
Do You Know Where Your Headers Are?
Comparing the Privacy of Network Architectures

with Share Count Analysis

David Naylor
Carnegie Mellon University
dnaylor@cs.cmu.edu

Peter Steenkiste
Carnegie Mellon University

prs@cs.cmu.edu

ABSTRACT
Online privacy is more important now than ever. Using
encryption goes a long way by hiding application data
from third parties, but some amount of private informa-
tion is still exposed in packet headers. Tools like Tor are
designed to address this concern, and, more recently, re-
search efforts to replace IP have begun to consider how
a network architecture itself can improve privacy.

Unfortunately, we do not have a good way to quan-
titatively compare network architectures (in terms of
privacy and in general). We take the first steps in this
direction by presenting share count analysis, a method-
ology for measuring“how private”an architecture is. We
describe our design and implementation and present ini-
tial results indicating that this approach is promising.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

Keywords
privacy; anonymity; anonymity metrics

1. INTRODUCTION
There is an increasing desire for privacy in the Inter-

net. It is a tough problem: each packet gives away a
lot of personal information. Most important is the pay-
load; fortunately, encryption is an effective way to hide
this content, illustrated by the growing use of TLS [13].
Headers, however, also leak information, such as the
packet’s sender and receiver. Protecting this informa-
tion is much harder because the network needs to know
the destination to deliver the packet and the destination
needs to know the sender to respond.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HotNets ’15 November 16–17 2015, Philadelphia, PA USA
Copyright 2015 ACM 978-1-4503-4047-2 ...$15.00.
http://dx.doi.org/10.1145/2834050.2834104.

Many techniques have been developed to prevent head-
ers from leaking identity information (e.g., mixes, crowds,
and onion routing). More recently, a number of network
architectures have also focused on improving privacy [9,
14, 12]. However, none of these solutions can defend
against an arbitrary adversary with unlimited capabil-
ities. Instead, the tools typically focus on a particular
aspect of privacy or a particular type of attacker. This
raises the question: how can we quantify and compare
the effectiveness of various solutions?

This turns out to be a difficult problem. First, dif-
ferent network architectures use different network head-
ers, an adversary’s primary information source, and dif-
ferent network deployments may use different types of
devices (e.g., NATs or onion routers) which manipu-
late those headers in different ways. A comparison tool
must understand each architecture’s headers and what
information they leak. Second, the space of adversary
capabilities is large, ranging from local sniffers on pub-
lic Wi-Fi to global surveillance. Finally, it is not clear
what metrics to use since both solutions and attackers
differ widely. While there has been work on tool-specific
analyses (e.g., for mixes, crowds, and onion routing [15,
5, 7]), it is not clear how to generalize this research to
evaluate any tool or architecture.

This paper takes a first step towards a tool that can
compare how well different tools and architectures pre-
serve user privacy. We introduce a technique called
share count analysis, which is based on two ideas. First,
instead of working with specific network headers (e.g.,
IPv4) and network devices (e.g., a NAT), we define
generic models for network headers that contain only
four canonical meta-fields and then define devices based
on how they interact with those meta-fields. By map-
ping the specifics of different header formats and devices
onto these models, we can more easily compare their
privacy properties. Second, we develop a flexible ad-
versary model that allows our tool to evaluate how well
different solutions deal with several specific adversaries.
We implement share count analysis, use it to compare
a variety of architectures, and present results indicating
that this technique is promising.

2. GOALS AND CHALLENGES
Our goal is to measure “how private” a network archi-

tecture or tool is. We would like to do this in a general
way, that is, analyze how an arbitrary architecture or
tool stands up against an arbitrary adversary over a va-
riety of privacy metrics. The primary difficulty we face,
then, is making our technique general. In particular, we
see four concrete challenges:

(1) Supporting arbitrary packet formats. We want to
support any architecture, and each architecture has a
different header format. For example, the Accountable
and Private Internet Protocol (APIP) [14] replaces IP’s
source addresses with two new addresses, a return ad-
dress and an accountability address. Similarly, the Inter-
net Indirection Infrastructure (i3) [16] uses a flow iden-
tifier in place of the ultimate destination. Other pro-
posed architectures differ even more radically; for ex-
ample, NDN [9] uses object names as destinations and
no source addresses at all. Given this variety, building a
tool that can manipulate header fields and understands
what personal information they give away requires care.

(2) Supporting arbitrary network elements. A lot of
network devices, like NATs, change headers as packets
move through the network, and these changes affect how
much personal information the packet leaks. For exam-
ple, though not traditionally deployed for privacy, NATs
replace a source address that identifies the sending ma-
chine with one that only identifies the source network,
making it harder to link two flows from the same sender.
Some architectures or tools introduce new types of de-
vices (for example, Tor relays and i3 rendezvous nodes
both change packet headers in a way that is critical to
the privacy those solutions provide), so we also need to
be able to handle new in-network behavior. And even
well-known devices, like NATs, might operate on a field
that different architectures interpret differently, so the
impact such a change has on privacy is not consistent.

(3) Supporting arbitrary adversaries. A sufficiently pow-
erful adversary can often learn anything. Therefore, it
is important to be able to say that a particular tool can
protect a particular piece of information from a par-
ticular adversary. Rather than design our model with
a particular adversary in mind (e.g., an attacker who
can compromise k of n Tor nodes), we would like to
model arbitrary adversaries (e.g., one who can compro-
mise some Tor nodes but perhaps also a link inside the
sender’s local network, before the NAT).

(4) Considering a broad definition of privacy. Many
privacy analyses focus on a single metric, like the size
of the anonymity set or the entropy in the distribution
of probabilities that host H sent message M . Our ideal
tool would answer multiple questions about what the
adversary is able to learn as well as characterize the
costs of this privacy (e.g., performance overhead).

3. SHARE COUNT ANALYSIS
Our technique, share count analysis, draws inspira-

tion from header space analysis (HSA) [10], though the
details are different since our goal is not to verify prop-
erties of actual operational networks but rather to quan-
titatively compare network architectures. Like HSA, we
send test packets through models of network devices and
track how the headers change. Unlike HSA, we are not
concerned with the actual bits in the header, but rather
how much information they give away. We represent
this leaked information using share counts, which we
explain in §3.2. First we describe our models for the ad-
versary, packets, and the network, and then we describe
how we use share counts to analyze an architecture.

3.1 Threat Model
We assume the adversary has the following goals and

abilities. We think this threat model is sufficiently gen-
eral to cover a wide range of realistic adversaries, but
in the future we hope to expand it to include even more
capable attackers.

Goals: The adversary has two specific goals:

(G1) Given a packet, link the human sender to
the destination (“WHO”). We assume that
the adversary’s best shot at doing this is to learn
the packet’s source network, which, combined
with some amount of external information (see
Table 1), could yield a small set of human
individuals.

(G2) Given a user, construct a history of their
online activity (“WHAT”). For this, the
adversary must link flows to a common “sender
ID” (e.g., an IP address). The sender ID may be
opaque in the sense that it does not identify a
person; here it is only needed to link flows from
the same (potentially unknown) person.

Abilities: The adversary can have vantage points at
any number of links or network boxes (e.g., routers or
NATs). At each vantage point, it can inspect a packet’s
network and transport headers; we assume application
payloads are encrypted. Equality checks can be used
on these encrypted payloads to determine if packets ob-
served at two different vantage points are actually the
same packet. If a box re-encrypts a packet’s body, then
as far as the adversary can tell, the “before” and “after”
versions are two different packets (unless the adversary
controls the box that does the re-encryption).

Information leaked to the destination in application
payloads is beyond the scope of this paper. We also do
not consider timing attacks or active adversaries that
can drop, modify, or inject packets in an attempt to
learn something. Finally, we do not currently consider
information the adversary could infer based on the topo-
logical location of a vantage point.

This network info... ...narrows the anonymity set to... ...if the adversary knows

Source domain customers of source ISP list of ISP’s customers
Source domain affiliates of business/university employee/student roster
Source domain residents of neighborhood network address to location mapping
Destination domain customers of company/service X list of X’s customers
Destination domain people interested in topic Y advertising profiles
Destination domain particular user of public site Z activity log (posts & timings) from Z

Table 1: Examples of external information an adversary could use to connect packets to human users.

3.2 Network Model

Packets We address the first challenge, diversity in
header format, by making no assumptions about the
contents or formats of headers. Instead, we represent
each packet as four meta-fields: all of the header bits
that contribute to identifying (1) the sender, (2) the
source network, (3) the destination, and (4) the flow.
These meta-fields may overlap—for example, in IP, the
source address both identifies the sender and contributes
to identifying the flow. Before using our tool, a human
expert must decide how to map the bits in each architec-
ture’s header to these four meta-fields. (Figure 1 shows
this mapping for TCP/IP.)

In addition to the meta-fields, each packet has a body,
which, as noted above, we assume is encrypted and so we
treat as an opaque value used only for equality testing
to link multiple snapshots of the same packet together
even if the headers have changed.

Finally, each packet carries a share count for each
meta-field. A share count indicates how many entities in
the network could share the current value for that meta-
field. For example, how many senders share the same
value for the Sender-ID? In IP, when a packet leaves the
sender, its Sender-ID share count is 1; when it leaves
a NAT, the share count is the number of hosts in the
source network. We also include a fifth share count,
which tracks how many of a sender’s flows share the
same Sender-ID (as opposed to how many senders). For
instance, if a host is multihomed and sends half of its
traffic on each link, the sender flow share count is 1

2 .

Network Boxes We model a path through the net-
work as a series of network boxes connected by links.
Boxes may change the values of some header fields (and
therefore change the values of some meta-fields and share
counts) or of the body (e.g., a Tor relay re-encrypts it).
To meet the second challenge, diversity of network el-
ements, each box is defined by two properties (which
must be manually specified for each architecture):

(1) Does the box change any meta-fields and/or the
body? We do not model actual values; each field
is represented as an integer, which is incremented
if a box changes it.

(2) What are the share counts for each meta-field
after a packet leaves the box?

Src Net ID Dest ID Flow IDSender ID Body

META-FIELDS

Src Net Dest FlowSender Sender Flow

SHARE COUNTS

BODY

Protocol

Source IP Address

Destination IP Address

Source Port Destination Port

IP Header

Transport Header

Modelled Packet

Figure 1: Example showing how TCP/IP fields map to
meta-fields.

3.3 Analysis Procedure
Share count analysis uses the model presented above

by creating a path of network boxes, labelling some links
and boxes as vantage points, sending a symbolic packet
along the path, and recording the share counts seen by
the adversary. The adversary learns something if a share
count ever reaches one. (Being able to model an ad-
versary simply by placing vantage points on any set of
links and boxes gives us the flexibility to address the
third challenge, adversary diversity.) Here we describe
the details, presented in five steps.

(1) Generate paths. Since we do not currently take
the physical location of a vantage point into account,
we test using a single path. The base path is:

[sender]-[router]-[destination]

When we test an architecture or tool that requires spe-
cialized boxes, we add those boxes as needed. For ex-
ample, the test path for IP w/ NAT is:

[sender]-[nat]-[router]-[destination]

Depending on the adversary we want to model, we set
certain links and boxes to be vantage points (see §3.4).

(2) Forward test packet. Next we forward a test
packet through the path, updating the meta-fields, body,
and share counts at each box (Figure 2). At each van-
tage point, we save a snapshot of the packet state.

Sender NAT
Anonymizer

Src Net ID Dest ID Flow IDSender ID Body

META-FIELDS

Src Net Dest FlowSender Sender Flow

SHARE COUNTS

1 1 1 1 1

1 1 H 1 Fh

BODY

Src Net ID Dest ID Flow IDSender ID Body

META-FIELDS

Src Net Dest FlowSender Sender Flow

SHARE COUNTS

2 1 1 2 1

Hn 1 H 1 1

BODY

Src Net ID Dest ID Flow IDSender ID Body

META-FIELDS

Src Net Dest FlowSender Sender Flow

SHARE COUNTS

3 2 2 3 2

H N 1 1 1

BODY

(N = num networks; H = num hosts; Hn = hosts per network; Fh = flows per host)

Figure 2: Test packet travelling through a NAT and an anonymizer.

(3) Group“linkable snapshots.” The adversary uses
the packet body to link packet snapshots from different
vantage points. If a box changes the body, then, as far
as the adversary knows, snapshots from vantage points
on either side of that box were generated by different
packets, meaning the adversary cannot combine the in-
formation it learns from each set of snapshots individ-
ually. Of course, if the adversary has a vantage point
on a box that changes the body, then it can link the
snapshots. The result of this step is one or more sets of
linkable snapshots.

(4) Consolidate information from snapshots. For
each set of linkable snapshots and for each meta-field, se-
lect the snapshot with the minimum share count. Record
this share count and the corresponding meta-field value.
For the Flow-ID share count and the sender flow share
count, we instead record the maximum.

(5) Test what adversary learned. We can use the
minimum share counts to test whether the adversary
achieved its goals. It was able to link the source network
to the destination (G1) if:

(Source-Network-ID share count == 1) &&
(Destination-ID share count == 1)

Similarly, the adversary linked the sender to the desti-
nation (G2) if:

(Sender-ID share count == 1) &&
(Destination-ID share count == 1)

3.4 Metrics
Share count analysis allows us to evaluate architec-

tures using multiple metrics, each involving a run of the
procedure described in §3.3. We start by asking whether
four real-world adversaries can achieve G1 and G2:

(1) Local Eavesdropper (e.g., someone sniffing
open Wi-Fi): We place a vantage point on the
link leaving the sender.

(2) Global Surveillance (e.g., monitoring by a
nation-state): We place a vantage point on every
router.

(3) Source ISP (e.g., employer or school): We place
a vantage point on the link leaving the sender.
We relax G1 and G2 to only check the
Destination-ID share count, since the source ISP
already knows the sender and source network.

(4) Destination (e.g., web server): We place a
vantage point on the destination. We relax G1
and G2 to only check the Source-Network-ID and
Sender-ID share counts, since the destination
already knows its own identity.

Next, we consider arbitrary network adversaries by
testing all combinations of vantage points and asking:

(5) What is the minimum number of vantage points
needed to achieve G1? And G2?

(6) How many different combinations can achieve
these minimums? (More possibilities means more
opportunities for the adversary to succeed.)

Finally, we check two adversary-independent metrics:

(7) What is the maximum Flow-ID share count at
seen at any box?

(8) What is the maximum sender flow share count
seen at any box?

For privacy reasons, some architectures may give mul-
tiple TCP flows the same Flow-ID. However, this means
that network boxes have coarser-grained handles for traf-
fic engineering and, worse, that if an administrator wants
to block a misbehaving flow, other benign flows will be
blocked with it. Therefore, the maximum Flow-ID share
count (7) is a measure of collateral damage. If a single
host has multiple Flow-IDs, the maximum sender flow
share count (8) indicates how successfully the adversary
can reconstruct a user’s activity history.

Finally, note that the eight questions we list here are
merely examples of the kinds of metrics share count
analysis supports; as we extend the model, we can ask
more (and more sophisticated) questions. As it stands,
though, this list demonstrates the variety of information
we can learn from share counts. This is how we address
our fourth challenge, metric diversity.

1-G1 1-G2 2-G1 2-G2 3 4-G1 4-G2 5-G1 (6-G1) 5-G2 (6-G2) 7 8

IP • • • • • • • 1 (3) 1 (3) 1 Fh

IP-NAT • • • ◦ • • ◦ 1 (5) 1 (2) 1 Fh

IP-Tor ◦ ◦ ◦ ◦ ◦ ◦ ◦ 3 (1) 3 (1) 1 Fh

APIP-ISP-NAT-Unique • • • • • • • 1 (5) 1 (5) 1 Fh·Hd
K

APIP-External-Encrypted-Shared ◦ ◦ ◦ ◦ • • • ∞ (0) ∞ (0) Hf 1
i3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ 1 (1) 1 (1) 1 Fh

(Fh = flows per host; Hd = hosts per delegate; K = num flow IDs; Hf = hosts per flow ID)

Table 2: Overall comparison of representative combinations of architectures and tools.

4. RESULTS
We implemented share count analysis and ran it on

IP, APIP, and i3. We tested five variants of IP (IP, IP
w/ NAT, IP w/ Anonymizer, IP w/ Tor, and IP w/
NAT and Tor). We assume i3 is deployed as an overlay
where packets from endpoints to the i3 infrastructure
expose the endpoint’s IP address and that TLS is used
between endpoints and the i3 rendezvous node, meaning
the payload is re-encrypted at the rendezvous server.

APIP packets carry two addresses: a return address
(for replying to the sender) and an accountability ad-
dress (which points to a third party delegate who fields
complaints about the packet). We tested all eight com-
binations of the following three options: First, senders
can “hide” their return address using (1) NAT or (2)
encryption (the return address is encrypted with the
payload, so it is only accessible to the final destina-
tion). Second, the delegate could be run by (1) the
source ISP, meaning the accountability address gives
away the sender’s source network, or (2) an external
third party. Third, each APIP packet contains a flow
ID, which routers use to block malicious flows. Dele-
gates assign each client either (1) a set of flow IDs that
are unique to it or (2) a set of flow IDs that are shared
among multiple of the delegate’s clients.

In this section we summarize the results, which are
labelled by question number (1–8, §3.4) and goal (G1 or
G2, §3.1). For yes/no questions, • = yes and ◦ = no.

Comparing Architectures To start, Table 2 presents
the complete results for IP, IP w/ NAT, IP w/ Tor, a
weak and a strong variant of APIP, and i3.

First, we see that IP was not designed with privacy
in mind; you need Tor to get any kind of privacy guar-
antees. Using a NAT helps a little by preventing ad-
versaries without vantage points inside the NAT from
linking two separate flows initiated by the same sender.
Tor does quite well, although this analysis does not re-
flect its performance overhead.

Second, the weakest version of APIP (ISP delegate
with NATed return addresses and unique flow IDs) ap-
pears to be no better than plain IP. There is one subtle
difference in column 8, however: since each sender has a
set of flow IDs to choose from for each flow, the adver-
sary can only link a fraction of a sender’s activity. (Fur-

thermore, though not represented in the results, any
version of APIP has stronger accountability than IP.)

Next, the strongest version of APIP we tested falls
short of Tor in terms of privacy, but it comes with none
of Tor’s performance costs. Also, note that the infinities
for 5-G1 and 5-G2 are misleading; currently our model
only considers on-path boxes, so infinity is correct in the
sense that there is no combination of on-path boxes that
could be compromised to achieve G1 or G2. However,
if the accountability delegate were compromised, these
connections could be made.

Finally, i3’s stats match Tor’s, with the exception that
fewer vantage points are needed to achieve G1 and G2
(the adversary only needs to compromise the i3 ren-
dezvous node instead of three Tor relays).

When Can the Adversary Learn the Source Net-
work? The columns in the table below indicate whether
a local sniffer, global surveillance, and the destination
can learn the source network, respectively.

1-G1 2-G1 4-G1

IP • • •
IP-NAT • • •
IP-Tor ◦ ◦ ◦

APIP-ISP-*-* • • •
APIP-External-*-* ◦ ◦ •

Since IP was not designed to protect this information,
only Tor is able to hide it; even a NAT does not help.
For APIP, if source domains act as accountability del-
egates, then the accountability address gives away the
source network. With an external delegate, the source
network is hidden from local and global adversaries.
However, the destination server still learns the source
network. If the return address is included (encrypted)
inside the packet body, then the destination learns the
sender’s unmodified address and therefore the source
network. If the return address is hidden using NAT,
then the destination cannot connect the packet to a par-
ticular sender, but still learns the source domain. This
could be mitigated if multiple ISPs were willing to per-
form address translation as packets leave their networks.

Finding Effective Vantage Points Share count anal-
ysis can give us a sense of how hard it is for an adversary
to achieve a particular goal by determining the mini-
mum number of vantage points needed (fewer vantage

points means easier attack) and how many ways those
vantage points could be placed (more options means eas-
ier attack). For example, in IP a single vantage point is
enough to link both the sender and the source network
to the destination. With Tor, on the other hand, three
vantage points are needed (the three Tor relays). And,
with Tor and a NAT, linking the sender to the destina-
tion requires a fourth vantage point: one inside the NAT
to link the sender’s internal and external addresses.

5-G1 6-G1 5-G2 6-G2

IP 1 3 1 3
IP-Tor 3 1 3 1

IP-NAT-Tor 3 1 4 2

Of course, share count analysis can also produce the
successful paths themselves. As a sanity check, we see
that for IP with NAT and Tor, the adversary must com-
promise the Tor relays and also either the link inside the
NAT or the NAT itself (* indicates a vantage point):

[sender]*[nat]-[router]-[tor-entry*]-[router]-[tor-
relay*]-[router]-[tor-exit*]-[router]-[destination]

[sender]-[nat*]-[router]-[tor-entry*]-[router]-[tor-
relay*]-[router]-[tor-exit*]-[router]-[destination]

The Cost of Privacy Next we consider the adver-
sary’s ability to link multiple flows to the same user for
the different variants of APIP. The first column in the
table below shows whether a global adversary can link
the packet to both the destination and the sender (2-
G2). The second column shows how many total TCP
flows are shut off when a misbehaving flow is reported
(in APIP, routers block bad flows that have been re-
ported to accountability delegates). Finally, the third
column shows how many of the sender’s flows can be
linked (in APIP, each sender is given a group of flow
IDs to assign to its flows as it chooses).

2-G2 7 8

APIP-*-*-Unique • 1 Fh·Hd
K

APIP-*-*-Shared ◦ Hf 1

(Fh = flows per host; Hd = hosts per delegate;
K = num flow IDs; Hf = hosts per flow ID)

First, notice the obvious tradeoff between sender-flow
linkability and collateral damage. With shared flow IDs,
the adversary cannot link flows to users, so it cannot
build a history of any user’s online behavior. On the
other hand, since multiple hosts share the same set of
flow IDs, when a router blocks a malicious flow, it could
also block up to Hf benign hosts’ flows as well.

Second, even when the adversary can link flows to
senders (i.e., when each sender is assigned a set of unique
flow IDs), since it has multiple flow IDs to choose among,
traffic sent with different flow IDs appears to come from
different senders. In the third column, we see that the
maximum fraction of the sender’s flows that can be

linked is Fh·Hd

K . The denominator, K, is the number of
possible flow IDs, which is determined by the number
of bits in the header given to the flow ID. This is useful
feedback to protocol designers, who can now see a direct
numerical link between privacy and header format.

5. EXTENSIONS AND FUTURE WORK
We see a number of possible extensions for share count

analysis. First, an adversary can learn something about
a packet based on the physical location of the vantage
point. Accounting for topology could give us a richer
adversary model. Second, though our analysis in this
paper touched on the costs associated with some pri-
vacy tools, we would like to push this further. For
example, for Tor we might report the latency increase
or the computational cost of the extra crypto. Next,
increased privacy sometimes raises concerns about de-
creased accountability; it would be nice to measure“how
accountable” an architecture or tool is. This might be
possible by modelling administrators as adversaries with
special capabilities and verifying that they can connect
a packet to a user. Finally, though this may be substan-
tially more difficult, it would be nice to support a more
sophisticated threat model, for instance, one in which
the adversary could perform timing analysis attacks.

6. RELATED WORK
We are not the first to try to quantify privacy. Many

privacy metrics have been proposed, based on anonymity
set size [3], information theory [5, 15, 2, 4], and combi-
natorics [6, 8]. These efforts focus primarily on defining
the anonymity metric itself and only describe how to use
it to measure a protocol using toy examples. Our work
complements them by describing a way to measure any
architecture or tool. Furthermore, these analyses focus
only on sender anonymity, while we consider a range of
metrics, like the ability to identify the source network.
Finally, our tool pursues a broader picture by also mea-
suring certain costs of privacy.

Many other efforts measure information leakage at
the application layer, e.g., in social networks [1] or web
browsing [11]. These tools are complimentary to ours,
which focuses on the network and transport layers.

7. CONCLUSION
In this paper we present share count analysis, a method-

ology for measuring “how private” a network architec-
ture or tool is according to various privacy metrics. We
also present initial results indicating its potential and
suggest several directions for future work.

Acknowledgements This work was funded in part by
NSF under award number CNS-1345305 and by the DoD
through the National Defense Science and Engineering
Graduate Fellowship (NDSEG) Program.

8. REFERENCES
[1] J. Becker and H. Chen. Measuring privacy risk in

online social networks. In Web 2.0 Security and
Privacy (W2SP), Oakland, CA, May 21, 2009.

[2] K. Chatzikokolakis, C. Palamidessi, and
P. Panangaden. Anonymity protocols as noisy
channels. In Trustworthy Global Computing, pages
281–300. Springer, 2007.

[3] D. Chaum. Untraceable electronic mail, return
address, and digital pseudonyms. Communications of
the ACM, 24(2):84–88, 1981.

[4] Y. Deng, J. Pang, and P. Wu. Measuring anonymity
with relative entropy. In Formal Aspects in Security
and Trust, pages 65–79. Springer, 2007.

[5] C. Dı́az, S. Seys, J. Claessens, and B. Preneel.
Towards measuring anonymity. In R. Dingledine and
P. Syverson, editors, Privacy Enhancing Technologies,
volume 2482 of Lecture Notes in Computer Science,
pages 54–68. Springer Berlin Heidelberg, 2003.

[6] M. Edman, F. Sivrikaya, and B. Yener. A
combinatorial approach to measuring anonymity. In
Intelligence and Security Informatics, 2007 IEEE,
pages 356–363. IEEE, 2007.

[7] J. Feigenbaum, A. Johnson, and P. Syverson. A model
of onion routing with provable anonymity. In
Proceedings of the 11th International Conference on
Financial Cryptography and 1st International
Conference on Usable Security, FC’07/USEC’07, pages
57–71, Berlin, Heidelberg, 2007. Springer-Verlag.

[8] B. Gierlichs, C. Troncoso, C. Diaz, B. Preneel, and
I. Verbauwhede. Revisiting a combinatorial approach
toward measuring anonymity. In Proceedings of the 7th

ACM Workshop on Privacy in the Electronic Society,
WPES ’08, pages 111–116, New York, NY, USA, 2008.
ACM.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, et al.
Networking named content. CoNEXT ’09, pages 1–12,
New York, NY, USA, 2009. ACM.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. NSDI ’12,
pages 113–126, San Jose, CA, 2012. USENIX.

[11] B. Krishnamurthy, D. Malandrino, and C. E. Wills.
Measuring privacy loss and the impact of privacy
protection in web browsing. SOUPS ’07, pages 52–63,
New York, NY, USA, 2007. ACM.

[12] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson.
Tor instead of ip. In HotNets ‘11, page 14. ACM, 2011.

[13] D. Naylor, A. Finamore, I. Leontiadis, et al. The Cost
of the “S” in HTTPS. CoNEXT ’14, pages 133–140,
New York, NY, USA, 2014. ACM.

[14] D. Naylor, M. K. Mukerjee, and P. Steenkiste.
Balancing accountability and privacy in the network.
SIGCOMM ’14, pages 75–86, New York, NY, USA,
2014. ACM.

[15] A. Serjantov and G. Danezis. Towards an information
theoretic metric for anonymity. In R. Dingledine and
P. Syverson, editors, Privacy Enhancing Technologies,
volume 2482 of Lecture Notes in Computer Science,
pages 41–53. Springer Berlin Heidelberg, 2003.

[16] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure.
SIGCOMM ’02, pages 73–86, New York, NY, USA,

2002. ACM.

	Introduction
	Goals and Challenges
	Share Count Analysis
	Threat Model
	Network Model
	Analysis Procedure
	Metrics

	Results
	Extensions and Future Work
	Related Work
	Conclusion
	References

