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ABSTRACT

Recently, we have been investigating the application of kernel
methods to improve the performance of eigenvoice-based adap-
tation methods by exploiting possible nonlinearity in their origi-
nal working space. We proposed the kernel eigenvoice adapta-
tion (KEV) in [1], and the kernel eigenspace-based MLLR adap-
tation (KEMLLR) in [2]. In KEMLLR, speaker-dependent MLLR
transformation matrices are mapped to a kernel-induced high di-
mensional feature space, and kernel principal component analy-
sis (KPCA) is used to derive a set of eigenmatrices in the feature
space. A new speaker is then represented by a linear combination
of the leading eigenmatrices. In this paper, we further improve
KEMLLR by the use of multiple regression classes and the quasi-
Newton BFGS optimization algorithm.

1. INTRODUCTION

When the amount of adaptation speech is really small, say, a
few seconds, eigenvoice-based adaptation methods [3, 4, 5] have
been shown more effective than the traditionally more popular
methods such as the Bayesian-based MAP adaptation [6] and the
transformation-based MLLR adaptation [7]. Eigenspace-based
MLLR (EMLLR) adaptation [4] is a variant of the standard EV
adaptation [3]. Instead of finding a small set of eigenvoices (EV)
in the speaker supervector space as in the EV adaptation, EMLLR
looks for a small set of eigenmatrices in the MLLR transformation
supervector space. The acoustic model of a new speaker is then
obtained by an MLLR transformation of the speaker-independent
(SI) model, which is now a linear combination of the set of eigen-
matrices.

Recently, we proposed an improvement to EMLLR adaptation
called kernel eigenspace-based MLLR adaptation (KEMLLR) [2]
by exploiting possible nonlinearity in the MLLR transformation
supervector space using kernel methods [8]. The basic idea is to
map the speakers’ MLLR transformation supervectors to a high
dimensional feature space via some nonlinear map, and then apply
principal component analysis (PCA) to derive the eigenmatrices in
the feature space. During the actual computation, the exact non-
linear map need not be known, and the kernel eigenmatrices are
obtained by kernel PCA (KPCA). The computational procedure
depends only on the inner products in the feature space, which can
be obtained efficiently with a suitable kernel function. One ma-
jor challenge in KEMLLR adaptation is to preserve the row infor-
mation in the transformation supervectors which, otherwise, will
generally be lost during the mapping to the kernel-induced feature
space. Our solution is the use of composite kernel [1].

In this paper, we further improve KEMLLR by the use of
multiple regression classes and the more advanced quasi-Newton
BFGS optimization algorithm.

2. EIGENSPACE-BASED MLLR (EMLLR) ADAPTATION

Suppose there is a set of N speaker-dependent (SD) hidden
Markov models (HMMs) of the same topology with mixture Gaus-
sian states. These SD models are estimated from the SI model by
MLLR transformation using L regression classes. Let H be the
mapping function that maps the gth Gaussian to its regression class
h = H(g)where h € {1,...,L}. Thus, the gth Gaussian mean
vector pu) € R of the ith speaker is given by
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H(g)-th regression class, and £V = [MEJSi)/,l] is the aug-
mented mean vector of the corresponding Gaussian in the SI
model. A speaker transformation supervector (STSV) is obtained
by stacking up the L vectorized MLLR transformation matri-
ces, YY% e 7Y<L”. Let’s denote the STSV of the ith speaker
by vy = [vec(Y\VY, ... vec(Y$?))". From the N STSVs,
{y®,y@ .. y™1 PCA is performed to obtain the eigenvec-
tors which are the vectorized eigenmatrices. For a new speaker,
his STSV is approximated as a linear combination of the lead-
ing M vectorized eigenmatrices as y = Z%:l W Vi , Where

w = [wi,...,wnm] is the eigenmatrix weight vector, and v, is
the mth vectorized eigenmatrix.
Lety = [, ¥hise s Yha ... Where yn, € REFD js

the rth row of the hth MLLR transformation matrix (for r =
1,...,dand h = 1,...,L). Then yy,. is given by yn, =
S Wi Vimhr , Where vy, represents the rth row of the hth
transformation matrix embedded in the mth eigenvector.

Hence, the gth Gaussian mean of the new speaker model,
which belongs to the hth regression class (as h = H(g)), is
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where f1g,- is the rth component of ..
Given the adaptation data O = {01,02,...,07}, the eigen-
matrix weights can be estimated by maximizing the likelihood of



O [3, 4], or, equivalently the following @ (w) function:
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where ~:(g) is the posterior probability of the observation se-
quence being at the gth Gaussian at time ¢, and C, is the covari-
ance matrix of the gth Gaussian. Differentiating Q(w) w.r.t. each
weight, w,,,m = 1,..., M, we get
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By setting the M derivatives to zero, the optimal weights are ob-
tained by solving the system of M linear equations.

3. KERNEL EMLLR (KEMLLR) ADAPTATION

In KEMLLR adaptation, we try to improve EMLLR by exploiting
the possible nonlinearity in the speaker transformation supervector
space. This is achieved by replacing linear PCA by kernel PCA
and the use of composite kernel.

3.1. Kernel Eigenmatricesin the Feature Space

Let k(-, -) be the kernel with an associated mapping ¢ which maps
a speaker’s transformation vector y in the input STSV space to
»(y) in the kernel-induced high dimensional feature space. Given
the set of N STSVs {y1,...,yn~}, their o-mapped feature vectors
are {¢(y1),...,¢(yn)}. Let K be the centered kernel matrix
with Kij = k(yi,y5) = ¢(v:)'¢(v;) where ¢(y) = o(y) — ¢
and ¢ = % Zf\;1 o(yi).

_ Kernel PCA may be performed by eigendecomposition on
K as K = UAU’, where U = [a1,...,an] With a; =
[ty ... ], and A = diag(Ai, ..., An). Using the leading
M eigenmatrices of the covariance matrix in the kernel-induced
feature space, the centered STSV of the new speaker in the feature
space @ *e™U) (y) is given by
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3.2. Composite Kernel

Analogous to the use of composite kernels to preserve the state
information in kernel eigenvoice [1], the row information of each
transformation matrix is preserved in KEMLLR using the direct
sum composite kernel so that
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where y 5, represents the part of y; corresponding to the rth row
of the MLLR transformation matrix of the hth regression class
before the p-mapping.

Thus, the ¢,,--mapping of the rth row of the MLLR transform
of the hth regression class for the new speaker’s STSV is given by
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3.3. Kernel Evaluation

Using Eqn. (6), the similarity between ("™ (

©nr(€4°7) can be computed as follows:
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and @gp, = % Zfil @hr(Yinr). Notice that all the kernel values
in Egns. (8,9) may be computed offline prior to adaptation.

Furthermore, the derivative of k’;ﬁeml”)(y}w,ﬁgﬂ)) W.IL.

each eigenvoice weight w.,,, m =1, ..., M, is given by
a (kemllr) (s1) _ Bhr(mqg)
Own, (khr (Ynrs &g )) Y, win (10)
3.4. Gradient of Gaussian M eans
(kemlir)

Eqgn. (3) requires the gradient of pg w.r.t. each eigenma-
trix weight w,,,m = 1,..., M. This can be obtained by using
Gaussian kernels for the composite kernels,

p(—Burllu—v]*),

and the identity u'v = % (J|lul|* + ||v||* — [[u — v||*) . By letting
u =y and v = £, we have
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Substituting Eqns. (7,8,9) into Eqgn. (11), differentiating the
result w.r.t. wy,, and making use of the gradient in Eqn.(10), we
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where we use the index g = —1 to represent a special augmented
vector £'°] (=) which is the zero vector 0.

35. ML Estimation of Eigenmatrix Weights by the Quasi-
Newton BFGS Method

Using Eqn. (12), the derivatives of Q(w) of Eqn. (3) w.r.t. each of
the M weights w.,,m = 1,..., M, can be obtained. However,
Due to the nonlinearity of the kernel functions, there is no closed
form solution for the optimal w. In the past [2], the weights are ob-
tained by gradient ascent method and we notice that sometimes it
is not effective and gets stuck. Now we replace it by the quasi-
Newton BFGS optimization algorithm which consistently gives
better solutions. Quasi-Newton method is similar to the traditional
Newton’s method and makes use of the Hessian to retrieve the



Newton’s direction. However, it approximates the Hessian with
an estimate that can be derived solely from the gradient. As a re-
sult, it is more efficient and it can enforce the Hessian estimate to
be strictly positive-definite.

In quasi-Newton method, the inverse of the Hessian matrix
A~ is approximated by H; in an iterative procedure so that
lim;_oo H; = A™!, where H; is the Hessian inverse in the ith
iteration, and it has to be positive definite and symmetric. In this
paper, H; is updated by the (BFGS) algorithm as follows:

Hi o= (- 2Y0H1 - 22 4 22 (13)
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where,
Si = Wit1 — Wy (14)
yi = VQ(Wit1) —vQf(wi) (15)

Detailed description and proof are available in [9].
Finally, the optimal eigenmatrix weights can be optimized it-
eratively by the following updating formula:

wit1 = —AH; 7 Q(W)|w,

where )\ is a learning rate to be determined by a line search algo-
rithm, and the gradient can be computed from Eqns. (3,12).

3.6. Robust KEMLLR

To get a more robust estimate when the amount of adaptation data
is really small, we proposed in [2] to interpolate the transforma-
tions found by KEMLLR with the identity matrix. Equivalently,
a mean vector found by KEMLLR is interpolated with the corre-
sponding SI mean vector.

4. EXPERIMENTAL EVALUATION

The proposed KEMLLR speaker adaptation method was evaluated
on the DARPA Resource Management continuous speech database
RM1. RM1 consists of 3990 SI training utterances from 109
speakers, and 12 speakers in the SD section, each having 600 ut-
terances for training, 100 utterances for development, and 100 ut-
terances for evaluation.

4.1. Feature Extraction and Acoustic Modeling

Forty-seven context-independent phoneme models were trained
using the Sl training set. Each phoneme model was a strictly left-
to-right 3-state hidden Markov model (HMM) with 10 Gaussian
mixtures per state. In addition, there were a 1-state short pause
model and a 3-state silence model. The acoustic vector has a di-
mension d = 13, consisting of 12 MFCCs and the normalized log
energy extracted from speech frames of 25 ms long at the frame
rate of 100Hz.

4.2. Experimental Procedure

From the SI model, an SD model was constructed for each of the
109 speakers in the Sl training set using MLLR adaptation and the
number of regression classes were varied. As a result, we obtained
aset of N = 109 transformation supervectors for deriving the ker-
nel eigenmatrices. Experiments were performed with either 5s or
10s adaptation data. To improve reliability of the results, for each

test speaker, 3 sets of adaptation data were randomly chosen from
his 100 development utterances. All reported results are the aver-
ages of experiments over the 3 adaptation sets of all speakers, and
the adapted models were tested on their 100 evaluation utterances
using word-pair grammar.

The following models or adaptation methods are compared:

Sl: speaker-independent model.

MLLR-D: MLLR adaptation with diagonal transformation.
MLLR-F: MLLR adaptation with full transformation.
EMLLR: eigenspace-based MLLR adaptation.

KEMLLR: kernel EMLLR adaptation.

MLLR adaptation was done using the HTK software with di-
agonal or full transformation with (a maximum of) 32 regression
classes. However, by default, HTK requires at least 700 frames
of speech for each regression class. As some configurations had
very few data, this threshold was lowered in order to force HTK to
perform MLLR. EMLLR was implemented using KEMLLR with
linear kernel, and all EMLLR and KEMLLR models were interpo-
lated with the SI model as said in Section 3.6.

4.3. Number of Eigenmatrices and Regression Classes

Fig. 1 and Fig. 2 describe the complicated relationship among the
number of eigenmatrices, number of regression classes, and the
amount of data used in EMLLR or KEMLLR adaptation. Twenty-
five, 50, 75, and 109 eigenmatrices were tried with one or two re-
gression classes using 5s or 10s of adaptation speech. As expected,
better adaptation performance results when more adaptation data
are available. Notice that when EMLLR or KEMLLR are done
with multiple regression classes, they can perform PCA or KPCA
separately on each class or on the concatenated transformation su-
pervectors. In our preliminary investigation, the former always
gave better adaptation performance than the latter. As a conse-
quence, all experiments reported here when multiple regression
classes were used treated them separately. We have the following
observations:

e On the one hand, more regression classes should give more
detailed modeling and should give better results. On the
other hand, more regression classes require more adaptation
data as there are more weights to estimate. The effect is
more pronounced for KEMLLR: with 2 regression classes,
the performance actually drops with only 5s of adaptation
speech, but is elevated when 10s of adaptation speech is
provided.

e KEMLLR generally outperforms EMLLR adaptation when
the same number of eigenmatrices and regression classes
are employed using the same amount of adaptation speech.
This shows that the leading eigenmatrices derived in KEM-
LLR using KPCA are more effective in capturing useful
speaker information.

e When all eigenmatrices are employed, EMLLR adaptation
performance may still improve. This may suggest that there
are residual nonlinear information which cannot be covered
by the leading eigenmatrices derived by PCA in EMLLR
so that using all eigenmatrices may still improve the perfor-
mance. However, this is not true for KEMLLR where us-
ing all kernel eigenmatrices will degrade the performance.



That suggests that the trailing kernel eigenmatrices are re-
ally noises. Thus, once again, KPCA helps to extract the
nonlinear eigen-information more effective than PCA.
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Fig. 1. Adaptation performance of EMLLR adaptation.
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Fig. 2. Adaptation performance of KEMLLR adaptation.

4.4. Comparison among Various Adaptation M ethods.

In this experiment, the SI model, MLLR-D, MLLR-F, EMLLR,
and KEMLLR are compared at their best settings. The results are
summarized in Table 1. It is found that when only 5s of adaptation
speech were available, even we lowered the threshold for MLLR-
D and MLLR-F when we ran HTK, they still could not be run.
On the other hand, EMLLR successfully reduced the word error
rate (WER) by 7.82%, and KEMLLR could reduce the WER by
11.4%. When 10s of adaptation speech were provided, MLLR-
F became effective and matched the performance of KEMLLR.
EMLLR again does not perform as well as KEMLLR, and MLLR-
D gave the least performance gain.

Table 1. Adaptation performance of the SI model, MLLR, EM-
LLR, and KEMLLR adaptation.

Model/Adaptation | Word Accuracy
55 [ 10s
SI 78.27% | 78.27%
MLLR-D N/A 78.90%
MLLR-F N/A 82.10%
EMLLR 79.97% | 80.73%
KEMLLR 80.75% | 82.03%

5. CONCLUSIONS

In this paper, we improve kernel eigenspace-based MLLR (KEM-
LLR) adaptation method further by using multiple regression
classes, and investigated the relationship among the number of ker-
nel eigenmatrices, number of regression classes, and the amount
of adaptation data. We show that when only 4-5s of speech are
used, both EMLLR and KEMLLR are effective, but KEMLLR
gives greater performance improvement than EMLLR. When 10s
of speech are available, KEMLLR performance is than matched
by standard MLLR using full transformation. All in all, KEMLLR
seems to be effective for fast speaker adaptation using less than
10s of adaptation speech.
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