two

1http://rtw.ml.cmu.edu/

4



All NEIL Nodes
Dataset Nodes (Train/Test) Edges
High Value Edges 8819 431/88 40810
All Edges 14612 616/88 96772

Table 1. Dataset Statistics: Two different sizes of knowledge graphs
in our experiment.

different versions of sub-graphs. The �rst smaller version is
a graph with high value edges (larger than0:999), and the
second one used all the edges regardless of their con�dence
values. The statistics of the two sub-graphs are summarized
in Table 1. For the larger sub-graph, we have 14K object
nodes. Among these nodes, 704 of them have corresponding
images in the NEIL database. We use 616 classes for training
our GCN and leave 88 classes for testing. Note that these
88 testing classes are randomly selected among the classes
that have no overlap with the 1000 classes in the standard
ImageNet classi�cation dataset. The smaller knowledge
graph is around half the size of the larger one. We use the
same 88 testing classes in both settings
Training details. For training the ConvNet on NEIL images,
we use the 310K images associated with the 616 training
classes. The evaluation is performed on the randomly se-
lected 12K images associated with the 88 testing classes,
i.e. all images from the training classes are excluded during
testing. We �ne-tune the ImageNet pre-trained VGGM [7]
network architecture with relatively smallfc 7 outputs (128-
dimension). Thus the object classi�er dimension infc 8 is
128. For training our GCN, we use the ADAM [21] opti-
mizer with learning rate0:001and weight decay0:0005. We
train our GCN for 300 epochs for every experiment.
Baseline method.We compare our method with one of the
state-of-the-art methods, ConSE [33], which shows slightly
better performance than DeViSE [13] in ImageNet. As a
brief introduction, ConSE �rst feedforwards the test image
into a ConvNet that is trained only on the training classes.
With the output probabilities, ConSE selects topT predic-
tions f pi gT

i =1 and the word embeddingsf x i gT
i =1 [30] of

these classes. It then generates a new word embedding by
weighted averaging theT embeddings with the probability
1
T

P T
i =1 pi x i . This new embedding is applied to perform

nearest neighbors in the word embeddings of the testing
classes. The top retrieved classes are selected as the �nal
result. We enumerate different values ofT for evaluations.
Quantitative Results.We perform evaluations on the task
of 88 unseen categories classi�cation. Our metric is based
on the percentage of correctly retrieved test data (out of topk
retrievals) for a given zero-shot class. The results are shown
in Table 2. We evaluate our method on two different sizes
of knowledge graphs. We use “High Value Edges” to denote
the knowledge graph constructed based on high con�dence
edges. “All Edges” represents the graph constructed with all
the edges. We denote the baseline [33] as “ConSE(T)” where

Hit@k (%)
Test Set Model 1 2 5 10

High Value

ConSE(5) 6.6 9.6 13.6 19.4

Edges

ConSE(10) 7.0 9.8 14.2 20.1
ConSE(431) 6.7 9.7 14.9 20.5
Ours 9.1 16.8 23.2 47.9

All Edges

ConSE(5) 7.7 10.1 13.9 19.5
ConSE(10) 7.7 10.4 14.7 20.5
ConSE(616) 7.7 10.5 15.7 21.4
Ours 10.8 18.4 33.7 49.0

Table 2. Top-k accuracy for different models in different settings.

Figure 3. We randomly drop5% to 50% of the edges in the “All
Edges” graph and show the top-1, top-5 and top-10 accuracies.

we setT to be 5, 10 and the number of training classes.
Our method outperforms the ConSE baseline by a large

margin. In the “All Edges” dataset, our method outperforms
ConSE3:6% in top-1 accuracy.More impressively, the ac-
curacy of our method is almost 2 times as that of ConSE
in top-2 metric and even more than 2 times in top-5 and
top-10 accuracies. These results show that using knowl-
edge graph with word embeddings in our method leads to
much better result than the state-of-the-art results with word
embeddings only.
From small to larger graph. In addition to improving per-
formance in zero-shot recognition, our method obtains more
performance gain as our graph size increases. As shown in
Table 2, our method performs better by switching from the
small to larger graph. Our approach has obtained2 � 3%im-
provements in all the metrics. On the other hand, there is lit-
tle to no improvements in ConSE performance. It also shows
that the KG does not need to be hand-crafted or cleaned. Our
approach is able to robustly handle the errors in the graph
structure.
Resilience to Missing EdgesWe explore how the perfor-
mance of our model changes if we randomly drop5% to
50%of the edges in the “All Edges” graph. As Fig. 3 shows,
by dropping from5%to 10%of edges, the performance of
our model changes negligibly. This is mainly because the

5



Figure 4. We compute the minimum Euclidean distances between
predicted and training classi�ers. The distances are plotted by
sorting them from small to large.

knowledge graph can have redundant information with 14K
nodes and 97K edges connecting them. This again implies
that our model is robust to small noisy changes in the graph.
As we start deleting more than30%of the edges, the accura-
cies drop drastically. This indicates that the performance of
our model is highly correlated to the size of the knowledge
graph.
Random Graph? It is clear that our approach can handle
noise in the graph. But does any random graph work? To
demonstrate that the structure of the graph is still critical
we also created some trivial graphs: (i) star model: we
create a graph with one single root node and only have edges
connecting object nodes to the root node; (ii) random graph:
all nodes in the graph are randomly connected. Table 3
shows the results. It is clear that all the numbers are close to
random guessing, which means a reasonable graph plays an
important role and a random graph can have negative effects
on the model.

Hit@k (%)
Test Set Trivial KG 1 2 5 10

All Edges
Star Model 1.1 1.6 4.8 9.7
Random Graph 1.0 2.2 5.6 11.3

Table 3. Top-k accuracy on trivial knowledge graphs we create.

How important is the depth of GCN? We show that mak-
ing the Graph Convolutional Network deep is critical in our
problem. We show the performance of using different num-
bers of layers for our model on the “All Edges” knowledge
graph shown in Table 4. For the 2-layer model we use512
hidden neurons, and the 4-layer model has output channel
numbers as2048 ! 1024 ! 512 ! 128. We show that
the performance keeps increasing as we make the model
deeper from 2-layer to 6-layer. The reason is that increasing
the times of convolutions is essentially increasing the times
of message passing between nodes in the graph. However,
we do not observe much gain by adding more layers above

Hit@k (%)
Test Set Model 1 2 5 10

All Edges
Ours (2-layer) 5.3 8.7 15.5 24.3
Ours (4-layer) 8.2 13.5 27.1 41.8
Ours (6-layer) 10.8 18.4 33.7 49.0

Table 4. Top-k accuracy with different depths of our model.

the 6-layer model. One potential reason might be that the
optimization becomes harder as the network goes deeper.
Is our network just copying classi�ers as outputs?Even
though we show our method is better than ConSE baseline, is
it possible that it learns to selectively copy the nearby classi-
�ers? To show our method is not learning this trivial solution,
we compute the Euclidean distance between our generated
classi�ers and the training classi�ers. More speci�cally, for
a generated classi�er, we compare it with the classi�ers from
the training classes that are at most 3-hops away. We calcu-
late the minimum distance between each generated classi�er
and its neighbors. We sort the distances for all88 classi-
�ers and plot Fig. 4. As for reference, the distance between
“wooden spoon” and “spoon” classi�ers in the training set is
0:26 and the distance between “woodenspoon” and “opti-
mus prime” is0:78. We can see that our predicted classi�ers

Figure 5. t-SNE visualizations for our word embeddings and GCN
output visual classi�ers in the “All Edges” dataset. The test classes
are shown in red.

6



Hit@k (%)
Test Set Model ConvNets 1 2 5 10 20

2-hops

ConSE [4] Inception-v1 8.3 12.9 21.8 30.9 41.7
ConSE(us) Inception-v1 12.4 18.4 25.3 28.5 31.8
SYNC [4] Inception-v1 10.5 17.7 28.6 40.1 52.0
EXEM [5] Inception-v1 12.5 19.5 32.3 43.7 55.2
Ours Inception-v1 18.5 31.3 50.1 62.4 72.0
Ours ResNet-50 19.8 33.3 53.2 65.4 74.6

3-hops

ConSE [4] Inception-v1 2.6 4.1 7.3 11.1 16.4
ConSE(us) Inception-v1 3.2 4.9 7.6 9.7 11.4
SYNC [4] Inception-v1 2.9 4.9 9.2 14.2 20.9
EXEM [5] Inception-v1 3.6 5.9 10.7 16.1 23.1
Ours Inception-v1 3.8 6.9 13.1 18.8 26.0
Ours ResNet-50 4.1 7.5 14.2 20.2 27.7

All

ConSE [4] Inception-v1 1.3 2.1 3.8 5.8 8.7
ConSE(us) Inception-v1 1.5 2.2 3.6 4.6 5.7
SYNC [4] Inception-v1 1.4 2.4 4.5 7.1 10.9
EXEM [5] Inception-v1 1.8 2.9 5.3 8.2 12.2
Ours Inception-v1 1.7 3.0 5.8 8.4 11.8
Ours ResNet-50 1.8 3.3 6.3 9.1 12.7

(a) Top-k accuracy for different models when testing on only unseen
classes.

Hit@k (%)
Test Set Model ConvNets 1 2 5 10 20

2-hops

DeViSE [13] AlexNet 0.8 2.7 7.9 14.2 22.7

(+1K)

ConSE [33] AlexNet 0.3 6.2 17.0 24.9 33.5
ConSE(us) Inception-v1 0.2 7.8 18.1 22.8 26.4
ConSE(us) ResNet-50 0.1 11.2 24.3 29.1 32.7
Ours Inception-v1 7.9 18.6 39.4 53.8 65.3
Ours ResNet-50 9.7 20.4 42.6 57.0 68.2

3-hops

DeViSE [13] AlexNet 0.5 1.4 3.4 5.9 9.7

(+1K)

ConSE [33] AlexNet 0.2 2.2 5.9 9.7 14.3
ConSE(us) Inception-v1 0.2 2.8 6.5 8.9 10.9
ConSE(us) ResNet-50 0.2 3.2 7.3 10.0 12.2
Ours Inception-v1 1.9 4.6 10.9 16.7 24.0
Ours ResNet-50 2.2 5.1 11.9 18.0 25.6

All

DeViSE [13] AlexNet 0.3 0.8 1.9 3.2 5.3

(+1K)

ConSE [33] AlexNet 0.2 1.2 3.0 5.0 7.5
ConSE(us) Inception-v1 0.1 1.3 3.1 4.3 5.5
ConSE(us) ResNet-50 0.1 1.5 3.5 4.9 6.2
Ours Inception-v1 0.9 2.0 4.8 7.5 10.8
Ours ResNet-50 1.0 2.3 5.3 8.1 11.7

(b) Top-k accuracy for different models when testing on both seen and
unseen classes (a more practical and generalized setting).

Table 5. Results on ImageNet. We test our model on 2 different settings over 3 different datasets.

are quite different from its neighbors.
Are the outputs only relying on the word embeddings?
We perform t-SNE [27] visualizations to show that our out-
put classi�ers are not just derived from the word embeddings.
We show the t-SNE [27] plots of both the word embeddings
and the classi�ers of the seen and unseen classes in the “All
Edges” dataset. As Fig. 5 shows, we have very different clus-
tering results between the word embeddings and the object
classi�ers, which indicates that our GCN is not just learning
a direct projection from word embeddings to classi�ers.

4.2. Experiments on WordNet and ImageNet
We now perform our experiments on a much larger-scale

ImageNet [41] dataset. We adopt the same train/test split
settings as [13, 33]. More speci�cally, we report our results
on 3 different test datasets: “2-hops”, “3-hops” and the
whole “All” ImageNet set. These datasets are constructed
according to how similar the classes are related to the classes
in the ImageNet 2012 1K dataset. For example, “2-hops”
dataset (around 1.5K classes) includes the classes from the
ImageNet 2011 21K set which are semantically very similar
to the ImageNet 2012 1K classes. “3-hops” dataset (around
7.8K classes) includes the classes that are within 3 hops of
the ImageNet 2012 1K classes, and the “All” dataset includes
all the labels in ImageNet 2011 21K. There are no common
labels between the ImageNet 1K class and the classes in
these 3-dataset. It is also obvious to see that as the number
of class increases, the task becomes more challenging.

As for knowledge graph, we use the sub-graph of the
WordNet [31], which includes around 30K object nodes.
Note that all the classes in ImageNet are inside the WordNet.
Training details. Note that to perform testing on 3 differ-
ent test sets, we only need to train one set of ConvNet and

GCN. We use two different types of ConvNets as the base
network for computing visual features: Inception-v1 [44]
and ResNet-50 [17]. Both networks are pre-trained using
the ImageNet 2012 1K dataset and no �ne-tuning is required.
For Inception-v1, the output feature of the second to the
last layer has1024dimensions, which leads toD = 1024
object classi�ers in the last layer. For ResNet-50, we have
D = 2048. Except for the changes of output targets, other
settings of training GCN remain the same as those of the pre-
vious experiments on NELL and NEIL. It is worthy to note
that our GCN model is robust to different sizes of outputs.
The model shows consistently better results as the represen-
tation (features) improves from Inception-v1 (68:7%top-1
accuracy in ImageNet 1K val set) to ResNet-50 (75:3%).

We evaluate our method with the same metric as the
previous experiments: the percentage of hitting the ground-
truth labels among the topk predictions. However, instead
of only testing with the unseen object classi�ers, we include
both training and the predicted classi�ers during testing, as
suggested by [13, 33]. Note that in these two settings of
experiments, we still perform testing on the same set of
images associated with unseen classes only.

Testing without considering the training labels.We �rst
perform experiments excluding the classi�ers belonging to
the training classes during testing. We report our results in
Table. 5a. We compare our results to the recent state-of-the-
art methods SYNC [4] and EXEM [5]. We show experiments
with the same pre-trained ConvNets (Inception-v1) as [4, 5].
Due to unavailability of their word embeddings for all the
nodes in KG, we use a different set of word embeddings
(GloVe) ,which is publicly available.

Therefore, we �rst investigate if the change of word-

7



Word Hit@k (%)
Model Embedding 1 2 5 10 20
[50] GloVe 7.8 11.5 17.2 21.2 25.6
Ours GloVe 18.5 31.3 50.1 62.4 72.0
[50] FastText 9.8 16.4 27.8 37.6 48.4
Ours FastText 18.7 30.8 49.6 62.0 71.5
[50] GoogleNews 13.0 20.6 33.5 44.1 55.2
Ours GoogleNews 18.3 31.6 51.1 63.4 73.0

Table 6. Results with different word embeddings on ImageNet (2
hops), corresponding to the experiments in Table 5a.

embedding is crucial. We show this via the ConSE baseline.
Our re-implementation of ConSE, shown as “ConSE(us)”
in the table, uses the GloVe whereas the ConSE method
implemented in [4, 5] uses their own word embedding. We
see that both approaches have similar performance. Ours is
slightly better in top-1 accuracy while the one in [4, 5] is
better in top-20 accuracy. Thus, with respect to zero-shot
learning, both word-embeddings seem equally powerful.

We then compare our results with SYNC [4] and
EXEM [5]. With the same pre-trained ConvNet Inception-
v1, our method outperforms almost all the other methods on
all the datasets and metrics. On the “2-hops” dataset, our ap-
proach outperforms all methods with a large margin: around
6% on top-1 accuracy and17%on top-5 accuracy. On the
“3-hops” dataset, our approach is consistently better than
EXEM [5] around2 � 3%from top-5 to top-20 metrics.

By replacing the Inception-v1 with the ResNet-50, we
obtain another performance boost in all metrics. For the
top-5 metric, our �nal model outperforms the state-of-the-art
method EXEM [5] by a whooping20:9% in the “2-hops”
dataset,3:5% in the “3-hops” dataset and1% in the “All”
dataset. Note that the gain is diminishing because the task
increases in dif�culty as the number of unseen classes in-
creases.
Sensitivity to word embeddings.Is our method sensitive
to word embeddings? What will happen if we use different
word embeddings as inputs? We investigate 3 different word
embeddings including GloVe [35] (which is used in the other
experiments in the paper), FastText [20] and word2vec [30]
trained with GoogleNews. As for comparisons, we have
also implemented the method in [50] which trains a direct
mapping from word embeddings to visual features without
knowledge graphs. We use the Inception-v1 ConvNet to ex-
tract visual features. We show the results on ImageNet (with
the 2-hops setting same as Table 5a). We can see that [50]
highly relies on the quality of the word embeddings (top-5
results range from17:2%to 33:5%). On the other hand, our
top-5 results are stably around50% and are much higher
than [50]. With the GloVe word embeddings, our approach
hasa relative improvement of almost 200%over [50].
This again shows graph convolutions with knowledge graphs
play a signi�cant role in improving zero-shot recognition.

Figure 6. Visualization of top 5 prediction results for 3 different
images. The correct prediction results are highlighted by red bold
characters. The unseen classes or zero-shot classes are marked with
a red “test” in the bracket. Previously seen classes have a plain
“train” in the bracket.

Testing with the training classi�ers. Following the sug-
gestions in [13, 33], a more practical setting for zero-shot
recognition is to include both seen and unseen category clas-
si�ers during testing. We test our method in this generalized
setting. Since there are very few baselines available for
this setting of experiment, we can only compare the results
with ConSE and DeViSE. We have also re-implemented the
ConSE baselines with both Inception-v1 and ResNet-50 pre-
trained networks. As Table 5b shows our method almost
doubles the performance compared to the baselines on ev-
ery metric and all 3-datasets. Moreover, we can still see
the boost in of performance by switching the pre-trained
Inception-v1 network to ResNet-50.
Visualizations. We �nally perform visualizations using our
model and the baseline model: ConSE withT = 10 in Fig.
6 (Top-5 prediction results). We can see that our method
signi�cantly outperforms ConSE(10) in these examples. Al-
though ConSE(10) still gives reasonable classi�cation results
in most cases, the output labels are biased to be within the
training labels. On the other hand, our method outputs the
unseen classes as well.

5. Conclusion
We have presented an approach for zero-shot recogni-

tion using the semantic embeddings of a category and the
knowledge graph that encodes the relationship of the novel
category to familiar categories. Our work also shows that
a knowledge graph provides supervision to learn meaning-
ful classi�ers on top of semantic embeddings. Our results
indicate a signi�cant improvement over current state-of-the-
art. As future work, we plan to explore how we can use
relationship types more explicitly in this framework.

8


