
Chapter Four
/cloud: A Cloud Synthesized File System
In persistent storage there are three degrees of freshness. cloud-inotify, discussed in the previous
chapter, is for low-latency monitoring the first degree of freshness—in-flight operations mutating
persistent state. /cloud provides an interface to the second degree of freshness—live state stored
in virtual disks across the cloud. This state is not as fresh as in-flight write operations, nor as old
as state kept in historic archives. /cloud offers a read-only view into the file systems within virtual
disks associated with running instances. The natural fit for implementing /cloud was a file system
interface which provides familiar file-level access to files inside monitored file systems across the
cloud. Thus, /cloud is implemented by a compact FUSE driver as a POSIX-compliant read-only
file system with eventually consistent semantics for file data from remote virtual disks. Because
/cloud’s implementation uses the familiar file system abstraction, it is directly usable by legacy
applications without re-implementation or modification.

/cloud benefits from DS-VMI’s normalization of file system data structures by only needing a
single implementation to handle multiple different types of VM file systems. We envision many ap-
plications for /cloud including querying old log data, scanning for new vulnerabilities, or checking
for misconfigurations. Each of these tasks is impossible in a purely event-driven architecture such
as cloud-inotify. Accessing old log data cannot happen with cloud-inotify because there is
no method of going back in time within a file-level update stream. Although, we will describe a
system of storing these update streams for the purpose of going back in time in Chapter 5. Scanning
through files for vulnerabilities does not make sense with events because many files might never
receive writes in which case they are invisible in cloud-inotify. Scanning for a misconfiguration
has the same exact problem: even if we could travel backwards in a file-level update stream, files
which never mutate are not under the purview of DS-VMI.

The rest of this chapter is organized as follows. Section 4.1 provides an overview of the design
ideas and implementation technologies of /cloud. The core implementation (200 lines of C) is kept
small by leveraging abstractions provided by the DS-VMI mechanism. We describe the /cloud FUSE
driver and normalized format in Section 4.2. Section 4.3 describes /cloud’s consistency model
with metadata versioning. Metadata versioning guarantees metadata consistency, but file data is

53



54 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

eventually consistent. Section 4.4 discusses two applications of /cloud in more detail. The final
Section 4.5 demonstrates the usefulness of a legacy toolchain when layered on top of the file-system-
like /cloud.

4.1 Design and Implementation of /cloud
Batch-style workloads typically operate by scanning through a large corpus of data, computing
some intermediate state, and producing a final answer. Thus, we expect them to be long-running
processes which read large portions of virtual file systems at a time. A large amount of legacy tooling
and frameworks already exist for processing batch-style workloads such as the MapReduce [31]
distributed runtime. These properties guided our design of /cloud.

/cloud needed to implement an interface which did not require rewriting entire toolchains and
frameworks. The pre-existing codebases are battle-hardened from decades of testing, familiar to
engineers, and represent millions of man-hours time worth of development. This led us down the
path of implementing a lowest common denominator interface—the POSIX file system interface—
for accessing live virtual disk state. Because these jobs are long running, and potentially touching
every instance in a cloud, we deemed it not appropriate to snapshot every virtual disk for every batch
job. Thus, we took the design decision to read data directly from live virtual disks. Ideally, snapshots
would enable freezing large swaths of virtual disk state at once for batch workload consumption.
But, taking frequent snapshots of entire virtual disks may incur too much overhead.

/cloud is implemented as a FUSE file system within a Linux host which translates between
host system calls into the virtual disk space of a cloud instance by leveraging DS-VMI maintained
datastructures. Exposing /cloud to other operating systems is as simple as layering an SMB or NFS
server on top because /cloud appears as a simple mount within its host. This means legacy tools
can reside in their operating environment of choice, and still access files within cloud instances for
monitoring. FUSE does not fully support the local Linux inotify interface. If it did, a single FUSE
file system could serve as a shared implementation for both cloud-inotify and /cloud.

/cloud is exportable over the network via Samba or NFS. Administrators can use this interface
to rapidly query log files and configuration state across multiple instances in a cloud with legacy
tooling. For example, consider organizing VM file systems within a hierarchical directory scheme:
/cloud/host/vm/fs/path. Administrators can leverage familiar legacy tools such as grep to
quickly search subsets of VMs. They could also use standard log monitoring applications such as
Splunk [112] to monitor log files within /var/log/ across VMs without executing agents inside
those VMs. /cloud only transmits data when requested via file system operations.

4.2 Implementation with POSIX Read-only Semantics
Less than 200 lines of C code define /cloud’s implementation. This is due to DS-VMI’s normaliza-
tion of file system metadata into an intermediate format, and the power of the FUSE framework for



4.2. IMPLEMENTATION WITH POSIX READ-ONLY SEMANTICS 55
struct gray_inode
{

uint64_t size;
uint64_t mode;
uint64_t uid;
uint64_t gid;
uint64_t atime;
uint64_t mtime;
uint64_t ctime;

};

Figure 4.1: Normalized metadata kept via DS-VMI for /cloud and other purposes. There is a list
of blocks associated with the file not shown. And, in the case of directories, also a list of files within
the directory.

implementing userspace file systems. Figure 4.1 shows the normalized metadata /cloud maintains
via DS-VMI for populating necessary fields when looking up file attributes within the FUSE call-
backs. We chose 64-bit unsigned integers to represent most data because (1) it is unsigned data,
and (2) we felt this field was large enough to cover all of our existing use cases. However, it must
be noted that file systems such as ZFS [78] which are based on 128-bit metadata attributes would
require an expansion of the field sizes of our normalized format. This normalized format is a com-
promise down to a lowest common denominator of representing files. But, exactly like intermediate
formats produced by compilers, it lets us create unified tooling around file data independent of the
source file system.

Notably absent from this structure is a representation of the on-disk byte stream, or an extensible
list of file attributes. We deliberately scope the FUSE interface to being simple and do not expose
file-system specific features or attributes. The stream of bytes representing a file are stored in a
separate list. Although this list is not needed for introspection, as only a reverse mapping lookup
table is needed mapping blocks to files and not the converse, DS-VMI maintains it for /cloud on
every metadata update in near-real-time.

The file system functions implemented by /cloud are listed in Table 4.1. /cloud implements
a very minimal set of 5 virtual file system callbacks. The FUSE frameworks hides a lot of com-
plexity, and a purely read-only file system completely avoids implementing trickier write functions.
/cloud guards itself guaranteeing that any open file descriptor is read only by gating the open
method to return EROFS if the flag O_RDONLY is not set. This ensures that callees to /cloud func-
tions operate exclusively on read-only files. Of course, the virtual disk itself has some amount of
churn independent of our external gating—thus, the files are generally writable by the guest.



56 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

Virtual File System Call Implementation
open ensure the pathname exists, and O_RDONLY is set
read read from an arbitrary position in the file into a buffer

getattr get a standard set of attributes about a file (eg size)
readdir read the entries of a directory into a FUSE-specific list

readlink place the pathname pointed to by a link into a buffer
Table 4.1: The customized virtual file system calls required to implement /cloud. /cloud returns
EROFS on any attempt to open a file for writing.

4.2.1 Limitations of Normalization
The normalized format simplified the engineering necessary to create usable interfaces on top of
DS-VMI. However, such normalization requires either a “lowest common denominator” format,
or synthesis of values when a file system does not maintain metadata expected by our normalized
format. It is possible that file systems exist where both issues occur. For example, our normalized
format resembles a simplified UNIX-style inode. This is because our front end, FUSE, lives within a
POSIX environment which expects inode-like functionality from underlying file systems. NTFS does
not maintain all of the same metadata fields as ext4, thus some metadata is synthesized for NTFS.
Mode bits are a great example of the need for synthesis with a normalized format. Mode bits do
not exist within NTFS in the same format as in ext4. In addition, NTFS has a very verbose on-disk
format and large amounts of metadata are currently ignored.

Although very useful, normalization may not work in all cases. The extended attributes of a file
may end up mattering to a specialized application. However, none of the applications we studied so
far for file-level monitoring workloads use extended attributes or file-system-specific attributes. This
is because such infrastructure tools try to generalize across as many file systems and environment
types as is feasible. There is a tension between using the features of a file system, and remaining
generic. Currently, based on the limited set of applications studied in this dissertation, we believe
most tools strive to remain generic. This generality lets them maximize their utility across as many
environments as possible.

4.3 Metadata Versioning
To ensure correctness and a consistent view of guest file systems for legacy tools, we introduce
the notion of metadata versions. A metadata version is a consistent snapshot of a file’s metadata.
A file has at most two metadata versions: its last known consistent state and its current, in-flux
state. Legacy applications reading a file or its attributes are presented with its last known consistent
metadata state. Reads of file data go to the original virtual disk, as shown in Figure 4.2. File versions
only guarantee a consistent metadata view, but the data can change while it is being read from the



4.4. APPLICATIONS 57

FUSE Driver

Metadata Store

Metadata

Data

Legacy Application

Virtual Disk

Figure 4.2: /cloud implementation

virtual disk. In other words, readers using our FUSE driver must occasionally handle stale data.
For append-only style workloads, such as logging, this is rarely an issue because earlier data blocks
are never overwritten unless log rotation occurs.

Our metadata versioning is per-file rather than per-directory. Per-directory metadata versioning
implies transitive closure over the metadata versions of the files within the directory as well. Such
a need for recursive versioning quickly turns into whole-file-system versioning when workloads
involve scanning the root directory which, although conceivable, is not efficient with the format of
the metadata lookup tables for introspection purposes. Thus, we bounded our metadata versions to
be per-file rather than per-directory or per-file-system. This is also similar to the design decision
within the git [43] version control software to track versions of files rather than versions of
directories.

4.4 Applications
In the Google example from Section 3.2.1, we assumed operators could be notified nearly instan-
taneously about misconfigured permission bits. Of course, this can only occur if they are already
being monitored. If one discovered such a misconfiguration after the fact, adding it to a rule base
that checks future streamed updates would not detect instances that already contain the misconfig-
uration. Using familiar commands such as find, one can check permissions across the cloud: find
/cloud/*/*/lib -maxdepth 0 -not -perm 755.

In the log monitoring example from Section 3.2.2, we assumed the insights we want from log
files are already known. But, if we come up with a new metric and want to know its historical
value we can leverage /cloud. For example, perhaps unsuccessful ssh logins were never monitored
before. It would be useful to be aware of how many of these occurred in the past, as they may
represent malicious attempts. Using /cloud and grep we can quickly scan recent logs across all
instances: grep “Failed password” /cloud/*/*/var/log/auth.log.



58 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

Figure 4.3: Command-line interaction with /cloud. In this demonstration, we mount an ext4 file
system using the normal kernel module via the mount command, and /cloud via the gray-fs
command. We then use normal, legacy tools such as ls, find, and diff to show that /cloud has
the same coverage as the Linux kernel’s ext4 module for this file system. The file system being
introspected was an ext4 file system residing within a 20 GiB virtual disk of an Ubuntu 12.04
Server 64-bit guest.

4.5 Exploring a /cloud Mount
In this section we briefly explore a /cloud mounted file system and demonstrate legacy tool sup-
port. In addition, we show complete parity for the introspected file system with the Linux kernel’s
ext4 implementation. Figure 4.3 shows mounting the file system into two paths on our host ma-
chine. The first path, /mnt/linux-ext4 is mounted using the canonical Linux ext4 module. The
second mounted path, /mnt/gray-fs is mounted using our introspection implementation of ext4.

We first explored the mount points using the very simple directory listing command, ls. We see
that at least for the root folder, both ext4 implementations report the same list of files and folders.
Next, we ran find looking for any folder with the name wolf. We found exactly two folders in both
mounts with the name wolf. Finally, we ran the deep comparison tool diff recursively on both
mounts. diff did not find any differences between the two except for device files. /cloud currently
does not recreate device files in exactly the same way as the Linux kernel’s implementation of ext4.
However, for the rest of the 100,000+ normal files, not a single one differed.

This example exploration of a /cloud mount shows the power of a simple file-system-like
abstraction. Legacy tools work without any change, and this makes testing introspection code
much easier because it is possible to compare with pre-existing tooling. If there is more than



4.5. EXPLORING A /CLOUD MOUNT 59

one virtual machine, a tree of mount points is formed using the gray-fs command. These file
systems are mountable over the network as long as the originating virtual disk, or a snapshot of
the disk, is made available over the network. The in-memory metadata kept fresh by DS-VMI is
automatically network available. In our prototype implementation, network availability is provided
by the Redis [101] key-value store.




