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ABSTRACT

Collective classification has been widely studied to predict
class labels simultaneously for relational data, such as hy-
perlinked webpages, social networks, and data in a relational
database. The existing collective classification methods are
usually expensive due to the iterative inference in graphical
models and their learning procedures based on iterative opti-
mization. When the dataset is large, the cost of maintaining
large graphs or related instances in memory becomes a prob-
lem as well. Stacked graphical learning has been proposed for
collective classification with efficient inference. However, the
memory and time cost of standard stacked graphical learn-
ing is still expensive since it requires cross-validation-like
predictions to be constructed during training. In this paper,
we proposed a new scheme to integrate recently-developed
single-pass online learning with stacked learning, to save
training time and to handle large streaming datasets with
minimal memory overhead. Experimentally we showed that
online stacked graphical learning gives accurate and reliable
results on eleven sample problems from three domains, with
much less time and memory cost.

With competitive accuracy, high efficiency and low mem-
ory cost, online stacked graphical learning is very promising
in real world large-scale applications. Also, with the on-
line learning scheme, stacked graphical learning is able to
be applied to streaming data.

1. INTRODUCTION

There are many relational datasets, such as hyperlinked
webpages, scientific literature with dependencies among ci-
tations, and social networks. Collective classification has
been widely used for classification on relational datasets.
Collective classification predicts class labels simultaneously
for a group of related instances, rather than predicting a
class for each instance separately. Recently there have been
studies on relational models for collective inference, such as
relational dependency networks|l|, relational Markov net-
works 2], Markov logic networks [3], and stacked graphical
learning [4]. The existing collective classification methods
are usually expensive due to the iterative inference in graph-
ical models and their learning procedures based on iterative
optimization. Also for large datasets, the cost of maintain-
ing large graphs or related instances in memory becomes a
problem.

Stacked graphical learning was proposed in Kou & Co-
hen’s work [4]. Stacked graphical learning is a meta-learning
method, which augments a base learner by providing the

predicted labels of related instances. One advantage of stacked

graphical learning is that the inference is very efficient. As
previously shown, stacked graphical learning is 40 to 80
times faster than Gibbs sampling during inference. How-
ever, the time and memory cost during training for standard
stacked graphical learning is still expensive since it applies

a base learner to the training data in a cross-validation-like
way to make predictions.

In this paper, we propose a new collective classification
scheme able to handle large streaming data with linear train-
ing time and minimal memory overhead. The scheme is
based on a combination of stacked graphical learning with
a recently-developed single-pass online learning algorithm.
During the learning procedure of an online learner, the in-
termediate predictions for training data are generated to
learn the online model. Thus the predictions for training
data can be obtained naturally and there is no need to ap-
ply the base learner several times to the training data to
obtain the predictions.

We demonstrate the effectiveness of online stacked graph-
ical models on eleven sample problems from different do-
mains. In these experiments, we show that the proposed
scheme presents accurate and reliable predictions, but with
considerably faster training time and smaller memory re-
quirements. With high accuracy, fast training, and low
memory footprint, online stacked graphical learning is very
competitive for real world large-scale applications. Further-
more, because the proposed scheme does not need to keep
all previous examples in memory, it can effectively handle
data in streaming format.

2. ONLINE STACKED GRAPHICAL LEARN-

ING
In this section, we will briefly review single-pass online
learning and stacked graphical models. Then we propose
our idea of online stacked graphical learning.

2.1 Single-Pass Online Learning

Compared to batch methods, online learning methods are
often simpler to implement, faster, and require considerably
less memory. For such reasons, these techniques are natural
ones to consider for large-scale learning problems. Online
learning methods, such as Perceptron or Winnow, are also
naturally suited to stream processing; however, in practice
multiple passes over the same training data are required to
achieve accuracy comparable to state-of-the-art batch learn-
ers.

In order to address this problem, Carvalho & Cohen [9)
investigated the performance of different algorithms in the
single-pass online learning setting, i.e., online learning algo-
rithms restricted to a single training pass over the available
data. This setting is particularly relevant when the system
cannot afford several passes throughout the training set: for
instance, when dealing with massive amounts of data, or
when memory or processing resources are restricted, or when
data is not stored but presented in a stream.

Their work revealed that some single-pass online learning
algorithms can provide batch-level performance on a variety
of tasks. More specifically, it was observed that in classifi-



cation tasks for datasets with sparse features (very common
in Natural Language Processing tasks), a modification of
the Balanced Winnow algorithm (MBW or Modified Bal-
anced Winnow) [9] presented excellent performance - even
comparable to batch learners. They also observed that a
variation on the Perceptron algorithm called Voted Percep-
tron [23] presented fairly good results on classification tasks
when the feature is not sparse.

Voting (a.k.a. averaging) an online classifier is a technique
that, instead of using the best hypothesis learned so far,
uses a weighted average of all hypotheses learned during a
training procedure. The averaging procedure is expected
to produce more stable models, which leads to less overfit-
ting |24]. Averaging techniques have been successfully used
with the Perceptron algorithm [23] as well as with several
other online learning algorithms, including MBW [9].

2.2 MBW

MBW is a modification of the Balanced Winnow algo-
rithm, which in turn is an extension of the Winnow algo-
rithm [25] |26]. It is based on multiplicative updates and
it assumes the incoming example x; is a vector of positive
weights, i.e., z;; > 0, V¢t and Vj, where x¢ ; denotes the jth
feature of x;. This assumption is usually satisfied in NLP
tasks, where the x; ; values are typically the frequency of
a term, presence of a feature, TFIDF value of a term, etc.
The learning algorithm is detailed in Table ??.

In general terms, for each new example x; presented, the
current model will make a prediction 3, € {—1,1} and com-
pare it to the true class y; € {—1,1}. The prediction will
be based on the score function f, on the example z; and on
the current hypothesis. MBW is mistake-driven, i.e., only in
the case of a prediction mistake the hypothesis (or model)
will be updated.

Like Balanced Winnow, MBW has a promotion parameter
a > 1, a demotion parameter (3, where 0 < f < 1 and a
threshold parameter 6, > 0. It also has a margin parameter
M, where M > 0.

After the algorithm is initialized, an augmentation and a
normalization preprocessing step is applied to each incoming
example ;. When learning, the algorithm receives a new
example x; with m features, and it initially augments the
example with an additional feature(the (m + 1) feature),
whose value is permanently set to 1. This additional feature
is typically known as “bias” feature. After augmentation,
the algorithm then normalizes the sum of the weights of the
augmented example to 1, therefore restricting all feature
weights to 0 < z¢,; < 1.

In MBW, the hypothesis is a combination of two parts: a
positive model u; and a negative model v;. After normal-
ization, the score function is calculated as score = (¢, u;) —
(x¢,v:) —Oin, where (z;, w;) denote the intermediate product
of vectors z; and w;.

If the prediction is mistaken, i.e., (score - y:) < M, then
the models are updated. The update rule will be based on
multiplicative operations on the two models, taking into con-
sideration the promotion and demotion parameters (a and
B3), as well as the particular feature weight of the incoming
example.

Following the parameters suggested by by Carvalho & Co-
hen [9], our implementation sets the promotion parameter
a = 1.5, the demotion parameter 3 = 0.5, the threshold
0, = 1.0, the “margin” M was set to 1.0, and the initial
weights were 0] = 2.0 and 6; = 1.0.

In testing mode, the augmentation step in MBW is the
same, but there is a small modification in the normaliza-
tion. Before the normalization of the incoming instance, the
algorithm checks each feature in the instance to see if it

Table 1: Modified Balanced Winnow (MBW).

1. Initialize ¢ = 0, and models ug and vg.
2. Fort=1,2,..,T:

(a) Receive new example z¢.

(b) Augmentation: add “bias” feature to z;.
(c) Normalize z¢ to 1.

(d) Calculate score = (z¢,u;) — (xt,v;) — Oip-
e) Receive true class y;.

f) If prediction was mistaken, i.e., (score-y¢) < M:
i. Update models. For all feature j s.t. xz > 0 :

I i (L4+oej), if ye>0
I Ui B (L—we5), if ye <O

v = v B (1 =), if ye>0
LI T vig o (L), if y: <0

Given a training set D = {(z1,y1), ..., (Tn,yn)} and a base
learner A, construct cross-validated predictions as follows:

1. Split D into J equal-sized disjoint subsets D;...D.

2. For j = 1...J, let f; = A(D — Dj). That is, train
a classifier f;, based all the data from D except the
subset D;.

3. For z € D;,§ = f;(x). That is, for data in D;, apply
the classifier f; to obtain its prediction.

Figure 2: A cross-validation-like technique to obtain
predictions for training examples

is already present in the current models (u; and v;). The
features not present in the current model are then removed
from the incoming instance before the normalization takes
place.

2.3 Stacked Graphical Learning

The goal of collective classification tasks is to “collec-
tively” classify some set of instances. In our notation, a
dataset is D = {(x1,¥1), ..., (n,yn)}. An example is a pair
of (wi,y;). x denote a set of instances and y is the corre-
sponding labels for x. For example, in a dataset of linked
webpages, x; can be a bag-of-word representation of a web-
page and y; is the category of x;.

Stacked graphical learning (SGL) captures the dependency
by expanding the feature of an instance x; with “predicted”
labels for the related instances. In SGL, a relational tem-
plate C finds the related instances. A relational template is
a procedure that finds all the examples related to a given
example and returns their indices [4]. For example, in a
collection of linked webpages, given a webpage z;, that in
the dataset webpages x;,, ..., z;, are related to z; (i.e., ei-
ther link-to or link-from z;), and predictions y for the set of
webpages x, C(z;,y) returns the predictions of the related
webpages, i.e., Jiy, ..., Yiy -

Since the relation between z; and z; might be one-to-
many, for example, webpages link to different numbers of
webpages, aggregation functions are used to combine pre-
dictions on a set of related instances into a single feature [4].

In standard SGL, a cross-validation-like technique sug-
gested by a meta-learning scheme, stacking [6], is applied
to obtain the predictions for training data. The procedure
to obtain the predictions for training examples is shown in
Figure ??7. Figure 7?7 shows the learning and inference pro-



e Parameters: a relational template C.

e Learning algorithm: Given a training set D = {(z1,y1), ..., (Zn,Yn)} and a base learner A:

— Learn the local model, i.e., when k£ = 0:
Let f° = A(D"). Please note that D = D.

— Learn the stacked models, for k = 1...K:

1. Construct predictions gjf ~! for xi.“l € D*! in a cross-validation-like way, as shown in Figure ?7.

2. Construct an extended dataset D* = {(z%¥,v1), ..., (#%,yn)} by converting each instance z; to =¥ as follows:

k ok—1
oy = (23, Oxi, 3"
T = (xivyil 7'“7yiL

3. Let f* = A(D").
o Inference algorithm: given a set of testing instances x :
L 3% = f(x).
For k =1...K,
2. Carry out Step 2 above to produce x*.
3. y" =),

Return y*.

)), where C(z;, ") will return the predictions for examples related to z; such that
i

Figure 1:

Standard Stacked Graphical Learning and Inference. k: the level of stacking. z: the instance

expanded from z;, §¥: the prediction of z;, and f*: the learned classifier, at level k*" stacking.

cedure in standard stacked graphical learning. In our no-
tation, k denotes the level of stacking, =¥ denotes the in-
stance expanded from z; at stacking of level k, §¥ denotes
the prediction of z; at stacking of level k, and f* denotes
the classifier learned at level k' stacking.

The cross-validation parameter J is set to 5 by default.

Kou and Cohen’s work has shown that SGL converges quickly [4]

and usually K can be set to 1, i.e., one iteration of stacking.

Kou & Cohen’s work [4] has shown that stacked graphi-
cal learning is very efficient during inference. However, the
standard training scheme can be expensive since it applies
the base learner to the training set several times, in a cross-
validation-like way. In this paper, we proposed to integrate
single-pass online learning with stacked graphical learning to
construct online stacked graphical models to save training
time and memory.

2.4 Online Stacked Graphical Learning

2.4.1 The algorithm

During the learning procedure of an online learner, the
intermediate predictions for training data are generated to
learn the online model. Thus the predictions for training
data can be obtained naturally and there is no need to
apply the base learner many times to the training data
in a cross-validation-like procedure to obtain the predic-
tions. Therefore combining the online learning scheme with
stacked graphical models can save training time.

One practical difficulty is that, while online learning meth-
ods produce satisfactory predictions after learning on the
whole training set, the intermediate predictions for the train-
ing data in the starting stage can be quite inaccurate. Thus,
to obtain fair “predictions” for training examples, we define
a burn-in data size b. That is, after training on b exam-
ples, we start recording intermediate predictions from the
online learner and expanding features with the predictions.
The learning procedure of online stacked learning is shown
in Figure ??. Figure ?? shows that in the learning pro-
cedure of online stacked graphical models, f° is trained on
the whole training dataset. After training on b examples, we
start recording the intermediate predictions 42, ..., 4%, which

are generated naturally during the learning of f°. For the
first level of stacking, i.e., kK = 1, we apply the relational
template to expand features (i.e., z; = (xi,y?l,,..,g)?L)),
and train f' with expanded examples (xf,ys)..., (Zn, Yn)-
Similarly, for the k" level of stacking, intermediate predic-
tions g}',zb_l, LRt (which are generated naturally during
the learning of fkfl) are recorded to expand features and
the k" stacked model is trained with expanded instances
"Eﬁb, veey (L'fl

One thing we would like to point out is that, in stacked
graphical learning for collective classification, given an in-
stance x;, we need to apply the relational template to re-
trieve the predicted labels for the related instances to ex-
tend features. Assume z; and its neighbors are contained in
a subset, we provide the instances in a subset to the online
learner as a group and extend the features after the predic-
tions for instances in the whole subset are made. Therefore
in general, we provide the instances in groups to the base
learner and the burn-in data size b will be chosen to include
a few subsets of instances. In practise, the dataset might
not be able to be split into disjoint subsets. In Section 3
we will demonstrate how to split the dataset into subsets
empirically.

2.4.2 Efficiency Analysis

Theoretically, when there are infinitely many training ex-
amples, i.e., kb << n, applying the online stacked graphical
learning shown in Figure 7?7 only requires single-pass train-
ing over the training set. We do not need to apply the
cross-validation-like trick to get the predictions for training
examples. That is, the complexity of the online scheme is
in the order of O(n). Therefore, online stacked graphical
learning can save training time. In Section 7?7 we will show
the speed-up experimentally as well.

In online stacked graphical learning, there are reliable pre-
dictions at level k after (k+ 1)b examples have streamed by,
and the learner needs to maintain only k classifiers and does
not need to store examples. Therefore, the algorithm can
save memory. This becomes extremely important when the
size of training data is huge. Also this feature allows online
stacked graphical learning to be applied to streaming data.
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Figure 3: Online Stacked Graphical Learning

Given a training set D = {(z1,¥1), ., (Tn,yn)} and an on-
line learner A, construct predictions as follows:

1. Give the training data,(z1,y1), ..., (Zn,Yn), to the on-
line learner, train a classifier fi, and record the in-
termediate predictions from online learning on x; for
j=n/2,..,n.

2. While z;,j = n/2,...,n, streaming by, train another
online learner f with (2,/2,Yn/2), s (Tn, yYn), g0 back
to x1,...,Tpn/2, keep learning f2 and record the inter-
mediate predictions for z;,7 =1,...,n/2 — 1.

Figure 4: The procedure to obtain predictions for
training examples via an online base learner, with
limited data

2.4.3  An Implementation With Limited Data

Theoretically, we assume kb << n and online stacked
graphical learning only requires single-pass training over the
training set. In practice, the assumption kb << n may not
hold. An implementation with limited training data is to let
b = n/2 and apply a one-and-half-pass procedure shown in
Figure 77, to obtain the predictions for training examples.
Using the procedure shown in Figure 7?7 to obtain the pre-
dictions, we end up with a learning and inference method
similar to the procedure of standard stacked graphical learn-
ing, except that the predictions are no longer obtained in a
cross-validation-like way.

In the practical implementation, given n training exam-
ples, training a stacked graphical model with level K has
the complexity of O((K + 0.5)N).

3. EXPERIMENTAL RESULTS

We evaluated stacked graphical learning on tasks from

three domains - collective classification over relational datasets,

sequential partitioning 20|, and named entity extraction.

3.1 Relational Datasets

The relational datasets we consider here include text re-

gion detection in Subcellular Location Image Finder (SLIF) (7]

8] and document classification.

SLIF is a system which extracts information from both
figures and the associated captions in biological journal ar-
ticles. The text region detection dataset contains candidate
regions found in 1396 panels from 207 figures. The dataset
contains 4129 connections among the examples. The prob-

lem studied in this paper is to classify if the candidate re-
gions are text regions or not. More details about the dataset
and the dependencies defined in the data can be found in
Kou & Cohen’s work [4].

We use MBW as the base online learner for SLIF. The
features are the same as in Kou & Cohen’s work [4]. In the
SLIF text region detection task, the candidate regions can
be naturally grouped into disjoint subgraphs, i.e., candidate
regions from the same figure construct a subgraph. There-
fore as long as the prediction for candidate regions from the
same figure is obtained, we can apply the relational template
to expand features. The relational template is the same as
Kou & Cohen’s paper [4].

The document classification includes the webpage classifi-
cation on the WebKB dataset |[10] and paper classification on
the Cora dataset and the CiteSeer dataset |[11]. The WebKB
data contains aproximately 3800 webpages labelled from 6
categories and 8000 hyperlinks. The Cora data [12] con-
tains 2708 papers labelled from seven categories and 5429
citations. The Citeseer data |13| contains 3312 papers la-
belled from six categories and 4732 citations. Our current
implementation of MBW only supports binary labels, so we
considered the task corresponding to the most common la-
bel. The relational template for document classification is
the same as Kou & Cohen’s work [4].

We use MBW as the base online learner for document
classification. The feature sets and relational templates are
the same as Kou & Cohen’s paper [4]. The WebKB dataset
contains webpages from four computer science departments.
Thus we split them into groups according to departments.
We group the papers in Cora dataset by the year of publish-
ing. There is no such year-of-publishing information avail-
able for the Citeseer dataset, thus we only applied the im-
plementation shown in Figure ?? to Citeseer data.

3.2 Sequential Partitioning Datasets

Sequential partitioning tasks are sequential classification
tasks characterized by long runs of identical labels: examples
of these tasks include document analysis, video segmenta-
tion, and gene finding [20]. In this paper we consider three
datasets.

The signature dataset is originated from the problem of
recognizing the “signature” section of an email message.
Each line of an email message [19] is labels as either pos-
itive or negative. A positive label indicates that a particular
line in the message was part of a signature section, and neg-
ative otherwise. This dataset contains 33,013 labeled lines



Table 2: Performance of online stacked graphical learning for relational datasets: accuracy for “Document classi-
fication” and F1l-accuracy for “SLIF” are reported. We evaluated two local models: MaxEnt and MBW. We also
compared to a competitive relational model - relational dependency networks. The standard stacked model used two-
fold-cross-validation predictions. The online stacked graphical model is based on MBW. We used 1 level of stacking,
ie.,, K=1.

SLIF Document classification
WebKB Cora CiteSeer

Local model
MaxEnt 81.5 58.3 63.9 55.3
MBW 82.3 58.6 63.7 56.1
Competitive relational model
Relational Dependency Networks 86.7 74.2 72.9 58.7
Stacked model
Standard Stacked model (with MaxEnt, k=1) || 90.1 73.2 73.8 59.8
Standard Stacked model (with MBW, k=1) 92.1 74.2 73.5 60.3
Online Stacked model (k=1) 92.3 74.1 71.3 -

Table 3: Accuracy comparison of online stacked graphical learning for sequential partitioning. We evaluated two local
models: MaxEnt and MBW. We compared to a competitive graphical model - conditional random fields. The standard
stacked model used two-fold-cross-validation predictions. The online stacked graphical model is based on MBW. We
used 1 level of stacking.

Sequential Partitioning

FAQ signature video
Local model
MaxEnt 67.3 96.3 80.9
MBW 64.9 96.5 78.4
Competitive relational model
CRF's 85.6 98.1 83.0
Stacked model
Standard Stacked model (with MaxEnt, k=1) | 87.1 98.1 85.8
Standard Stacked model (with MBW, k=1) 84.1 98.3 85.5
Online Stacked model (k=1) 86.3 98.3 85.7

Table 4: Performance of online stacked graphical learning for Named Entity Extraction, F1 accuracy is reported.
“Relational template 1” returns predictions of adjacent tokens only, “relational template 2” returns predictions of
adjacent and repeated tokens.

Named Entity Extraction

uT Yapex  Genia CSpace
Local model
MaxEnt 69.1 62.1 66.5 74.2
MBW 67.9 62.3 66.9 75.1
Competitive relational model
CRF's 73.1 65.7 72.0 80.3
Stacked model
With relational template 1
Standard Stacked model (with MaxEnt, k=1) | 70.1 63.7 70.8 77.9
Standard Stacked model (with MBW, k=1) 72.1 63.9 71.3 79.9
Online Stacked model (with MBW, k=1) 72.6 64.6 72.3 80.0
With relational template 2
Standard Stacked model (with MaxEnt, k=1) | 77.3 68.2 78.5 82.1
Standard Stacked model (with MBW, k=1) 76.6 68.9 78.9 83.3
Online Stacked model (with MBW, k=1) 76.6 69.1 78.9 83.4




from 617 email messages. About 10% of the lines are labeled
“positive”. We used the “basic” feature set from Carvalho
& Cohen |[19].

One set of tasks involved classifying lines from FAQ docu-
ments with labels like “header”, “question”, “answer”, and
“trailer”. We used the features adopted by McCallum et al
[21] and the ai-general task adopted by Dietterich et al [22].
The data consists of 7 long sequences, each sequence corre-
sponding to a single FAQ document; the task contains 10909
labeled lines. Our current implementation only supports bi-
nary labels, so we considered the label “answer” (A) for the
FAQ dataset.

Another task was video segmentation task, in which the
goal is to take a sequence of video “shots” (a sequence of ad-
jacent frames taken from one camera) and classify them into
categories such as “anchor”, “news” and “weather”. This
dataset contains 12 sequences, each corresponding to a sin-
gle video clip. There are a total of 406 shots, and about 700
features, which are produced by applying LDA to a 5x5, 125-
bin RGB color histogram of the central frame of the shot.
We constructed a video partitioning task, corresponding to
the most common label [20].

We use a Modified Balance Winnow learner [9] as the
base online learner in stacked graphical learning for sequen-
tial partitioning. In the sequential partitioning task, the
instance is naturally grouped into sequences. Therefore as
long as the prediction for a sequence is obtained, we can
apply the relational template to expand features. The re-
lational templates returns the predictions of ten adjacent
examples (five preceding examples and five following exam-
ples).

3.3 Named Entity Extraction Datasets

We applied stacked graphical learning to named entity ex-
traction from Medline abstracts and emails. We used three
datasets to evaluate our method for protein name extrac-
tions. The University of Texas, Austin dataset contains 748
labeled abstracts [14]; the GENIA dataset contains 2000 la-
beled abstracts [15]; and the YAPEX dataset contains 200
labeled abstracts [16]. We also study person name extraction
from the email message corpus. The CSpace corpus we used
in this paper contains 216 email messages collected from a
management course at Carnegie Mellon University [17].

The feature sets and relational templates for named en-
tity extraction are the same as Kou & Cohen’s work [4].
The relational template will retrieve the predictions for the
adjacent words (with window size 5) and for the same word
appearing in one abstract, apply the COUNT aggregator,
and return the number of words in each category, given one
word. That is, let w; be the word in a document. For words
wj = w; in the same document, we count the number of
times w; appearing with label y and use it as one of the
stacked features for w;.

In addition to this relational template, we applied another
relational template which just retrieves the predictions for
the adjacent words (with window size 5).

3.4 Accuracy of Stacked Graphical Learning
with efficient training

To evaluate the effectiveness of online stacked graphical
learning on the collective classification task, in Table 7?7
we compare local models, stacked models, and a state-of-art
competitive model. We evaluated two local models, MaxEnt
and MBW. We considered a standard stacked model based
on MaxEnt (with two-fold-cross-validation predictions), a
standard stacked model based on MBW (with two-fold-cross-
validation predictions), and an online stacked graphical model
based on MBW. We also compared the stacked graphical

model to a state-of-art relational graphical model, relational
dependency networks [1).

Relational dependency network (RDN) uses the same fea-
tures as the stacked model, but learns via a pseudo-likelihood
method, and does inference with Gibbs sampling. Jensen’s
package, PROXIMITYEL provides an implementation of RDNs,
which takes Relational Probability Trees (RPT) for the con-
ditional probability distribution (CPD) component [1]. We
implemented RDN with MaxEnt for the CPD component,
using the same model graph as SGL and the same aggrega-
tions as the relational template. With our implementation,
it is easier to compare the running time.

Table ?? shows that on all of the four relational datasets,
stacked graphical learning improves the performance of the
base learner significantly. The two local models achieved
performance of the same level, so did the stacked graphical
models based on them. Our comparison to relational de-
pendency networks shows that stacked models can achieve
competitive results to the state-of-art model. However, the
online stacked graphical model requires much less training
time, which will be discussed later.

One thing we want to point out is that, due to the lack
of information on the year of publication, we can not im-
plement online stacked model to Citeseer data. And the
performance of online stacked model for Cora data is not
as good as the standard stacked graphical models. The rea-
son for the performance drop is that providing papers in
the order of years of publication to the online learner can
only provide the predictions of papers that were published
before the current timestamp and were cited by the current
paper, i.e., the predictions available sofar can only provide
information on the papers cited by the current paper, while
in reality, there is also information contained in the paper
that would be published and would cite the current paper.

Table 77 shows the performance of online stacked mod-
els on sequence partitioning. The state-of-art models we
consider here are conditional random fields (CRFs). CRFs
are sequential models that can capture the sequential de-
pendency. On all of the three datasets, stacked graphical
learning improves the performance of the base learner sig-
nificantly. The MaxEnt model did better than MBW on
two of three tasks, yet the stacked graphical models based
on them achieved performance of the same level.

Table 77 reported the F'l-accuracy of online stacked graph-
ical learning for Named Entity Extraction. In Section 3.3 we
described two relational templates for named entity extrac-
tion. One relational template captures sequential depen-
dency only(denoted as relational template 1 in Table ?77),
the other one can also capture the dependency among the
adjacent and repeated tokens(denoted as relational template
2 in Table ?7).

Table 7?7 shows that on all of the four named entity
extraction tasks, stacked graphical learning improves the
performance of the base learner. With relational template
1, the stacked graphical models can capture the sequen-
tial dependency and achieved comparable results to CRFs.
With relational template 2, the stacked graphical models
achieved better performance than CRFs. Moreover, the
online stacked graphical model requires much less training
time.

3.5 Efficiency of the Training for Stacked Graph-
ical Learning

One big success of online stacked graphical learning is that

the learning is an online procedure and thus very efficient.

We compared the training time of online stacked graphical

models (with one iteration) to that of competitive relational

"http://kdl.cs.umass.edu/software/




Table 5: Comparison on training time.

Standard SGM | Competitive relational
vs Online SGM | model vs Online SGM

SLIF 38.1 7.9

WebKB 50.0 10.1

Cora 49.7 9.9

Signature 67.4 13.6

FAQ 69.0 14.0

Video 45.0 9.7

UT 68.7 20.3

Yapex 60.6 17.1

Genia 69.4 224

CSpace 52.0 15.3

Average speed-up | 57.0 14.0

models and the baseline standard stacked graphical model.
The baseline algorithm we compare to is the best algorithm
in Kou & Cohen’s work [4], the standard stacked graphi-
cal model based on MaxEnt, with 5-fold-cross-validation to
obtain predictions during training. We compare the base-
line algorithm to the online stacked graphical learning with
implementation shown in Figure ?7.

Table 7?7 shows the speedup, i.e., in the table “38.1”
means the training in standard stacked graphical learning is
38.1 times slower than that of online stacked graphical learn-
ing. Table ?? shows that compared to online stacked graph-
ical learning, standard stacked graphical learning based on
MaxEnt is approximately 57 times slower in training.

We also compared online stacked graphical learning with
the competitive relational models. Table 7?7 shows that
online stacked graphical learning is approximately 14 times
faster in training. Moreover, in Kou & Cohen’s work [4],
it has been shown that during inference stacked graphical
learning is 40 to 80 times faster than Gibbs sampling in
relational dependency networksﬂ

Therefore, online stacked graphical models can achieve
high accuracy with efficient training and testing.

4. CONCLUSIONS

Collective classification has been widely studied for clas-
sification on relational datasets, such as hyperlinked web-
pages, social networks, and data in a relational database.
The existing relational graphical models are usually expen-
sive due to the iterative inference and their learning proce-
dures based on iterative optimization. Also for large datasets,
the cost of maintaining large graphs or related instances
in memory becomes a problem. Stacked graphical learning
was proposed by Kou & Cohen and the inference of stacked
graphical learning was shown to be very efficient - approxi-
mately 40 to 80 times faster than Gibbs sampling. However,
the time and memory cost of stacked graphical learning is
still expensive.

In this paper, we presented a new online training scheme
for stacked graphical learning able to handle large streaming
data with linear training time and minimal memory over-
head. Integrating single-pass online learning algorithm with
stacked graphical learning can save the time and memory
cost during training. Experimentally we demonstrated that
the approach gives accurate results on eleven sample prob-
lems from three domains, while with faster training time and

2We also compared the training time of online stacking to
that of Jensen’s software, PROXIMITY. Due to the diffi-
culty of isolating the pure training time of PROXIMITY,
we only obtained a rough ratio of over 100, comparing the
training time (including data loading) of PROXIMITY to
that of our online stacked graphical learning.

smaller memory cost. With high accuracy and efficiency and
low memory cost, stacked graphical learning is very compet-
itive in real world large-scale applications where an efficient
algorithm is extremely important. Furthermore, with the
online learning scheme, stacked graphical learning is also
able to be applied to streaming data.

Future work will compare stacked models to more graphi-
cal models such as relational Markov networks, where loopy
belief propagation inference is involved, and further explore
the application of online stacked graphical models to stream-
ing data.
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