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Abstract

This paper proposes a reconfigurable model to recognize
and detect multiclass (or multiview) objects with large vari-
ation in appearance. Compared with well acknowledged
hierarchical models, we study two advanced capabilities
in hierarchy for object modeling: (i)“switch” variables(i.e.
or-nodes) for specifying alternative compositions, and (i-
i) making local classifiers (i.e. leaf-nodes) shared among
different classes. These capabilities enable us to account
well for structural variabilities while preserving the mod-
el compact. Our model, in the form of an And-Or Graph,
comprises four layers: a batch of leaf-nodes with collabo-
rative edges in bottom for localizing object parts; the or-
nodes over bottom to activate their children leaf-nodes; the
and-nodes to classify objects as a whole; one root-node on
the top for switching multiclass classification, which is also
an or-node. For model training, we present an EM-type al-
gorithm, namely dynamical structural optimization (DSO),
to iteratively determine the structural configuration, (e.g.,
leaf-node generation associated with their parent or-nodes
and shared across other classes), along with optimizing
multi-layer parameters. The proposed method is valid on
challenging databases, e.g., PASCAL VOC 2007 and UIUC-
People, and it achieves state-of-the-arts performance.

1. Introduction
Object recognition is an area of active research in com-

puter vision, and its performance has been improved sub-
stantially in recent years [6, 26, 18, 10, 4, 16, 14]. The
objective of this work is to develop a novel hierarchical and
reconfigurable model for multiclass object recognition, in
the form of an And-Or graph representation, as Fig. 1 illus-
trates. We study two following issues that are often ignored
or over-simplified in previous works.

Model reconfigurability. One key challenge in object
modeling is to capture the large object variation in appear-
ance and view/pose. Some recently proposed deformable
part-based models [6, 18] handle this challenge by using
hierarchical and contextual compositions, and achieve re-

Part 1 Part 9 Part 1 Part 9

Sheep Horse 

… … 

… 

And-Node 

Or-Node 

Leaf-Node 

Figure 1. An example of the proposed 4-layer And-Or graph model
for multiclass object recognition. Parts of the model for sheep and
horse are shown. The squares in bottom represent the leaf-nodes,
which can be shared among different classes(e.g. the leaf-node for
localizing legs are shared between sheep and horse). The or-nodes
over bottom are used to activate their children leaf-nodes, tackling
the local ambiguities.

markable progresses. However, the structural configura-
tions of these models are mainly fixed, e.g., the number
of part detectors and the ways of composition. Inspired by
And-Or graph models in [27, 8, 22], we develop the “switch
variables”, namely or-nodes, to specify alternative compo-
sitions in hierarchy. In detection, the or-nodes are used to
activated its children leaf-nodes (i.e. local classifiers), ac-
counting for intraclass variance. It worths mentioning that
the association of or-nodes with its children leaf-nodes can
be automatically determined in model training. In Fig. 1,
the sheep head is localized by the leaf-node that is activated
by its parent or-node.
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Model sharing. In the context of multiclass objec-
t recognition, existing systems commonly treat differen-
t classes as unrelated entities, (by [15]). According to ac-
knowledged studies [19, 17, 14], sharing information a-
mong different classes can boost model performance in
general and alleviate the requirement of a large amount of
training data. Recently, Salakhutdinov et al. [15] propose
a learning-to-share framework that allows rare objects to
borrow statistical strength from other related classes, and
demonstrate impressive results. It inspires us to make struc-
ture shared in the And-Or graph model, for adapting the task
of multiclass recognition. In our method, the leaf-nodes are
sharable among different classes so that we keep the model
compact to represent multiple object categories. For exam-
ple, in Fig. 1, the part of feet in category horse and sheep
have similar appearances, and thus can be both detected by
the leaf-node shared across the two classes.

The key contribution of this work is a novel And-Or
graph model for multiclass object recognition, by address-
ing the both above issues. Without loss of generality, we
define our four layered model, as Fig.1 illustrates. The leaf-
nodes (denoted by squares) in the bottom are discriminative
classifiers for detecting object parts. The or-nodes (denoted
by dashed circles) over in the third layer are used to acti-
vate one of its children leaf-nodes in detection, which are
allowed to slightly perturb for capturing deformations. The
and-nodes (denoted by solid circles) in the second layer are
global classifiers for object classes. The root-node at top
is for switching multiclass recognition, which is also an or-
node. In addition, we define the collaborative edges (denot-
ed by curve connections) to encode intraclass (part-level)
relations, and interclass contexts are modeled in the similar
way as the edges connect the and-nodes also.

One non-trivial problem in model training is to automat-
ically determine the model structure without requiring elab-
orate supervision and initialization. In our method, we pro-
pose a novel algorithm for this problem, namely Dynamical
Structural Optimization (DSO), motivated by the recently
proposed structural optimization methods [23, 12]. It is de-
signed in the EM-type iterating with three steps. (i) Esti-
mate model latent variables for optimization, according to
parameters from the previous iteration. (ii) Reconfigure the
model structure by clustering. In this step, we produce leaf-
nodes associated with their parent or-nodes and make leaf-
nodes shared across classes. (iii) Check the acceptance for
the newly generated model structure, and update the model
parameters.

Due to large variance among classes, it would be in-
tractable to train the classes altogether by pooling all sam-
ples from different classes into a bag. In this work, we first
partition all classes into several groups by a data-driven ap-
proach, in order to reduce the computational complexity for
model sharing. Then we train the models for object class-

es in each group. For example, we can easily decide to put
sheep and horses into one group and train the multiclass
model by sharing. Afterwards, the trained models for al-
l groups are further combined into the complete one, by
reweighing parameters of all the models. And the collab-
orative edges are also learned during this step.

2. Related Work
Traditional multiclass object detectors are trained in a

one-vs-all manner, where each object category are trained
independently. These methods often rely on large amount
of training data. A pioneer work [19] is proposed to learn
shared features among classes and improve the classifier in
both effectiveness and efficiency. Opelt et al. [13] further
incorporate the incremental learning with classifier shar-
ing. To discover hierarchical structures of object categories,
the Hierarchical Latent Dirichlet Allocation (hLDA) mod-
el is presented in [17]. The efficiency of multiclass objec-
t recognition can be significantly improved by integrating
taxonomies with object hierarchy [7, 9].

To tackle realistic challenges in object recognition, many
deformable part-based methods are developed by latent
structural learning recently [6, 26, 18, 16], and demonstrate
very promising results. These models are also extended to
multiclass recognition and detection [4, 15, 14]. For exam-
ple, Razavi et al. [14] present the multiclass Hough Forest
combing with the part-based models; Desai et al. [4] further
incorporate the context information into hierarchy, and pre-
dict a structured labeling for each image during detections.
However, the commonly used part-based models are often
defined in a tree structure, whose configurations are fixed
during the learning and detection, and may have problem-
s on handling objects with large appearance and structure
variations.

And-Or graph models are first proposed for modeling
complex visual patterns by Zhu and Mumford [25]. It-
s general idea, using And/Or nodes to account for struc-
tural compositions and variabilities in hierarchy, has been
applied in several vision tasks, e.g., human parsing [22, 27]
and scene understanding [24]. These approaches often re-
quire supervised learning or manually initialization. Fidler
et al. [8] propose to train the And-Or graph for multiclass
shape-based detection in a generative way, and extensively
discuss the learning strategies. Motivated by these works,
we propose an alternating way to discriminatively train the
And-Or graph model for multiclass object recognition, and
achieve superior performance on very challenging databas-
es, e.g., PASCAL VOC 2007 and UIUC-People.

3. And-Or Graph Model
Our multiclass object model is constructed in the form of

an And-Or graph G = (V, E), where V contains three types
of nodes, E represents the collaborative edges. The root-
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node is indexed as 0, indicating the switch among class-
es. The and-nodes are indexed by r = 1, ...,m, each
representing one category. For each and-node, there are
9 or-nodes arranged in a layout of 3 × 3 blocks to rep-
resent object parts, and we index all the or-nodes as j =
m + 1, ..., 10m. The leaf-nodes in the fourth layer are in-
dexed by i = 10m+1, ..., 10m+n, where n is the leaf-node
number dynamically adjusted during training. For notation
simplicity, we define that m′ = 10m + 1, n′ = 10m + n,
and i ∈ ch(j) indexes a child node of node j. The details
of our model are presented as follows.

Sharable Leaf-node: The leaf-nodes Li, i = m′, ..., n′

are local classifiers for object parts, and they can be shared
among different classes. Specifically, if a leaf-node is affil-
iated to the j-th or-node, it is also possible to be shared by
the or-nodes in other classes indexed by j + 9× k, where
k ∈ {1, 2...}. We denote the location of leaf-node Li as
Pi, which is determined by its parent or-node activating Li

during inference. The response of Li is defined as,
Rl

i(X,Pi) = ωl
i · ϕl(X,Pi). (1)

In our implementation, a HOG [3] pyramid is built across
different image scales as in [6]. ϕl(X,Pi) is the HOG fea-
ture extracted from image X at position Pi, and ωl

i is a pa-
rameter vector.

Or-node: The or-nodes Uj , j = m + 1, ..., 10m in the
third layer are “switch” variables to select (activate) their
children. For each leaf-node Li, we define an variable
Vi ∈ {0, 1} to represent the activation during inference.
An indicator vector is then composed for each or-node Uj :
Vj = (Vi1 , Vi2 , ...), where ik ∈ ch(j) and ∥Vj∥ = 1/0.
Note that ||Vj || = 1 only when one of the leaf-nodes is
activated under Uj . The response of Uj is thus defined as,

Ru
j (X,Pj ,Vj) =

∑
i∈ch(j)

Rl
i(X,Pj) · Vi, (2)

where Pj denotes the position ofUj , and it is allowed to per-
turb slightly during inference. We define a feature for ob-
ject deformation as ϕs(Pr, Pj) = (dx, dy, dx2, dy2), where
(dx, dy) represents the displacement of Uj relative to its an-
chor position that is determined by the position of its parent
Pr. The response of the deformation is defined as,

Rs
j(Pr, Pj) = ωs

j · ϕs(Pr, Pj). (3)

Far 

An!-Clockwise 

(a) 

Near 

Far 

Beside Beside 

Above 

Below 

Overlap 

(b) 

Near 

Figure 2. Illustration of the features for defining collaborative
edges. (a) shows feature ψl(Pi, Pi′) between leaf-nodes; (b)
shows feature ψa(Pr, Pr′) between and-nodes.

And-node: The and-nodes Ar, r = 1, ...,m are glob-
al classifiers for objects. Suppose Ar is placed at Pr dur-
ing detection, we extract the HOG feature for the and-node
ϕa(X,Pr) at half the resolution of the feature extracted for
leaf-nodes. We define the response for Ar with its parame-
ters ωa

r , as,
Ra

r (X,Pr) = ωa
r · ϕa(X,Pr). (4)

Root-node: The root-node on the top is an or-node for
switching different classes, i.e. choosing its children and-
nodes. Similarly with defining the or-nodes, for each and-
node Ar, we also define the activation for it as Vr ∈ {0, 1},
and the indicator vector for root-node is V0 = (V1, ..., Vm)
and ∥V0∥ = 1, i.e, only one children is selected.

Collaborative edge: There are two types of collab-
orative edges in our model, representing the spatial co-
occurrence between different leaf-nodes as well as between
different and-nodes. For the collaborative edges between
leaf-nodes, we introduce a 4-bin binary feature ψl(Pi, Pi′).
Each bin of ψl(Pi, Pi′) represents one of the relations:
clockwise, anti-clockwise, near and far between two leaf-
nodes Li and Li′ . As Fig. 2(a) illustrates, the bold rectan-
gle in the middle represents the location of Li. If the center
of Li′ is localized in the dotted rectangle, it is near the Li,
otherwise it is far from Li. We connect the initial centers of
Li and Li′ with the dashed line and the red line represents
their layout after accounting for deformation. Then we use
two bins to indicate either clockwise or anti-clockwise for
the angle between the dashed line and the red line. We thus
define the response of the collaborative edge between two
leaf-nodes as,

Γl
i,i′(Pi, Pi′) = αl

i,i′ · ψl(Pi, Pi′), (5)

where αl
i,i′ is a 4-bin parameter vector. Motivated by [4],

we define a 6-bin binary feature ψa(Pr, Pr′) representing
the contextual relations: above, below, beside, overlap, near
and far between two objects. As Fig. 2(b) illustrates, the
bold rectangle in the middle represents the window of Ar.
And the dashed and dotted rectangles represent the bins to
be set as 1 if the center of Ar′ is inside. The response of the
collaborative edge between two and-nodes is defined as,

Γa
r,r′(Pr, Pr′) = αa

r,r′ · ψa(Pr, Pr′), (6)
where αa

r,r′ is a 6-bin parameter vector. In practice, we only
connect the two leaf-nodes whose parent or-nodes are adja-
cent to each other in spatial domain. And the and-nodes are
connected across classes.

4. Inference
Given an image, the task for inference is to localize all

the multiclass objects with the model. For simplicity, we
notate the vector of selections for and-nodes together with
leaf-nodes as V = ⟨V1, ..., Vm, Vm′ , ..., Vn′⟩, and the vector
of placements as P = ⟨P1, ..., P10m⟩.

A subgraph of the And-Or graph, rooted at one of the
and-nodes, can be regarded as a detector for one class. For
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each subgraph, we compute its scores by sliding the detec-
tion sub-window at different positions and scales of the im-
age. It is a procedure integrating the local testing and bind-
ing testing as follows.

Local testing: For a subgraph model rooted at Ar (i.e.,
Vr = 1) and placed at Pr of the image, we assume a hypoth-
esis V for leaf-node selections. Then the placement of each
part can be obtained by incorporating Eq.(2) and Eq.(3):

P̃j =max
Pj

(Ru
j (X,Pj ,Vj)−Rs

j(Pr, Pj))

=max
Pj

(
∑

i∈ch(j)

Rl
i(X,Pj) · Vi −Rs

j(Pr, Pj)), (7)

where Rl
i(X,Pj) represents the leaf-node response, and

we can share these responses among different classes by
calculating them at the beginning of inference. Then the
score of local testing is calculated as:

Sl
r(X, P̃,V) =

∑
j∈ch(r)

(Ru
j (X, P̃j ,Vj)−Rs

j(Pr, P̃j)). (8)

Binding testing: We obtain the response over the and-
node Ra

r (X,Pr) with Eq.(4). And for each hypothesis V,
we compute the scores of intra-class contextual relations be-
tween the selected leaf-nodes via Eq.(5). Then the binding
score is calculated as:

Sa
r (X, P̃,V) = Ra

r (X,Pr) +

n′∑
i,i′=m′

Γl
i,i′(P̃i, P̃i′) · Vi · Vi′ , (9)

where the leaf-node location is set as P̃i = P̃j for i ∈
ch(j), ||Vj || = 1. By integrating these two procedures, we
select the best V as the score of detection via the subgraph
rooted at Ar:

Sg(X, r, Pr) = max
V

(Sl
r(X, P̃,V) + Sa

r (X, P̃,V)). (10)

After the detections for all subgraphs, we can represent
the image as a collection of K scored sub-windows, over-
lapping at different scales. Our objective is to label them
with Y = {y1, ..., yK}, where yi ∈ {1, ...,m} represents
object classes and yi = −1 the background. The multiclass
detection score in the image can be defined by combining
Eq.(10) and Eq.(6),

S(X) = max
Y

(

K∑
k=1

Sg(X, yk, P
k) +

K∑
k,k′=1

Γa
yk,yk′ (P

k, P k′
)), (11)

where P k indicates the position of the kth sub-window of
the image. The optimization of Eq.(11) can be solved by
the greedy forward search mentioned in [4]. We define
a instance set INS = {(k, y)} indicating that yk = y for
∀(k, y) ∈ INS and yk = 0 otherwise. Then the greedy
method is performed as Algorithm 1.

5. Dynamical And-Or Graph Learning
The training of our And-Or graph is a two stages proce-

dure: (i) estimating model structure (without edges) and pa-
rameters for each object group; (ii) combining models and
learning collaborative edges.

Algorithm 1 Greedy Forward Inference
Input:

The detections scores Sg(X, r, Pr) for image sub-windows.
Output:

Instance set INS, detection score S.
Initialization:

INS = {}, S = 0, δ(k, y) = Sg(X, y, Pk) for k ∈ {1, ...,K}.
repeat

1. (k̃, ỹ) = argmax(k,y)δ(k, y) for ∀(k, y) /∈ INS.

2. INS = INS ∪ (k̃, ỹ).
3. S = S + δ(k̃, ỹ).

4. δ(k, y) = δ(k, y) + Γa
y,ỹ(P

k, P k̃) + Γa
ỹ,y(P

k̃, Pk).

until δ(k̃, ỹ) ≤ 0 and S stops increasing.

To reduce the computational cost for model sharing, we
first divide the object classes into several groups as a data-
driven initialization, and train the multiclass model for each
group. Afterwards, we combine the trained models together
to construct the final And-Or graph model.

The learning for stage (i) is an EM-type procedure in-
corporating structure reconfiguration and parameter estima-
tion. During each iteration, our algorithm dynamically cre-
ate and remove leaf-nodes associated with their parent or-
nodes, and share leaf-nodes among classes. More precisely,
a leaf-node is created to better handle the intra-class vari-
ance (Fig. 3(b)); A leaf-node is removed if there is another
similar one (Fig. 3(d)); A leaf-node is shared as it can cap-
ture the similar appearances for other classes (Fig. 3(c)).

5.1. Data Driven Initialization
Suppose the number of all classes is M , we partition

them into several groups as a data driven initialization for
training. The partition is based on the similarity between
two classes, and we calculate the similarity as follows.

(I) We first learn a two-layer deformable part-based mod-
el [6] T k = {T k

i } for all classes, where T k
i represents one

part classifier for k-th class. And we apply T k to perfor-
m detection on the positive training samples in every class.
During the detection, each T k

i extracts a set of image patch-
es from different samples, and we group these patches into
a cluster Ωk

i . Note that the size of image patches detected
by T k

i is (hki , w
k
i ). For all Ωk

i , we further merge them in-
to a few new sets, each of which contains image patches of
similar size (hki , w

k
i ). In each of the new sets, we describe

the image patches with the HOG descriptor and group them
into several clusters by using ISODATA algorithm with Eu-
clidean distance.

(II) Afterwards, a matrix M is defined to represent the
similarity between M classes. In each set of image patches,
if there are patches from class j and k falling into the same
cluster, we setM(j, k)←M(j, k) + 1. Two classes j and
k are assumed to share their models ifM(j, k) > σ, where
σ is a threshold set as M/3 empirically.

(III) Based on the calculated M, we assign the classes

4
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(a) (b) (c) (d) 
Figure 3. Dynamical Structural Optimization. Parts of the multi-class model for sheep and horse are illustrated in different iterations. (a)
The model structure after the first iteration; (b) A new leaf-node is created to recognize the head of sheep; (c) A leaf-node for sheep leg is
shared with the horse; (d) A leaf-node for horse leg is removed.

that are possibly shared into the same group S. We thus
obtain a few groups as {S1, ..., Sc}. We denote that each S
has |S| classes, and we discuss the training method for each
S in the following section.

5.2. Optimization Formulation
Given an object group S, we train a multiclass mod-

el without collaborative edges, which is a procedure in-
tegrating structure reconfiguration and parameter estima-
tion. Suppose there are a set of N training samples
(X1, y1),...,(XN , yN ) in S, where X is the image, y ∈
{1, ..., |S|} labels the object classes, and y = −1 labels the
background. At the beginning of training, we initialize the
multiclass model with m = |S| and-nodes and one leaf-
node for each or-node. The detection score of this model
can be represented as the maximization of Eq.(10) over m
and-nodes, by setting edge parameters to zero,
St(X) = max

1≤r≤m
Sg(X, r, Pr)

= max
P,V

(

n′∑
i=m′

ωl
i · ϕl(X,Pi) · Vi −

m∑
r=1

∑
j∈ch(r)

ωs
j · ϕs(Pr, Pj) · ||Vj ||

+
m∑

r=1

ωa
r · ϕa(X,Pr) · Vr), (12)

where the first two terms represent the response of local
testings, and the last term is the and-node response. For
simplicity, we refer H = (P,V) as the latent variables, then
we redefine Eq.(12) in a discriminative form as,

Sω(X) = argmax(y,H)(ω · ϕ(X, y,H)), (13)
where ω includes the complete model parameters of current
model, ϕ(X, y,H) is defined as,

ϕ(X, y,H) =

{
ϕ(X,H) if Vy = 1
0 otherwise

, (14)

and ϕ(X,H) is the overall feature vector.
The function (13) can be learned by applying structural

SVM with latent variables,

min
ω

1

2
∥ω∥2 + C

N∑
k=1

[max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y))

−max
H

(ω · ϕ(Xk, yk, H))], (15)

where C is a penalty parameter set as 0.005 empirically,
and we define the loss function L(yk, y) = 0 when yk = y,
and L(yk, y) = 1 if yk ̸= y. In recent works [26, 11], the

CCCP [23] method is applied to solve the non-convex opti-
mization, which provides an iterative approach to achieve a
local minima. However, in these methods, the model struc-
ture configuration is assumed to be fixed, e.g., without or-
nodes. Motivated by these works, we propose a Dynamical
Structural Optimization (DSO) method to train out model.

5.3. Dynamical Structural Optimization
To optimize the objective Eq.(15), we transform it into a

concave and convex form following [26],

min
ω

[
1

2
∥ω∥2 + C

N∑
k=1

max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y))]

− C

N∑
k=1

max
H

(ω · ϕ(Xk, yk, H)) (16)

= min
ω

[f(ω)− g(ω)], (17)

where the first two terms in (16) are represented by f(ω)
and g(ω) is the other term. Then we present our 3-step Dy-
namical Structural Optimization method as follows.

(I) Suppose we are in the iteration t, and ωt is the param-
eter vector updated in the previous iteration. We first find a
hyperplane qt to upper bound −g(ω) in (17),

− g(ω) ≤ −g(ωt) + (ω − ωt) · qt, ∀ω. (18)
We calculate qt by finding the optimal latent variables

H̃k = argmaxH(ωt · ϕ(Xk, yk,H)). That is, we ap-
ply the current model to perform detections on the train-
ing samples, and the hyperplane is constructed as qt =
−C

∑N
k=1 ϕ(Xk, yk, H̃k).

(II) We adjust the model by structural reconfiguration
and sharing, and it is performed on each one of the 9 object
parts overm classes, independently. Given a variable vector
H̃k for a sample, we can obtain the activation of leaf-nodes
and the image patches detected via them. For each leaf-node
Li, we group the patches detected via it from all samples
into a cluster Ωi, and the size of these patches is (hi, wi).

We index the nine object parts by j(m+1 ≤ j ≤ m+9).
For the j-th part, we pool the clusters whose corresponding
leaf-nodes are associated to or-nodes Uj+9k(0 ≤ k < m)
from m classes together. Then these clusters are further
merged into a few new sets, each of which contains patches
of similar size (hi, wi). For each new set, we describe the
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image patches with HOG descriptor and perform clustering
on them by applying ISODATA with Euclidean distance.

After the clustering, the leaf-nodes are reconfigured as:
If a cluster is newly generated, we create a new leaf-node
accordingly; we remove a leaf-node if there are few im-
age patches in the corresponding cluster. For a cluster Ωi,
if there are images patches localized by Uj(in step(I)), we
associate the leaf-node Li to Uj . Thus Li is shared by dif-
ferent classes for different associations.

The feature vector ϕ of each sample is also adjusted
according to the clustering result. Recall that the HOG
vector of an image patch is part of ϕ, and the patches in
the same cluster are represented with the same bins in ϕ.
We present a toy example in Fig. 4 for illustration. The
sub-vector ⟨ϕ5, ..., ϕ8⟩ of sample X3 is grouped from one
cluster to another; then the feature bins are moved from
⟨ϕ5, ..., ϕ8⟩ to ⟨ϕ1, ..., ϕ4⟩, as (a) and (c) shows. We de-
fine the new feature vector for each sample after clustering
as ϕd(Xk, yk, H̃k), then the new hyperplane in step (I) is
reconstructed as qdt = −C

∑N
k=1 ϕ

d(Xk, yk, H̃k).
(III) With the current model structure and qdt we can

learn the model parameters by solving,
ωd
t = argminω(f(ω) + ω · qdt ). (19)

By substituting f(ω) with the first two terms defined in
Eq.(16), we can re-write Eq.(19) as,

min
ω

1

2
∥ω∥2 + C

N∑
k=1

[max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y))

− ω · ϕd(Xk, yk, H̃k)]. (20)

The optimization of Eq.(20) can be solved by standard
structural SVM. After that, we can calculate the energy of
the objective by E(ωd

t ) = f(ωd
t )− g(ωd

t ).
If E(ωd

t ) < E(ωt), we accept the new model structure
and have ωt+1 = ωd

t . Otherwise, we keep the model con-
figuration as it is in the previous iteration, and continue to
perform parameter optimization without structure reconfig-
uration as Eq.(19): ωt+1 = argminω(f(ω) + ω · qt).

In this way, we ensure the optimization objective in E-
q.(17) continuing to decrease in iterations. Thus, the algo-
rithm keeps iterating until the objective converges.

5.4. Model Combination
After training the multiclass models for each objec-

t group in {S1, ...,Sc}, we combine them together into a
complete one for all the object categories. Intuitively, the
root-nodes from each group are first merged into the final
top root-node, so that the original and-nodes are all associ-
ated to the new root-node. Then we introduce a n′ dimen-
sion vector β = (β1, ..., βn′) to re-weight the parameters
for the newly generated model. Meanwhile, the collabora-
tive edges defined in Eq.(5) and Eq.(6) are trained as well.

For simplicity, we shorten the responses for leaf-node,
or-node deformation and and-node as Rl

i(k) = Rl
i(X,P

k
i ),
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Figure 4. A toy example of feature adjustment according to struc-
tural clustering. Parts of 4 feature vectors associated to two differ-
ent leaf-nodes are presented. (a)shows the feature vectors generat-
ed after Step (I), whose value is indicated by the intensities of bin-
s; (b)shows the structural re-clustering: The feature ⟨ϕ5, ..., ϕ8⟩ of
X3 are moved from Cluster 2 to Cluster 1; (c)updates the feature
vectors according to clustering results.

Rs
j(k) = Rs

j(P
k, P k

j ) and Ra
yk

= Ra
yk
(X,P k). Given an

image X , the objective function S(X) of multiclass recog-
nition defined in Eq.(11) is reformulated as,

max
Y

K∑
k=1

[
n′∑

i=m′

βi ·Rl
i(k) · V k

i −
∑

j∈ch(yk)

βj ·Rs
j(k) + βyk ·Ra

yk

+

n′∑
i,i′=m′

αl
i,i′ · ψl(P k

i , P
k
i′) · V k

i V
k
i′ +

K∑
k′=1

αa
yk,yk′ · ψ

a(P k, P k′
)],

where the first two terms represent the local testing score,
the next two represent the binding testing score, and the last
one accounts for edge responses between and-nodes.

For the training, we collect a set of images contain-
ing multiclass objects, each of which is labeled with Y =
{y1, ..., yK}. Given each image, we first obtain the latent
variables H̃k with Eq.(13) by fixing yk, and the responses
for each part are derived meanwhile. We can then use the re-
sponses Rl

i(k), R
s
j(k) and Ra

yk
as part of the input feature,

and train the parameters β, αl and αa by standard struc-
tural SVM. Here the loss function for training is defined as
L′(Y, Y ′) = K − tp, where K indicates the number of ob-
jects in groundtruth Y , and tp is the number of true positives
in Y ′ according to Y .

Afterwards, the parameters for leaf-nodes (Ai, i =
m′, ..., n′), or-node deformations(Uj , j = m + 1, ..., 10m)
and and-nodes(Ar, r = 1, ...,m) are re-weighed as: ωl

i =
βi · ωl

i, ω
s
j = βj · ωs

j and ωa
r = βr · ωa

r .

6. Experiments
We evaluate our method on two challenging datasets:

UIUC people [20] and PASCAL VOC 2007 [5].
Dataset and Setting. The UIUC people dataset contains

593 images(296 for training, 297 for testing), and most of
them contain one person playing badminton. For PASCAL
VOC 2007 dataset, there are 9963 images of 20 object cat-
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Ours(full) Ours-3 [22] [1] [6] [2]
Accuracy 0.845 0.818 0.668 0.506 0.486 0.458

Table 1. Detection accuracies on UIUC people dataset.

egories with 5011 images for training and 4952 images for
testing. In both datasets, we represent each object catego-
ry with two views, i.e. each object category is specified by
two and-nodes in our model. Hence, we perform 2-class
recognition on UIUC people dataset, and 40-class recog-
nition on PASCAL VOC 2007 dataset. During evaluation,
we adopt PASCAL Challenge criterion: a detection is con-
sidered as correct only if the intersection over union with
the groundtruth bounding-box is at least 50%. All our ex-
periments are carried out on a PC with Core Duo 3.0 GHZ
CPU and 16GB memory. We denote our fully implemented
model as “Ours(full)”, since we will simplify the model in
different settings for empirical study.

6.1. Experimental Results
UIUC people dataset. For model training, it takes 11

iterations and around 6 hours to converge in optimization.
And the time for detection on a image is about 5 second-
s. We compare our model with the state-of-the-arts human
detectors [22, 1, 2, 6], some of which used manually la-
beled model. The detection accuracy is calculated as [22]:
only the detection with the highest score on the image is
considered. As Table. 1 reports, our approach reaches the
detection accuracy of 84.5%, outperforming other method-
s. Moreover, we demonstrate the advantage of our model
for handing object variations in detection in Fig. 6. We vi-
sualize the detectors generated by our trained model in the
form of HOG patterns. The detectors for and-nodes and
leaf-nodes are shown in Fig. 6 (a). Note that some of the
leaf-nodes are shared for capturing similar appearances. T-
wo detectors, composed by 9 activated leaf-nodes, are visu-
alized in Fig. 6 (b). The two detectors are generated when
recognizing the images beside them. The results show that
our model can generate alterable detectors to adapt diverse
object appearances and poses.
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Figure 5. Extensive experiments for discussion. “Our-3” indicates
a simplified model without sharing leaf-nodes. (a) shows the APs
on UIUC people dataset. (b) represents the leaf-node numbers
with the increasing of object categories on PASCAL VOC 2007
dataset.

PASCAL VOC 2007 dataset. To train the 40-class mod-
el on the database, it takes 25 ∼ 30 iterations in 30 ∼ 34
hours. On average, it takes 92 seconds for detecting all 20
classes of objects on one input image. We then calculate the
average precision (AP) to evaluate our method. As shown
in Table. 2, our method achieves the mean AP(mAP) of
34.7%, which is highly competitive to the state-of-the-arts
methods: 29.0% [10], 29.2% [14], 29.6% [26], 32.1% [21]
and 26.8% [6]. We also notice that there is a significan-
t improvement achieving mAP of 37.7% [18] recently, by
employing multi-kernels classification into detection.
6.2. Evaluation for Model Sharing

To analyze the effectiveness of sharing leaf-nodes, we
disable the process for model sharing in training so that we
obtain the non-sharing And-Or graph model, named “Ours-
3” on UIUC people dataset. As Table. 1 reports, “Ours-3”
achieve detection accuracy of 81.8%, 2.7% less than the ful-
ly implemented model. We also compare the APs of these
two models in Fig. 5 (a), in which the APs are visualized
with the increasing of iteration numbers for model training.
Each AP for a specific iteration number is obtained by test-
ing the model that is trained by the number of iterations.
And the APs of “Ours(full)” and “Ours-3” achieve 72.8%
and 68.3%, respectively, after 11 iterations.

We further evaluate the benefits of collaborative edges in
our model. We simplify the model by setting the parame-
ters of collaborative edges to zero. Two models are gener-
ated under this setting, denoted by “Ours-1” and “Ours-2”,
by turning on/off the leaf-nodes sharing among classes, re-
spectively. We execute this experiment on PASCAL VOC
2007 dataset. As Table. 2 reports, the mAPs of “Ours-1”
and “Ours-2” achieve 33.6% and 31.8%, respectively.

We consider the model complexity, represented by the
number of leaf-nodes, could be effectively reduced by mod-
el sharing. Thus, we also present an experiment to show the
numbers of leaf-nodes in model training, with the increas-
ing of object categories, in Fig. 5(b). Precisely, we obtain
552 leaf-nodes for 20 object categories on PASCAL VOC
2007 dataset, less than 717 leaf-nodes by “Ours-3” model.

7. Conclusion
This paper introduces a novel method for multiclass ob-

ject detection and recognition, in the form of And-Or graph.
Our model is shown to handle well the challenges in large
variance object recognition. Moreover, we also illustrate the
benefits of information sharing among classes, which lead-
s to a more compact and better model. Since our learning
method(SDO) is very general, it can be extended to many
other vision tasks.
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