
GeoPKI: Converting Spatial Trust into

Certificate Trust

Tiffany Hyun-Jin Kim, Virgil Gligor, and Adrian Perrig

Carnegie Mellon University
{hyunjin1,virgil,adrian}@ece.cmu.edu

Abstract. The goal of GeoPKI is to enable secure certificate validation
(without user interaction) for situations in which a user interacts with an
online entity associated with the physical space where the the user trusts
(and usually is currently located). GeoPKI enables the owner of a space
to associate a certificate with that space, and enables space-based certifi-
cate lookup to set up a secure channel to the online resource associated
with the space. Such a system enables several secure applications, such
as secure authentication of paywall certificates at an airport or hotel.

Keywords: Geographic Public-Key Infrastructure (PKI), certificate associated
with geographic space, coordinate-based certificate lookup.

1 Introduction

Consider a world in which a physical space can be uniquely associated with a
public key. Here, a user who is physically in a space can look up the associated
public key for that space. Consequently, if the user trusts the space she is in,
she can also trust the public key and thus set up a secure channel with any
online resource that is associated with that space. Such an approach has several
advantages:

– People understand physical spaces, and they associate trust with a physical lo-
cation, as they can return to that same location in case of a dispute. In essence,
the physical location creates accountability, as physical presence establishes a
point of legal approachability (i.e., police can be sent to the physical location).

– A public key that is correctly associated with a physical space can create ac-
countability for the online resource through the accountability of the physical
space. We will elaborate on how “correct association” can be accomplished.

– By using the geographic coordinates to look up the certificate, certificate ver-
ification can be completely automated, and without any user intervention, we
avoid several security issues: social engineering attacks (e.g., my-secure-bank.
com), homophone attacks (e.g., goggle.com, bankofthevvest.com), etc.

Given a system that maps a public key to a space, we can address several
challenging security problems: (1) Consider the authentication of a certificate of a
paywall1 at an airport or hotel login page to access the wireless network. How can

1 A paywall is a server which authenticates users or collects payments on airport or
hotel networks.

a mobile device verify that the certificate offered by the login page is indeed from
the local entity and not from an evil twin access point? Association of a public
key with a space will address this issue, as the unique certificate that is associated
with a space can be used to establish a secure connection. (2) Consider accessing
the web page associated with the bank the user is currently at via SSL/TLS.
Using the public key associated with the local space can assist establishment of
a secure connection. (3) Consider a wireless payment protocol at a shop, where
a shopper’s cell phone implements a digital wallet. In this case, the certificate
associated with the local space can be used to set up the secure connection with
the payment infrastructure.

In this paper, we design and analyze GeoPKI, a system that associates public
keys with physical spaces. GeoPKI is a geography-based Public-Key Infrastruc-
ture extension that (1) creates a hierarchy of digital certificates that maps public
keys to both entities and geographic locations, (2) securely stores these certifi-
cates in append-only public repositories, and (3) revokes them if needed. Note
that our public repositories offer a service that can prevent equivocation,2 in the
same vein as recent proposals for public log servers [1, 5, 8].

It may appear that current PKIs could achieve similar properties by adding
3D coordinates to certificates. However, such an approach cannot provide ge-

ographic coordinate-based lookups and thus fails to efficiently detect situations
in which the same physical space is claimed by multiple entities. Furthermore,
Certificate Authorities (CAs) lack global name-space resolution, even for current
domain names. For name resolution, DNS-based Authentication of Named Enti-
ties (DANE) is a promising approach that provides additional information about
cryptographic credentials associated with the domain [3]. However, we still need
a 3D data structure to map a physical space to a key. In this paper, we focus
on designing such a 3D data structure that is efficient not only for certificate
storage and retrieval, but also for certificate validation.

The contribution of this paper is to propose and study an environment where
users can perform a certificate lookup based on geographic coordinates and ob-
tain a hierarchy of certificates that are associated with that space. We explore
the security and trust establishment implications, and find that several current,
challenging problems are addressed by our GeoPKI framework.

2 Problem Definition

In this paper, we explore how to associate a public key with a physical space,
and use this association to help users validate online resources. This approach
assumes a service for certificate lookups based on geographic coordinates.

2 In equivocation, an entity provides different answers to different queries; preventing
equivocation thus means that the same query always results in the same response in
a globally consistent manner.

2.1 Desired Properties

1. Correct location-to-certificate association. The data structure of GeoPKI
should contain correct information in order to prevent an entity who does not
own a space from associating a certificate with that space.

2. Response integrity. We seek globally consistent query replies, such that
two different queries for the same coordinates yield the same correct response
(assuming that the database has not been updated between the queries), thus
preventing equivocation.2

3. Availability. Querying and retrieving digital certificates associated with a
3D space should be simple and efficient. The service should remain available
even in the case of a DDoS attack.

4. Efficient validation. The data structure of GeoPKI should enable efficient
validation of query results, including results for non-existing database entries.

2.2 Assumptions

We assume that users know their correct geographic location, both indoor and
outdoor. Several efforts are currently under way to provide accurate indoor local-
ization, such as Qualcomm’s system, which combines several sensor modalities
to achieve accurate (on the order of 1 meter) indoor localization.3 We also as-
sume that GPS and location spoofing attacks can be addressed by combining
localization methods with three sources of information: (1) the position of known
landmarks that are detectable and that users frequently pass by (e.g., location
of a home, office, restaurant, or grocery store), (2) the use of inertial navigation,
and (3) the use of path constraints such as road maps or walls [7]. If these ap-
proaches are used in concert, location spoofing would need a sophisticated local
attacker to divert a user. Moreover, methods for secure localization are under ac-
tive investigation [11]. Therefore, we assume that it is possible for future systems
to become resilient to location spoofing.

We assume the presence of a publicly accessible append-only log service that
keeps track of changes to GeoPKI certificates and makes all changes publicly
visible, similar to Certificate Transparency [1] and Sovereign Keys [5]. This public
log reduces the level of trust we need to place in the operator of the GeoPKI
service, without requiring trusting the log service except for providing availability
of the information. As the log can be publicly validated, any divergence from
correct operation can be publicly proven. We assume that current map operators
or large-scale Internet businesses would host the GeoPKI service. We also assume
that a client has the correct public key of the GeoPKI service, and that the
private keys of entitities and CAs are secure.

2.3 Attacker Model

We consider an adversary whose main goal is to associate his own public key
with a space that is occupied and owned by someone else. An adversary has the
following properties:

3 http://www.qualcomm.com/about/research/projects/indoor-positioning

– Control of network communication: An adversary may control all net-
work communication, including dropping, eavesdropping, and manipulating
packets. However, we do assume that the network provides availability for
communication (i.e., we consider DoS attacks as outside the scope of this
paper).

– Physical presence: An adversary may be physically present at a victim’s
location.

3 GeoPKI Overview

Before discussing the details, we briefly provide an overview of GeoPKI. More
specifically, we explain (1) how an entity can register a certificate containing
geographic information, (2) how a user can search for a certificate at a given
location, and (3) how the retrieved certificate can be used for validation.

Registration. Alice owns some physical space and generates her own public-
private key pair. She then acquires a self-signed or CA-signed certificate for
GeoPKI, which includes the coordinates of her physical space. In essence, a
certificate for GeoPKI not only associates her public key with her name (i.e.,
URL of the associated online entity), but also binds her public key to her physical
space. Then Alice contacts a public append-only Log Server (LS) [1, 5] to record
her certificate for the claimed physical space. Note that the LS’s public append-
only feature reduces trust in the GeoPKI database, since any change to an entry
is logged; as a result, entities can query past certificates and verify the history of
key changes, as presented in Certificate Transparency [1] and Sovereign Keys [5].

After logging Alice’s request, the LS signs Alice’s certificate as a proof that
her claimed space has been recorded. With LS’s signature, Alice contacts the
public GeoPKI database, which maintains a Merkle hash tree for integrity. Alice
requests to register her certificate. The GeoPKI database then (1) verifies LS’s
signature on Alice’s certificate, (2) records Alice’s certificate, and (3) updates
its Merkle hash tree.

Note that the GeoPKI database assigns a cooling period (e.g., 1 week) to
prevent an attacker from filing an incorrect registration. As long as no other
entity attempts to revoke Alice’s registration request, her certificate becomes
publicly accessible after the cooling period.

Alice’s store
(KAlice, K-1Alice)

CA
(KCA, K-1CA)

 CA signs Alice’s certi!cate:

Cert = {”Alice”, KAlice, }K-1CA

Log Server (LS)
(KLS, K-1LS)

Cert is added to LS:

{Cert}K-1LS

K-1GeoPKI

K-1LS

GeoPKI DB
(KGeoPKI, K-1GeoPKI)

Upon receiving {Cert, {Cert} }:

1. Verify {Cert}

2. Add Cert to GeoPKI’s database

3. Update GeoPKI’s hash tree: {Root}

K-1LS

Root

Fig. 1. Registration of Alice’s certificate to the GeoPKI database. (KE ,K
−1

E
) repre-

sents a public-private key pair of an entity E.

Certificate Lookup. When Bob wants to access the resource R that is as-
sociated with Alice’s physical space, Bob’s browser queries the public GeoPKI
database which is hosted by current map providers or a large-scale Internet busi-
ness. If an entry exists for the queried physical space, the database returns the
GeoCert, which contains Alice’s name, public key, and self-signed or CA-signed
certificate, along with the signed root hash value of the updated Merkle hash
tree ({Root}K−1

GeoPKI

) and the intermediate hash values that are needed to verify

Alice’s certificate.

The GeoPKI database prevents equivocation as follows: The database main-
tains a Merkle hash tree over all the entities, including Alice’s. As a result,
changes in stored certificates result in changes in the root value, and the browser
can detect equivocation with inconsistent root values. The signed hash tree root
value also enables public defamation in situations where inconsistent root values
were signed during a time period when only a single tree was valid.

Use of Certificates. Upon retrieving the GeoCert for Alice’s physical space,
Bob’s browser can verify the name (URL), geographic location, and Alice’s public
key (by comparing the root hash value with the hash computation over Alice’s
certificate and the provided intermediate hash values). Bob can now trust that
he obtained the correct certificate associated with Alice’s location.

4 GeoPKI Public Database Structure

In this section, we describe the 3D data structure that can map physical space
to a cryptographic credential.

We describe how 3D-geographic spaces can be expressed for efficient querying
and retrieval. We base our data structure on a combination of

– k-d trees (k = 3) for simplified querying of 3D spaces (desired property 1),
– Merkle hash trees for integrity validation (desired property 2).

Although other data structures exist for geographic space queries [2, 6, 12],
we propose the 3D data structure for GeoPKI for efficient integrity validation
using Merkle hash trees.

We represent the globe by a unit cube where the globe radius is normalized
to one unit. Hence, the scale between the physical object (on the globe) and
the geocentric Cartesian coordinate system is dictated by the normalized globe
radius.4 Rather than using a standard geodetic system such as WGS 84, we
apply this normalization to simplify the data structure. Figure 2 illustrates the
Cartesian coordinates of the globe’s unit cube. Note that the globe is repositioned
so that the equator lies along the horizontal line of (-1,0,0) through (1,0,0). We
assume a publicly available application that translates a set of GPS coordinates
into our geocentric Cartesian coordinates and vice versa.

Table 1 shows the fields of an intermediate node (Ni) in the GeoPKI’s k-d
tree.

4 http://resources.esri.com/help/9.3/arcgisengine/dotnet/

b0e91ce8-c180-47dc-8323-06cac5d77064.htm

(0,0,0)

(-1,-1,-1)

(-1,-1,1)

(1,-1,-1)

(1,1,-1)

(-1,1,1) (1,1,1)

(1,-1,1)

(-1,0,0)

(0,0,1)

(1,0,0)

(0,0,-1)

Equator

Prime meridian

Fig. 2. Cartesian coordinate system for
the globe.

(-1,-1,-1)

(-1,-1,1)

(1,-1,-1)

(1,1,-1)

(-1,1,1) (1,1,1)

1. Horizontal

 split

2. Vertic
al split

3. Depth split

Fig. 3. GeoPKI’s 3D data structure.

Table 1. Fields of an intermediate node in GeoPKI’s 3D data structure (k-d tree).
Each node represents a cuboid in the GeoPKI data structure. This table describes the
fields that node Ni contains (i ∈ {0, 1}∗).

Field Description

ptrli pointer pointing to Ni’s left-child cuboid Ni0

ptrri pointer pointing to Ni’s right-child cuboid Ni1

Si {(xi, yi, zi), li, wi, hi}: set of numbers that uniquely identifies the geo-
graphic boundaries of Ni

(xi, yi, zi) a base coordinate of the cube, which we define to be the left-lowest-forefront
vertex of the cuboid

li, wi, hi length, width, height of the cuboid Ni

Hi Merkle hash value of node Ni, namely Hi = H(Hi0‖Hi1)

Initialization. Initially, the k-d tree of the globe (T) contains only 1 node N :
[ptrl

∅
, ptrr

∅
, S∅, H∅] where

– ptrl
∅
and ptrr

∅
are set to be ∅,

– S∅, which is {(x∅, y∅, z∅), l∅, w∅, h∅}, is set to be {(-1,-1,-1), 2, 2, 2}, and
– H∅ is set to ∅.

Consider entity (Ej) located at some physical space (PSj) that requests a
GeoPKI certificate (or GeoCert) at that location. During the search, subdivision
into successively smaller cubes is performed until the subdivision results in a cube
that is small enough to accommodate only Ej ’s physical space. Here are three
iterative steps that describe the order of the subdivision:

Step 3n− 2 (n > 0). The current cube (Ni) is subdivided along the horizontal
split as shown in Figure 3, generating two equal-sized rectangular cuboids: one
below the horizontal split (Ni0) and one above the horizontal split (Ni1). At this
point, the k-d tree gets updated with two additional children nodes: a left child
(Ni0) and a right child (Ni1) of Ni. Also, Ni’s fields are updated. The values
for Ni0, Ni1, and the updated Ni are shown in column 3 of Table 2. For Step 1
(when n = 1), S0 = {(−1,−1,−1), 2, 2, 1} and S1 = {(−1,−1, 0), 2, 2, 1}.

Table 2. Values of GeoPKI data structure nodes when the k-d tree splits. This table
shows the values of Ni’s left child Ni0 (rows 2–8) and right child Ni1 (rows 9–15) when
Ni splits during Step 3n− 2 (column 3), Step 3n− 1 (column 4), and Step 3n (column
5), where n > 0. This table also shows how Ni’s fields are updated after the split.

Node Field Step 3n− 2 Step 3n− 1 Step 3n

Ni0

ptrli0 ∅ ∅ ∅
ptrri0 ∅ ∅ ∅

Si0

(xi0, yi0, zi0) (xi, yi, zi) (xi, yi, zi) (xi, yi, zi)

li0 li
li

2
li

wi0 wi wi
Wi

2

hi0
hi

2
hi hi

Hi0 ∅ ∅ ∅

Ni1

ptrli1 ∅ ∅ ∅
ptrri1 ∅ ∅ ∅

Si1

(xi1, yi1, zi1) (xi, yi, zi +
hi

2
) (xi +

li

2
, yi, zi) (xi, yi +

wi

2
, zi)

li1 li
li

2
li

wi1 wi wi
Wi

2

hi1
hi

2
hi hi

Hi1 ∅ ∅ ∅

Ni

ptrli Ni0 Ni0 Ni0

ptrri Ni1 Ni1 Ni1

Si Si1 Si1 Si1

Step 3n − 1 (n > 0). When the subdivided cuboid is still bigger than the
physical space (PSj) of the entity Ej that is requesting a GeoCert, the sub-
cuboid Ni, where PSj belongs, gets equally divided along the vertical split as
shown in Figure 3. Table 2’s column 4 shows the field values of two children
nodes (Ni0 and Ni1) and the values of the updated Ni when Ni is divided along
the vertical split. For Step 2 (when n = 1), S00 = {(−1,−1,−1), 1, 2, 1} and
S01 = {(0,−1,−1), 1, 2, 1}.

Step 3n (n > 0). When the subdivided cuboid is still bigger than the physical
space (PSj) of the entity Ej that is requesting a GeoCert, the sub-cuboid, where
PSj belongs, gets equally divided along the depth split as shown in Figure 3.
Table 2’s column 5 illustrates the updated field values for Ni0, Ni1, and Ni

when Ni is divided along the depth split. For Step 3 (when n = 1), S000 =
{(−1,−1,−1), 1, 1, 1} and S001 = {(−1, 0,−1), 1, 1, 1}.

Assignment. The three steps repeat until the subdivided cuboid can only fit
Ej ’s physical space PSj . In this case, the following values are assigned to the
leaf node (Nj) of the k-d tree:

– URLj is the URL/name of Ej .
– Kj is the public key of Ej .
– Certj is Ej ’s CA- or self-signed certificate, which contains Kj and PSj ’s spa-

tial coordinates. (Section 5.1 describes various certificate types with different
security levels for Certj .)

– ptrT ′ is the pointer to the new k-d tree (T ′), in case Ej sublets PSj to other
entities. For example, Ej can be the Mall of America which contains over 520
stores. In this case, Ej constructs a separate k-d tree for the stores inside
the mall, where N of the Initialization Step becomes Nj and continues the
subdivision steps until each individual store acquires (at least) 1 leaf cuboid.

Upon creating a leaf node, the hash values of all intermediate nodes of the
k-d tree need to be updated. Hash value construction starts from the leaf nodes
(i.e., bottom of the k-d tree) and moves up until the root of the k-d tree (e.g.,
N) gets a new hash value assigned to H∅. For example, assuming that j = 110
(i.e., after Step 3, Ej occupies N ’s left-child cube), here are the hash values that
are updated for the k-d tree:

H11 = H(Hj‖H111) → H1 = H(H10‖H11) → H∅ = H(H0‖H1)

After assigning a new hash value to H∅, the GeoPKI database can construct
a GeoCert for Ej which contains URLj ,Kj , Certj , the signed root hash value
of the updated Merkle hash tree, and the appropriate intermediate hash values
that are needed to verify Hj .

Hierarchical ownership. Alice, who runs a business, may own or rent a sub-
space of someone else’s space, which can also be a subspace of someone else’s
space, etc. For example, Alice’s Verizon store could be located in Mall of Amer-
ica (MOA), in the City of Bloomington, Minnesota, U.S.: Alice’s Verizon store
∈ MOA ∈ Bloomington ∈ U.S. This example indicates that a space can be as-
sociated with multiple owners, resulting in hierarchical ownership. GeoPKI can
represent the hierarchy of certificates using the hierarchical k-d tree structure
as described above: Alice’s business is a leaf node of MOA’s k-d tree, which is
also a leaf node of the City of Bloomington’s k-d tree, which is a leaf node of
Minnesota, etc. As a result, such a parent-child relationship of the hierarchical
k-d tree structure supports the representation of hierarchical ownership.

Single entity spanning multiple cubes. It is possible that PSj spans mul-
tiple cubes. For example, the mall has shape, and the upper right corner
is acquired by another entity (with a different key). As a result, the mall spans
three sub-cubes. Rather than acquiring three CA-signed certificates, one for each
cube, GeoPKI allows Ej to only acquire a single certificate for PSj such that
three sub-cubes contain the same public key Kj and the same hash values Hj .
The only different value among these three cubes would be Sj , which represents
the boundaries of each cube.

5 GeoCert: GeoPKI Certificates

5.1 Certificate Strength based on Trust Hierarchy

A certificate’s security level depends on the signer’s security level. For example,
we envision that self-signed certificates would be a good starting point for early
adopters of GeoPKI. However, for enhanced security and trust, we suggest that
the following trust hierarchy is applied to indicate the certificate’s security level:

1. Level 1: CA-EV-signed. The strongest and most trustworthy certificate
is one that is signed with extended validation by a reputable Certificate Au-
thority (CA) (e.g., Verisign). To acquire a Level 1 certificate, not only must
an entity owner prove the association between a physical location and the
entity (along with its public key), but the CA also needs to physically vali-
date the association, for example by visiting the actual location of the entity.
With a successful validation, the CA generates a CA-EV-signed certificate.

2. Level 2: CA-LV-signed. The second strongest and most trustworthy cer-
tificate is one that is signed by a reputable CA with location validation.
To acquire a Level 2 certificate, an entity owner must prove the association
between a physical location and the entity (along with its public key). For
example, a CA may require an entity to (physically) present a legal docu-
ment, such as a property lease contract or a tax return, which proves the
ownership of the space. In case of issuing an online certificate, the CA may
validate the location by requesting the entity to provide the security code
that is sent by a postal mail. After validating such an association, the CA
generates a CA-LV-signed certificate.

3. Level 3: CA-signed. The third trustworthy certificate is one that is signed
by a CA without proof of space ownership. Unlike Level 2 certificates, CAs
only require an entity to submit its identity, public key, and its physical
address via email to acquire a CA-signed certificate.

4. Level 4: self-signed. A self-signed certificate is created by the entity that
owns the corresponding public key.

After acquiring one (or more) of the certificates in this hierarchy and obtain-
ing a public Log Server’s signature on the certificate(s), an entity can contact
the GeoPKI database to acquire a GeoCert.

5.2 GeoCert Format

In general, when an entity Ei acquires a cuboid with the geographic boundaries
of Si in GeoPKI’s database, the GeoPKI database provides a GeoCert for Ei

(GeoCerti), which is composed of :

– Name of the entity URLi, its public key Ki, and Si,
– Self-, CA-, CA-LV-, and/or CA-EV-signed certificates Certi,
– Signed root hash value of the GeoPKI’s Merkle hash tree ({Root}K−1

GeoPKI

),

and
– Intermediate hash values that are required to verify Hi.

However, there may be cases where GeoCerti includes additional values, such
as proprietor(s)’ signature(s). For example, Ej can be a mall and Ei can be a
store inside the mall. In this case, GeoCerti contains Ej ’s signature on Certi.

Location Validation. If Ei acquires Level 2 and/or Level 3 certificate(s), CAs
must be able to verify the valid geographic location of Ei, without physically
visiting Ei’s business. Postal services can be utilized for location validation as
follows: A CA mails out a security code to Ei’s claimed physical location, and
Ei must present the security code to the CA for the proper certificate issuance.

HM

HM1..111HM1..110H HM0..000 M0..001 HM0..010

HM0...00 HM1..11HM1..10

HM10

HM1..1

City of

Bloomington

Mall of

America
Nordstrom Microsoft . . .Apple Zales Verizon

. . .

HM0 HM1

. . .

Hash of

Mall of America

Fig. 4. Merkle hash tree of a mall. To validate the legitimacy of an ATM inside a mall,
the certificate database provides a set of minimum hash values (shown in dark circles).

5.3 Certificate Lifecycle

We now describe how the GeoPKI database is modified to accommodate changes.

Insertion. To register a new certificate for the physical space PSx to the existing
k-d tree T , PSx’s area boundary values (in GPS coordinates) are first translated
to the geocentric Cartesian coordinates Sx. Then, Sx is compared with S0 and
follows ptrlx if Sx ∈ Nx0, or follows ptr

r
x if Sx ∈ Nx1. The search continues down

the tree until the leaf node containing Sx is reached. If this leaf node’s location
boundary requires further split to fit Sx, this leaf node continues subdividing
until the divided cube is small enough to fit Sx only. Then, that leaf node’s
values are updated with the new GeoPKI certificate information as described in
Assignment in Section 4.

Validation. Inserting a certificate into the k-d tree does not guarantee the va-
lidity of the item since an attacker can claim a victim’s business space and insert
its own self-signed certificate. To mitigate such an issue, we suggest applying a
cooling period, during which newly-posted certificates are suspended for some
time period (e.g., 1 week) until they become publicly available. During this cool-
ing period, any valid entity that discovers bogus certificates for its own address
space can request their revocation (described below). For example, after x in-
serts its certificate for PSx, its certificate can be grayed out (or made invisible)
in the database; only when no other entity has provided another certificate does
the certificate database (e.g., Google Maps) publicize x’s certificate.

Update. If the values of a leaf node change, as would occur with a new public
key, then the node value must be updated. Similar to insertion, updates require
searching down the k-d tree until the leaf node to be updated is reached, and
the values of the leaf node are updated.

Lookup and verification. Alice wants to verify that a diamond store inside a
mall, such as Zales, is indeed legitimate. Assuming that Alice’s mobile phone can
acquire the GPS coordinates of her location (using IPS) and access the appli-
cation to transfer the GPS coordinates to the geocentric Cartesian coordinates,
Alice’s browser can search down the k-d tree T to reach a node for the mall.
This node will contain ptrM for the mall’s own k-d tree, where Zales’s physical
space is specified. Upon successfully reaching the leaf node of M for the shop,
the browser can acquire Zales’s certificate.

To verify the public key of this shop, M provides GeoCertZales, which con-
tains a signed root hash value and the intermediate hash values to verify HZales.
More specifically, to verify HZales, which is HM1..110 in Figure 4, k-d tree M
provides the following hash values:HM1..111,HM1..10, ... ,HM10, HM0, andHM).
Then, Alice verifies if

H(HM0‖(HM10‖(...‖(HM1..10‖(HZales‖HM1..111)‖HM1)...))) = HM (1)

If Alice knows the mall’s public key, she can successfully authenticate that
Zales’s entry in k-d tree M is legitimate should the verification succeed. If she
does not know the mall’s public key in advance, she can verify with additional
hash values from T along with the signed root hash value, since her browser
already knows the public key of the GeoPKI database.

As an alternative, Zales can regularly contact the GeoPKI database (e.g.,
once a day) to acquire the minimal intermediate hash values along with the
signed root hash value, and provide them along with its certificate while es-
tablishing a SSL/TLS session. In this case, the browser can validate CertZales

without directly contacting the GeoPKI database.

Revocation. In some situations, certificates will need to be revoked, for example
when PSx is incorrectly acquired by an entity (i.e., attacker) besides x. In that
case, x can reacquire PSx by obtaining a stronger certificate from the trust
hierarchy as mentioned in Section 5.1. For example, if the current certificate for
PSx is self-signed (Level 4), x can revoke it by obtaining a CA-signed (Level 3),
CA-LV-signed (Level 2), or CA-EV-signed certificate (Level 1). If the current
certificate for PSx is a CA-LV-signed certificate (Level 2), this indicates that
either the attacker successfully crafted an illegal document that binds PSx to
the attacker, or the CA was compromised. In this case, x can revoke the malicious
certificate by acquiring a Level 1 certificate. If the current certificate is Level 1,
this indicates that the issuing CA must have made a validation error, and may
face legal actions. In this case, x can revoke the incorrect certificate by acquiring
multiple Level 1 certificates from reputable CAs.

6 Security Analysis

In this section, we describe how GeoPKI achieves the desired properties as men-
tioned in Section 2.1.

Correct location-to-certificate association. GeoPKI’s goal is that only the
genuine owner of the space can associate her certificate with that space. Consider

a scenario in which an attacker, Mallory, claims that some geographic location LA

corresponds to its own fraudulent resource RM , when indeed LA is the address
for victim Alice’s resource RA. For example, Mallory can attack Alice’s authen-
tic Bank of the West by creating a mimicking website with the URL https:

//www.bankofthevvest.com (instead of https://www.bankofthewest.com [4])
and claim that its location is a real Bank of the West branch. Mallory was able
to obtain a certificate GeoCertM that binds her key KM and the geographic lo-
cation of the real Bank of the West branch LA to Mallory’s resource RM . When
Alice realizes that her address has been acquired by someone else, she can take
one of the following actions, depending on the type of certificate that Mallory
obtained:

– If GeoCertM contains a self-signed certificate (Level 4), Alice can re-claim
LA by getting at least a Level 3 certificate (i.e., CA-signed, CA-LV-signed, or
CA-EV-signed). Since Alice provides a stronger certificate, GeoPKI revokes
GeoCertM and accepts GeoCertA, validating that LA is RA’s physical loca-
tion.

– If GeoCertM contains an CA-signed certificate, this indicates that Mallory
emailed the CA requesting that LA be associated with her key KM . In such a
case, Alice can acquire a CA-LV-signed or CA-EV-signed certificateGeoCertA,
and GeoPKI will accept GeoCertA over GeoCertM based on the level of the
certificate strength.

– If GeoCertM contains a CA-LV-signed certificate, this indicates that Mallory
successfully demonstrated some legal document to the CA. In such a case,
either Mallory was able to obtain an illegally crafted document, or the CA
was compromised. To resolve the conflict, Alice can acquire a CA-EV-signed

certificate, which will revoke GeoCertM .
– If GeoCertM contains a CA-EV-signed certificate, Alice can acquire CA-EV-

signed certificates from multiple, uncompromised CAs. Since multiple certifi-
cates indicate that LA is for Alice’s resource, GeoPKI will revoke GeoCertM
and accept Alice’s certificates. However, the CA-EV-signed certificate requires
a significant amount of validation and documentation, and the adversary most
likely will leave behind significant evidence which Alice can use to take legal
action. Moreover, the issuing CA must have made a validation error, and may
face legal action.

As a result, GeoPKI eventually provides the correct certificate for the location
LA that users can trust.

Response integrity. GeoPKI provides globally consistent query replies by us-
ing the Merkle hash tree. Whenever Bob queries the GeoPKI database, he re-
ceives not only the requested certificate, but also the root of the hash tree and
the intermediate hash values for an integrity check. As a result, two different
queries for the same set of coordinates will always yield the same correct re-
sponse, assuming that the database has not been updated between the queries.

Available querying of 3D space.GeoPKI utilizes the k-d trees for the efficient
query and retrieval of digital certificates associated with 3D spaces. By utilizing

current map operators or large-scale Internet businesses to host the GeoPKI
service, GeoPKI can ensure availability while mitigating DDoS attacks.

Efficient validation. By combining k-d trees with Merkle hash trees, GeoPKI
enables users to efficiently validate GeoCerts. Furthermore, the spatial ordering
within k-d trees enables the efficient validation of non-existing entries as follows:
the GeoPKI database only needs to search down a branch where the queried
coordinate resides, and when it does not correspond to either of the two leaf
nodes, the database confirms that the query is for a non-existing entry.

7 GeoPKI Overhead Analysis

In this section we analyze the overhead of GeoPKI. Because of the availability
of information, we consider the businesses or physical entities within the U.S.
However, the analysis can be readily extended to other countries given the re-
quired data. We evaluate GeoPKI overhead on three base parameters: size of the
GeoPKI tree structure, certificate size, and verification overhead.

Size of the GeoPKI structure. To evaluate the size of GeoPKI’s 3D data
structure to index U.S. businesses, we use the estimated number of physical
resources that are within the U.S. As of March 2012, 20 million businesses have
been registered in the U.S.5

To compute the approximate depth of the tree, we create a cube around
the whole globe with the length of the side equal to the diameter of the earth
(12756km). We use the approach discussed in Section ?? to generate the 3D
data structure to store all the entities’ certificates. We consider a representative
business size as 12m x 12m x 3m. Since a cube with width of approximately
12m is given by log2(12756000/12) = 20, the approximate tree depth given the
three dimensions is 3 · 20 = 60.

With depth d = 60, a binary tree would contain 260 leaf nodes. However, most
nodes would be empty. For computing an upper bound on the number of non-
empty hash tree nodes, we consider 20 million randomly distributed businesses,
and with d = 60, we use the formula deduced in prior work [10] to calculate the
expected number of nodes (N) in the k-d tree:

N =

d∑

i=1

2iπ(2d−i, b, 2d)(1− π(2d − i, b, 2d − 2d−i))

where b is the number of leaf nodes, d is the depth of the tree, and

π(a, r, n) =

r−1∏

i=0

n− a− i

n− i

where π(a, r, n) is the probability that a number of leaves are empty after ran-
domly choosing r leaves among n leaves (π(a, r, n) = 0 if n− r < a).

5 http://www.uscompanydatabase.com/database_us.aspx

Based on these estimates, the expected number of nodes the k-d tree will
have is approximately 557 · 106.

Approximate size of the GeoPKI database. Each leaf node in the GeoPKI
database contains a name, a public key, coordinates of the cube, a certificate,
and a hash of the certificate.

The minimum length of an RSA public key recommended for use today is
2048 bits. Thus, the public key and a signature amount to 2 · 2048 = 4096 bits.

If we represent each dimension of the coordinates of the cube and distance
measurements from all the three surfaces of the cube by 30 bits each (to achieve
about .1 meter of resolution), then it requires 90 bits to store the coordinates of
the cuboid and 30 bits for the cube dimensions.

Assuming 256 bits for a hash value and 128 bytes for the name, time stamps,
etc., the approximate size of a leaf node is approximately 4096/8 + 120/8 +
256/8+128 ≈ .7 Kbytes. Consequently, the 20 million businesses’ nodes will only
require about 14 Gbytes to store, without considering additional opportunities
for compression.

Verification overhead. We measure the number of hashes as well as the num-
ber of digital signatures that have to be computed by the client to verify a
GeoCert. Since the GeoPKI’s k-d tree has approximately 60 levels, the total
verification overhead requires 60 hash function computations and one digital
signature verification. Conservatively, considering a hash function computation
to require 1µs and a 2048-bit RSA digital signature verification to require about
1ms, the total verification time is still close to 2ms, as the hash function com-
putation is dominated by the verification of the CA signature and the GeoPKI
signature on the Merkle hash tree root.

8 GeoPKI Applications

In this section, we describe how GeoPKI can assist people to verify an online
resource based on trust in a physical space. More specifically, a user trusts that
the physical space where she is currently standing is indeed the correct physical
space of an institution. Consider the case of an airport, a university, or a bank. It
would be exceedingly challenging for an adversary to construct a fake airport, for
example. In cases where the user can trust the physical space, she can also trust
that the owner of the space has registered its space with GeoPKI. Consequently,
trusting the space and the corresponding GeoCert enables the user to establish
trust in online resources. We demonstrate this with two applications, for which
trust establishment without GeoPKI would be challenging.

Evil twin attack. Fake wireless access points (AP) mounted by hackers have
been found at airports in Los Angeles, Atlanta, New York, and Chicago.6 An
attacker can set up a fake AP with the same Service Set IDentifier (SSID) as a
legitimate AP at some nearby free hotspot (e.g., airport, cafe, hotel, library, etc.).

6 http://www.metrowestdailynews.com/x282695013

The attacker can position the evil-twin AP to be physically close to users, thus
trumping the legitimate AP with a stronger signal. As a result, users’ machines
likely associate with the evil-twin AP.

GeoPKI can help prevent such attacks. When 802.11x is used with EAP-
TLS, for example, the authentication server’s public key can be authenticated
using GeoPKI, where either the authentication server itself has a GeoCert that
is associated with the space, or a hierarchy of certificates is associated with the
space, as described earlier in the paper. In both cases, the AP needs to pass
all certificate validation information to the client, including hash tree values,
the signed root value, and potentially other GeoCerts along with their required
verification information.

In other authentication environments, the user’s browser is redirected to a
web page hosted by an authentication or paywall server, where the user needs to
enter authentication credentials. In this case, an adversary controlling an evil-
twin AP can present a fraudulent site to steal the user’s credit card or login
credentials. The paywall can again obtain a GeoCert, which the client browser
can then validate. Another option is for the larger space (such as the university,
corporation, or airport) to obtain a GeoCert and digitally sign the certificates of
a paywall or authentication server. Again in this case, the server needs to pass all
required information to the client to validate the certificate, and in some cases,
a hierarchy of GeoCerts and hash tree nodes may also be required for validation.

Impersonation attack. An attacker can impersonate a website to trick users
into entering their personal information. For example, a new student who at-
tempts to establish a SSL session with his university authentication server on
campus can avoid logging into the impersonated webpage with GeoPKI as fol-
lows: the authentication server provides the university’s GeoCert that signs the
server’s certificate. As a result, the browser accesses the GeoPKI database, ac-
quires intermediate hash values, verifies the legitimacy of the university’s Geo-
Cert, and validates the server’s certificate using the university’s public key.

9 Related Work

We are not aware of other work that proposes a geographic PKI, which uniquely
associates certificates to 3D spaces. We will thus discuss the most closely related
work of which we are aware.

Pala et al. propose to embed coordinates in a temporary proxy certificate
issued by a user’s mobile device [9], which can be used by a server for controlling
user access. In GeoPKI, a spatial database is used to associate a public key with
a space, which is a different model achieving different security properties.

To address the issuance of bogus X.509 certificates, Sovereign Keys [5] and
Certificate Transparency [1] have been developed to make all registered certifi-
cates publicly visible, thus creating accountability for CAs. These proposals,
however, do not advocate the use of spatial certificate lookup.

In integrity regions [13], an access point continuously sends out the local
certificate on a specially encoded jamming-resilient channel, whereby devices can

learn the local key. GeoPKI is a more general approach, providing more flexibility
without requiring a special communication primitive, and also enabling spatial
hierarchies and providing accurate delineation of spaces. Finally, GeoPKI could
also be used remotely, assuming that the user has sufficient evidence about the
space, for example by a past visit to that space.

10 Conclusion and Future Work

Our core goal in this paper is to provide automated verifiability of online re-
sources connected to physical spaces. Our key insight is that trusted physical
space can provide accountability for online resources, assuming the presence of
the mechanisms described in this paper.

GeoPKI leverages a global certificate integrity service, in line with proposed
systems such as Sovereign Keys [5] and CA Transparency [1]. In addition to the
append-only and global visibility of all actions of these systems, GeoPKI also
requires efficient coordinate-based certificate lookup services.

Once the utility of these ideas are established, much future work is needed to
transition them into practice. First, details on how to encode GeoPKI informa-
tion in a certificate and applicability with existing systems needs to be studied.
An important area of further study is a better space verification mechanism,
which prevents registration of a space that nobody owns – quite possibly hierar-
chical space allocation would help in this case, such that space registrations need
to be approved by city, which itself needs to be approved by state, country, etc.
Once deployed, additional applications could benefit from GeoPKI, and possibly
new unexpected uses will emerge.

We anticipate that this paper will help researchers perceive how a GeoPKI-
like infrastructure can enhance usability for establishing trust in online resources
associated with physical spaces.

11 Acknowledgments

We would like to thank Payas Gupta for his help in finding applications for
GeoPKI and for his help with the evaluation. We also thank the anonymous
reviewers for their helpful suggestions.

This research was supported by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389, and W911NF-09-1-0273 from the Army Research Office, by
support from NSF under awards CCF-0424422 and CNS-1040801. The views and
conclusions contained here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of ARO, CMU, NSF or the U.S. Government or any of its agencies.

References

1. Certificate authority transparency and auditability. http://www.

certificate-transparency.org, 2011.

2. R. Bayer and V. Markl. The UB-tree: Performance of multidimensional range
queries. Technical report, Institut für Informatik, TU München, 1998.

3. M. M. Correia and M. Tok. DNS-based Authentication of Named Entities (DANE).
Technical report, Universidade do Porto, 2011–2012.

4. R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings of
the SIGCHI conference on Human Factors in Computing Systems (CHI), 2006.

5. P. Eckersley. Sovereign Key Cryptography for Internet Domains. https://www.

eff.org/sovereign-keys.
6. A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In Inter-

national Conference on Management of Data, 1984.
7. J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang. ACComplice: Location

inference using accelerometers on smartphones. In Proceedings of International
Conference on Communication Systems and Networks (COMSNETS), Jan. 2012.

8. B. Hill. CA T&A proofs as cert extensions. http://www.ietf.org/mail-archive/
web/pkix/current/msg30146.html, 2011.

9. M. Pala, S. Sinclair, and S. W. Smith. PorKI: Portable PKI credentials via proxy
certificates. In Proceedings of European Workshop on Public Key Services, Appli-
cations and Infrastructures (EuroPKI), Sept. 2010.

10. A. Perrig. The biba one-time signature and broadcast authentication protocol.
In Proceedings of ACM Conference on Computer and Communications Security
(CCS), Nov. 2001.

11. R. Poovendran, C. Wang, and S. Roy. Secure Localization and Time Synchroniza-
tion for Wireless Sensor and Ad Hoc Networks. Springer Verlag, 2007.

12. H. Samet. Octree approximation and compression methods. In In Proc. of the 1st
Intl. Symp. on 3D Data Processing Visualization and Transmission, 2002.

13. S. Čapkun, M. Čagalj, G. Karame, and N. O. Tippenhaur. Integrity regions:
Authentication through presence in wireless networks. In IEEE Transactions on
Mobile Computing, 2010.

