XIA Performance
Expressive ≠ Expensive

Srini Seshan and Hui Zhang
Peter Steenkiste, Aditya Akella, Dave Andersen,
John Byers, David Eckhardt, Sara Kiesler,
Jon Peha, Adrian Perrig, Marvin Sirbu,

San Diego FIA PI meeting

XIA’s Flat Addressing

<table>
<thead>
<tr>
<th>Current Internet</th>
<th>XIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>Principal type</td>
</tr>
<tr>
<td>128.2.10.162</td>
<td>Type-specific identifier</td>
</tr>
<tr>
<td></td>
<td>Host 0xF63C7A4...</td>
</tr>
<tr>
<td></td>
<td>Service 0x8A37037...</td>
</tr>
<tr>
<td></td>
<td>Content 0x47BF217...</td>
</tr>
<tr>
<td></td>
<td>Future ...</td>
</tr>
</tbody>
</table>

Hash of host’s public key
Hash of service’s public key
Hash of content
XIA’s DAG-Based Addressing

Packet sender → Routing choice → Intent → Content

Host

Another routing choice (with lower priority)
This host knows how to handle content request

Fallback

A node can have multiple outgoing edges. Outgoing edges have priority among them.

DAG Incorporates Key Networking Features

Domain → Host

Scoping for routing scalability

Host → Service

Binding

Domain → Host → Service → Content

Nested fallback allows strong support for evolvable internetworking
Possible Performance Optimization “Knobs”

- Many choices: DAG, XID type, SID/CID routing, Scion vs NID, path selection, services, ..
- Examples: fault management, optimizing video distribution

Outline

- XIA Performance Challenges/Opportunities
- Packet Processing Performance (Data Plane)
 - Processing DAGs
 - Large flat lookup tables
 - Congestion control
- Network-Wide Performance (Control Plane)
 - Application specific control planes
- Evaluation Metrics
Can We Forward DAGs Rapidly?
[NSDI 2012]

Click-based implementation on commodity hardware
351 K table entries based on a Route Views snapshot

Intra-Packet Parallelism for Bounded Processing Cost

Parallel processing
Large Flat Lookup Tables

• Can we build an x86-based software router that...
 – Handles 8x 10GbE ports at full line-rate
 – Handles arbitrarily large flat lookup fwd tables
 • Flow, host, and content routing as imagined uses; but
 • Also “build it, will come?” — raising expectations for what is possible from hardware!
• CuckooSwitch [CoNEXT 2013]

Comparing with Other Hash Tables

XIA packet processing can scale.
End-point vs. Router-Assisted
[Sigcomm 2013]

High Flexibility, Diversity, Evolvable

End-point based [TCP]

Feedback on network’s state

Router-Assisted [XCP, RCP]

High Efficiency

Fast Convergence/Accurate Feedback

Ideal

Overloaded when new flows arrive

Fairness AIMD

Sending Rate (Mbps)

Sending Rate (Mbps)

Sending Rate (Mbps)

Sending Rate (Mbps)

2 4 6 8 10 12 14

2 4 6 8 10 12 14

2 4 6 8 10 12 14

2 4 6 8 10 12 14

Time
Outline

• XIA Performance Challenges/Opportunities
• Packet Processing Performance (Data Plane)
 – Processing DAGs
 – Large flat lookup tables
 – Congestion control
• Network-Wide Performance (Control Plane)
 – Application specific control planes
• Evaluation Metrics

XIA Packet Processing Pipeline

• Principal-independent processing defines how to interpret the DAG
 • Core architecture
• Principal-dependent processing realizes forwarding semantics for each XID type
 • Logically: one forwarding table per XID type
 • Reality: anything goes, e.g., no forwarding table
• Control plane sets up forwarding for each principal type
Control Plane: Video Case Study

How can XIA’s control plane optimize video?

CDN

Better Quality Video

$$$

Content Providers

Higher Engagement

Users

Diagram courtesy: Prof. Ramesh Sitaraman, IMC 2012

Internet Fault Management: The Opportunity of Video Layer Inference

- Video delivery involves many entities
 - Content providers
 - CDNs
 - ISPs

- Performance issues can come from any of them

Akamai

Level 3

Limelight

Internet

......

CDN Service

Content

NID

Host
Performance Fault Isolation: Critical Clusters [CoNEXT 2013]

Live Content Delivery on a CDN

- Wide-area traffic-engineering critical for good video delivery performance
- Video is different from other services (or content)
 - Long-lived sessions, high-bandwidth constraints, adaptive behavior, etc.
Possible Directions

- Naming → we can give different clients different DAGs to control their routing
- Routing → we can use controls over CID routing to optimize video without impacting other traffic
- XID types → we can give video its own XID type

Outline

- XIA Performance Challenges/Opportunities
- Packet Processing Optimization (Data Plane)
 - Processing DAGs
 - Large flat lookup tables
 - Congestion control
- Network-Wide Optimization (Control Plane)
 - Application specific control planes
- Evaluation Metrics
How Do We Evaluate Performance?

- Join Time
- Buffering ratio
- Rate of buffering
- Rate of switching
- Average Bitrate

Diagram courtesy: Prof. Ramesh Sitaraman, IMC 2012

Better Quality Video

Higher Engagement

Users

Content Providers

CDN
Evaluation: Video Case Study

Subjective Scores (e.g., Mean Opinion Score)

User studies not representative of “in-the-wild” experience

Does not capture new effects (e.g., buffering, switching bitrates)

Objective Scores (e.g., Peak Signal to Noise Ratio)

Engagement (e.g., fraction of video viewed)

Quality metrics
Buffering Ratio, Average bitrate?

\[f (\text{Buffering Ratio, Average bitrate},...) \]
Cast as a Learning Problem [Sigcomm 2013]

Possible Directions

- How do extend this to “network” satisfaction from “video” satisfaction?

- How much “training” data do we really need?
Outline

• XIA Performance Challenges/Opportunities
• Packet Processing Optimization (Data Plane)
 – Processing DAGs
 – Large flat lookup tables
 – Congestion control
• Network-Wide Optimization (Control Plane)
 – Application specific control planes
• Evaluation Metrics