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Abstract

We propose a new algorithm called Generalized Discriminative
Feature Transformation (GDFT) for acoustic models in speech
recognition. GDFT is based on Lagrange relaxation on a trans-
formed optimization problem. We show that the existing dis-
criminative feature transformation methods like feature space
MMI/MPE (fMMI/MPE), region dependent linear transforma-
tion (RDLT), and a non-discriminative feature transformation,
constrained maximum likelihood linear regression (CMLLR)
are special cases of GDFT. We evaluate the performance of
GDFT for Iraqi large vocabulary continuous speech recogni-
tion.

Index Terms: speech recognition, discriminative training, fea-
ture transformation

1. Introduction

Discriminative training on feature transformation has shown
to be effective on improving recognition accuracy. Feature
space discriminative training often involves optimization of the
feature transform using some discriminative criteria such as,
maximum mutual information (MMI) or minimum phone er-
ror (MPE). Well known methods include feature space MMI
or MPE (fMMI/fMPE) [1][2][3] and region dependent linear
transform (RDLT) [4][5]. These algorithms perform some form
of linear transformation on the feature vectors and the transfor-
mation is optimized using MMI/MPE criteria.

Feature space discriminative training like fMMI/MPE or
RDLT, while being effective, may come with some costs. First,
the training process becomes much longer since one has to per-
form feature space training, followed by maximum likelihood
(ML) reinitialization, and finally the model space discrimina-
tive training. Second, fMMI/MPE and RDLT relies on gradient
ascent or quasi-Newton methods for optimization, which can be
difficult to tune due to the complexity of the objective functions.
In this paper, we propose a new optimization algorithm that is
easy to tune and simplifies training process.

The proposed algorithm is named generalized discrimi-
native feature transform (GDFT), which is inspired by our
previous work on the generalized Baum-Welch (GBW) algo-
rithm [6]. GDFT uses Lagrange relaxation to transform a well
known speaker adaptation technique — constrained maximum
likelihood linear regression (CMLLR) [7], which is also known
as feature MLLR, into a discriminative feature transformation
method. As shown in section 2, we discuss an interesting re-
lationship between fMMI/MPE, RDLT and CMLLR. Then in
section 3, we show how the formulation of GDFT can general-
ize these techniques. The close connection between GDFT and
CMLLR also suggests a new training process which can greatly
shorten the training time, and we investigate this technique in
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section 4. Finally, we conclude and discuss future work in sec-
tion 5.

2. Review of IMMI/MPE, RDLT and

CMLLR
2.1. fMMI/MPE
Feature space discriminative training algorithms like fMMI [1]
or fMPE [2] perform linear transformation on feature vectors,
and the transformation is often optimized for MMI/MPE objec-
tive function. The transformation is formulated as

Zt:$t+Mhtu (1)

where x; is the original feature; h; is the Gaussian posterior
vector computed by a Gaussian mixture model (GMM); M
is the linear transform which is optimized for MMI/MPE ob-
jective using gradient ascent and z; is the final feature vector.
The GMM, trained from the data or induced from the acoustic
model, determines the transforms applied to the feature vectors.

B. Zhang et al. in [4] shows that equation 1 can be rewritten

as,
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where b; is a bias corresponding to the i-th row of M; ~;(3) is
the posterior probability of Gaussian ¢ at time ¢. From this point
of view, we can consider the transformation of fMMI/MPE con-
sists of biases only and the transformation matrix is always an
identity matrix (given the mean-offset feature is not used [5]).

2.2. RDLT

RDLT [4][5] extends fMMI/MPE by allowing full transforma-
tion matrix. Hence, the final feature vectors are computed by

= Z’Yt(i)(Ail’t +bi), 3)

where A; is the transformation matrix optimized for MMI/MPE
objective. For optimization, RDLT uses a quasi-Newton algo-
rithm which uses gradient information to approximate the Hes-
sian matrix for performing update like Newton method.

2.3. CMLLR

CMLLR [7] is a widely used speaker adaptation algorithm.
CMLLR performs linear transformation on the Gaussian means
and covariances, and restricts the transformation to be the same
for mean and covariance. With this restriction, [7] shows trans-
forming the model parameters is equivalent to transforming the
feature vectors as long as one subtracts log(|A|?) to the likeli-
hood computation, where A is the transformation matrix of the
feature vectors (see equation 5).



When context expansion technique is not used or it is al-
ways fixed, the transformation matrix of fMMI/MPE is always
square and identity, hence, fMMI/MPE can be considered as a
model space transformation technique (log(]7|?) = 0). In con-
trast, RDLT is not a model space technique unless the likelihood
computation is adjusted as CMLLR.

We are interested in a transformation approach similar to
CMLLR, since as a model space technique, we have an option
to update the transformation and the Gaussian parameters si-
multaneously, and it gives flexibility to the training procedure.
If concurrent update of transformation parameters and Gaussian
parameters is possible, it implies we can significantly reduce the
training time. Also, we want the transformation optimized for
an effective discriminative objective function like fMMI/MPE
to improve recognition performance. In addition, we also want
the transformation to be less restrictive like RDLT. Hence, we
propose generalized discriminative feature transform (GDFT).

3. Generalized Discriminative Feature
Transformation

In our previous work on discriminative training, we proposed
GBW algorithm for discriminative training [6]. GBW uses La-
grange relaxation to optimize a transformed mutual information
optimization problem. It can also be shown both Baum-Welch
(BW) and extended Baum-Welch (EBW) algorithm are special
cases of GBW. The same theory applies to GDFT, in which, we
derive a generalized version of CMLLR which can perform ML
or MMI training. The formulation is constructed in a way that
GDFT can use an update equation very similar to CMLLR.
MMI optimization for GDFT, in its simplest form, can be
considered as maximizing the difference between the log likeli-
hood of the reference and the log likelihood of the competitor,

FW) =Qr(W) = Qc(W), ©)

where W is the linear transformation of GDFT and W = [A4; b]
The subscript 7 and ¢ represents reference and competitor re-
spectively; () is an auxiliary function to represent negative log
likelihood and it is defined as
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where (¢ = [x¢;1] is the augmented feature vector; X is the
covariance and ;(j) is the posterior probability of Gaussian
j at time ¢t. The @ function defined here is the same as the
equation 57 of [7] except the terms unrelated to the optimization
is removed.

It can be shown minimizing F is the same as performing
MMI optimization. However, optimization of F' is not trivial
since the solution can be unbounded. We apply a checkpointing
technique as GBW [6] which limits the changes in the scores,

W) = ZlQi(W) - il (6)

where C; is the chosen score which we want (); to achieve.
The function G has multiple terms since we can have multiple
files in training, so we have multiple references and their corre-
sponding competitors. As long as, the checkpoints imply higher
likelihood for references and lower likelihood for competitors,
minimization of G is the same as optimizing I except the limits
of likelihood changes [6]. In [6], we compute @ for each word
arc in the lattices, but in GDFT, we compute () based on the

whole utterance. This means for each utterance, we compute
Q. for the reference using Viterbi algorithm, Q. for the lattice
as the competitor using forward algorithm. We found that this
scheme significantly improves the efficiency and does not im-
pact performance much.

We show how to optimize equation 6. We would like to
remind the readers that part of the formulation is closely related
to CMLLR and readers are encouraged to read appendix C of
[7] for more details. To minimize G, we first transform the
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where € represents slack variables and ¢ is an index to an utter-
ance. This is equivalent to the original problem in equation 6
without constraints. We call this as the primal problem for the
rest of this paper.

We can then construct the Lagrangian dual for the primal
problem. The Lagrangian is defined as,
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where {a;} and {;} are the Lagrange multipliers for the first
and the second set of constraints of the primal problem in equa-
tion 7. The Lagrangian dual is then defined as,
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Now, we can differentiate LY w.r.t. € and W which in-
cludes the transformation matrix A and bias b. Hence,
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Assuming the covariance matrices are all diagonal, we then
compute
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where Wy refers to d-th row of W5 pg = [ca1,. .-, Can, 0] i8
the extended cofactor row vector of A (¢;; = cof (Aij)) , and,
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To solve % = 0, we can use the same method as CMLLR

by first solving this quadratic equation for 4,
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Then we can apply this update equation,
Wa = (dpa + k)G D" (17)

Updating W is an iterative process as CMLLR since the co-
factors depend on other rows. As a result, we need to apply
equation 17 on the whole transformation several times and re-
compute the cofactors until it converges. It is important to note
that GDFT reduces to CMLLR if a; = 1 and 3; = 0 for all
references and o; = 3; = 0.5 for all competitors.

Equation 12 to 17 show how W can be computed if the
Lagrange multipliers, «, 3, are known. In other words, W in
equation 17 is a function of « and (. To estimate the multipli-
ers, we need to construct the dual problem from the Lagrangian
(equation 7), and this can be done by integrating equation 11
and 17 into equation 7. Thus, we obtain,

LP (0, ) = (i = B)(Qi(W™) — Cy) (18)
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where W™ is a function of « and 3 computed by equation 17.
Then, we can formulate the dual problem,

rgaﬁx LD(CY,,Q) = Z(ai = Bi)(Qi(W™) = Cy)

s.t. Ve a¢+,8¢ =1and Oéi,ﬁi >0.

This dual problem is convex and it can be solved easily with
gradient ascent. While the gradient formula can be complicated,
we found that the following approximation is good enough in
general, OLP
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In theory, if the dual objective at dual optimal is smaller
than the primal objective at primal optimal, there is no guaran-
tee the dual solution is also primal optimal. Hence, using this
method can only be considered as a relaxation technique, which
we relax a non-convex problem into a convex one. Also, GDFT
works under the EM algorithm framework, which the M-step is
now replaced by solving a dual problem. To speed up the pro-
cess, we can perform another EM iteration after one gradient
step of equation 19. This is similar to fMMI/MPE and RDLT
which we recompute the E-step after one iteration of gradient
ascent or quasi-Newton method.

When GDFT is used with multiple regression classes,
GDFT is the same as fMMI/MPE and RDLT which uses an
GMM to compute the posterior probabilities for weighted aver-
age. However, to speed up the process, the current implementa-
tion of GDFT only uses the one transform which corresponding
Gaussian yields the highest likelihood.

~Qi(W*) = C; . (19)

4. Experiments

We evaluated the performance of GDFT on a speaker depen-
dent Iraqi ASR system with 62K vocabulary. The Iraqi system
was trained with around 450 hours of audio data in force pro-
tection and medical screening domain. The acoustic model has
7000 codebooks and each codebook has at most 64 Gaussian
mixtures. The model was trained with speaker adaptive train-
ing. During decoding, we performed incremental MLLR and
CMLLR for adaptation. GDFT was applied on the features af-
ter adaptation. The system was evaluated in DARPA TransTac
2008 June and November evaluations as a component of the
CMU English-Iraqi two-way speech-to-speech translation sys-
tem [8]. In this paper, we used the June offline open set as a de-
velopment set, and the November offline open set as an unseen

test set. Both sets consist of conversational speech between a
native English and a native Iraqi speaker and we only evaluated
on the Iraqi part in this paper.

In the previous section, we learned that GDFT can be con-
sidered as a model space transformation like CMLLR. One pos-
sible way to use GDFT is to perform feature transformation and
model space discriminative training at the same time. This form
of training is similar to speaker adaptive training using CMLLR,
except we perform both transformation and model updates at
the same time. We call this form of training as joint training
in this paper. In the following experiments, we chose boosted
MMI (bMMI) [1] for the model space discriminative training.

In the first experiment, we evaluated the performance of
GDFT in the form of joint training and compare to using only
the model space training. For GDFT, we used 16 transforms and
they are optimized for MMI objective. The checkpoints are set
to be 10% higher for reference and 10% lower for competitor
in terms of log likelihood. During each iteration, we collected
statistics for GDFT and bMMI for joint training and updated the
acoustic model and the feature transform concurrently.

| lter [MLT 1T ] 21 37 4]
bMMI 37.0 | 36.1 | 359 | 35.6 | 354
GDFT+bMMI | 37.0 | 35.8 | 35.0 | 344 | 35.0

Table 1: WER(%) of bMMI and GDFT+bMMI joint training
on dev set. Each iteration costs almost the same amount of time
for both methods.

Table 1 shows the joint training using GDFT and bMMI
can improve training using bMMI only. The difference in per-
formance is one point absolute. This indicates joint training
using GDFT and bMMI is effective and has the potential to
shorten the time for discriminative training, since it is no longer
necessary to separate feature space and model space training,
and the additional computation for GDFT is the same as CM-
LLR which is neglible. For the next experiment, we examined
different training procedures which includes the joint training
(GDFT+bMMI), the conventional feature space training fol-
lowed by model space training (GDFT — bMMI), and model
space training followed by feature space training (bMMI —
GDFT). Figure 1 shows that the performance of different train-
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—O— biiMI-=GDFT (model)
=0 = bMMI->GDFT (feature)
—OF — GDFT-=bMMI (feature)
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Iteration

Figure 1: WER of different training procedures on dev set. Each
iteration costs almost the same amount of time for all procs.

ing procedures. We found that joint training (GDFT+bMMI)



outperformed other training procedures and it achieved its best
performance earlier than the other methods as well. GDFT —
bMMI gives 35.1% WER which is better than using bMMI
alone (35.4%). It is interesting to see although using GDFT
alone gave little improvement, the output features helped bMMI
to improve the overall performance in the later stages of train-
ing. bMMI — GDFT is unstable as shown in the figure although
we observed continual improvement on the objective function.
This probably implies overfitting. Figure 2 shows performance
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Figure 2: Performance of GDFT and bMMI joint training using
different configurations.

of joint training using different configurations. In the figure,
”full” means GDFT used full transformation and bias” means
GDFT used bias only. Different number of regression classes
was tested. In the experiment, we found that GDFT does not
need many classes for optimal performance. When only bias is
used for feature transform, GDFT is the same as fMMI except
the optimization algorithm is different, and in the current imple-
mentation of GDFT, it only selects one transform based on the
best likelihood scores, but not a weighted average using pos-
terior as the original fMMI/MPE. This result is different from
what we expected since it is generally believed fMMI/MPE
needs more than a thousand transforms [3]. More experiments
need to be done in order to identify whether the small number of
transforms preferred by GDFT is due to the optimization algo-
rithm, the training procedure or how the transforms are selected.
Nonetheless, if GDFT can reduce the amount of transforms re-
quired, it is beneficial since it saves the computation. In sum,
GDFT with 16 full transforms or GDFT with 64 bias only trans-
forms give 34.4% and 34.5% WER respectively, which is better
than 35.4% WER by using bMMI model space training only.

Finally, we compared the performance on the unseen test
set, which is the TransTac 2008 November open set. The result
is in table 2 and we observed GDFT+bMMI joint training with
16 full transforms gave the best performance.

5. Conclusion and Future Work

In this paper, we introduce GDFT which uses Lagrange relax-
ation to construct a discriminative version of CMLLR. GDFT
is a generalization of CMLLR and fMMI/MPE and very sim-
ilar to the RDLT. With joint training with bMMI model space
discriminative training, GDFT can improve the ML and bMMI

| | WER (%) | Rel. imprv. |

ML 35.7 -
bMMI 343 3.9%
GDFT+bMMI (bias, c=64) 33.7 5.6%
GDFT+bMMI (full, c=16) 332 7.0%

Table 2: WER(%) of bMMI and GDFT+bMMI joint training on
the unseen TransTac Nov08 open set.

baseline. The results also suggest that GDFT can shorten the
training time, since it is no longer necessary to separate the
feature space and model space training to exploit the benefits
of discriminative feature transformation. For the future work,
more experiments will be done to compare different optimiza-
tion algorithms used for feature space discriminative training,
and we will study possible smoothing techniques for GDFT.
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