
Notes on Stacked Graphical Learning for
Efficient Inference in Markov Random Fields

Zhenzhen Kou William W. Cohen
January 2007

CMU-ML-07-101

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In collective classification, classes are predicted simultaneously for a group of related instances,
rather than predicting a class for each instance separately. Collective classification has been widely
used for classification on relational datasets. However, the inference procedure used in collective
classification usually requires many iterations and thus is expensive. We propose stacked graphical
learning, a meta-learning scheme in which a base learner is augmented by expanding one instance’s
features with predictions on other related instances. Stacked graphical learning is efficient, espe-
cially during inference, capable of capturing dependencies easily, and can be implemented with
any kind of base learner. In experiments on eight datasets, stacked graphical learning is 40 to
80 times faster than Gibbs sampling during inference. We also give theoretical analysis to better
understand the algorithm.

Keywords: machine learning, stacked graphical learning, collective classification

1 Introduction
Traditional machine learning methods assume that instances are independent, while in reality there
are many relational datasets, such as hyperlinked webpages, scientific literature with dependencies
among citations, and social networks. The dependencies among instances in relational data can be
complex.

Collective classification has been widely used for classification on relational datasets. In col-
lective classification, classes are predicted simultaneously for a group of related instances, rather
than predicting a class for each instance separately. Recently there have been studies on relational
models for collective inference, such as relational dependency networks [1], relational Markov
networks [2], and Markov logic networks[3]. Collective classification can be formulated as an in-
ference problem over graphical models. Consider collective classification in the context of Markov
random fields (MRFs). Inference in MRFs is intractible, in the general case. One common scheme
for approximate inference is Gibbs sampling[4]. Gibbs sampling for an MRF with parameters
learned to maximize pseudo-likelihood is closely related to conditional dependency networks [4].
However, Gibbs sampling usually takes many iterations to converge and thus graphical models are
usually expensive, especially when exact inference is infeasible.

We propose a meta-learning method, stacked graphical learning, for learning and inference
on relational data. In stacked graphical learning, a base learner is augmented by providing the
predicted labels of related instances. First a base learner is applied to the training data in a cross-
validation-like way to make predictions. Then we expand the features by adding the predictions of
related examples into the feature vector. Finally the base learner is applied to the expanded feature
set to obtain a stacked model.

One advantage of stacked graphical learning is that the inference is very efficient. Experimen-
tal results show that compared to Gibbs sampling, stacked graphical learning can achieve similar
performance in one or two iterations, while Gibbs sampling usually converges only after 100 iter-
ations.

In stacked graphical learning, the dependencies among data can be captured easily using a
relational template which finds the related instances given one example. Stacked graphical learning
can be implemented with any base learning algorithm, i.e., the base learner does not have to be a
graphical model. Stacked graphical learning is also easy to implement.

2 Algorithm

2.1 Stacked Graphical Learning
We consider here collective classification tasks, in which the goal is to “collectively” classify some
set of instances. In our notation, a dataset is D = {(x,y)}. An instance is a pair of (x,y) where
x is itself a high-dimensional feature vector and y is a label from a small set Y . In this paper we
use upper case letters such as Y for random variables and their bold-faced equivalents (e.g., Y) for
vectors of random variables. We use lower case letters for concrete assignments to these variables.

We consider a model that captures the dependency by expanding the feature of an instance xi

1

• Parameters: a relational template C and a cross-validation parameter J.

• Learning algorithm: Given a training set D = {(x,y)} and a base learner A:

– Learn the local model, i.e., when k = 0:
Let f 0 = A(D0). Please note that D0 = D,x0 = x,y0 = y.

– Learn the stacked models, for k = 1...K:

1. Construct cross-validated predictions ŷk−1 for x ∈ Dk−1 via calling the subroutine
in Figure 2.

2. Construct an extended dataset Dk = (xk,y) by converting each instance xi to xk
i

as follows: xk
i = (xi, C(xi, ŷ

k−1)), where C(xi, ŷ
k−1) will return the predictions

for examples related to xi such that xk
i = (xi, ŷ

k−1
i1

, ..., ŷk−1
iL

).
3. Let fk = A(Dk).

• Inference algorithm: given x :

1. ŷ0 = f 0(x).

For k = 1...K,

2. Carry out Step 2 above to produce xk.

3. yk = fk(xk).

Return yK .

Figure 1: Stacked Graphical Learning and Inference

2

with “predicted” labels for the related instances. We use predicted labels instead of true labels
since during inference there is no way to get true labels. We use a relational template C to pick
up the related instances. A relational template is a procedure that finds all the instances related to
a given example and returns their indices. For instance xi, C(xi) retrieves the indices i1, ..., iL of
instances xi1 , ..., xiL that are related to xi. Given predictions ŷ for a set of instances x, C(xi, ŷ)
returns the predictions on the related instances, i.e., ŷi1 , ..., ŷiL . Since the relation between xi and
xj might be one-to-many, for example, webpages link to different numbers of webpages, we allow
aggregation functions to combine predictions on a set of related instances into a single feature.

One practical difficulty to obtain predictions for training examples is that, while learning meth-
ods produce reasonably well-calibrated probability estimates on unseen test data, their probability
estimates on training data are biased. Thus, to obtain the “predictions” for training examples, we
apply a cross-validation-like technique suggested by a meta-learning scheme, stacking [5]. The
procedure to obtain the predictions for training examples is shown in Figure 2.

Given a training set D = {(x,y)} and a base learner A, construct cross-validated predictions ŷ for
x ∈ D as follows:

1. Split D into J equal-sized disjoint subsets D1...DJ .

2. For j = 1...J , let fj = A(D − Dj). That is, train a classifier fj , based all the data from D
except the subset Dj .

3. For x ∈ Dj, ŷ = fj(x). That is, for data in Dj , apply the classifier fj to obtain its prediction.

Figure 2: A cross-validation-like technique to obtain predictions for training examples

Finally we end up with the inference and learning methods of Figure 1 for collective classifica-
tion. The relational template can be extended to include aggregation functions based on ŷ and xi.
We will demonstrate the use of this algorithm and aggregations in Section 3.1.

3 Experimental Results

3.1 Datasets
We evaluated stacked graphical learning on several classification problems. The first problem we
studied is the task of text region detection in the system called the Subcellular Location Image
Finder (SLIF) [8, 9]. SLIF is a system which extracts information from both figures and the
associated captions in biological journal articles. Usually there are multiple panels (independently
meaningful sub-figures) within one figure. Finding the text regions, i.e., the regions in panels
containing their labels, is one important task in SLIF. The problem studied in this paper is to
classify if the candidate regions found via image processing are text regions or not. The text region
detection dataset contains candidate regions found in 1070 panels from 207 figures.

There are dependencies among the locations of candidate regions. Intuitively, if after image
processing a candidate text region was found at the upper-left corner of panel B and two candidate

3

regions were found in panel A, one located at the upper-left corner, another in the middle, it is
more likely the candidate region at the upper-left of panel A is the real text region. We define
the neighbor of a candidate text region to be the region located in the “same” position in adjacent
panels in the same figure and consider the neighbors on four directions (left, right, up, and down).
We also consider the dependency among candidate regions within the same panel, called competi-
tors. Figure 3 is an example figure in SLIF which demonstrates candidate regions, neighbors and
competitors.

Figure 3: An example figure in SLIF

Let xi be a candidate region, x be a vector of candidate regions from one figure. The relational
template returns the predictions on xi’s neighbors and competitors. If a neighbor does not exist, 0
is assigned to the corresponding feature. Since one candidate region can have several competitors
from the same panel, we apply an EXISTS aggregator to the competitors, i.e., as long as there is
one competitor which is predicted to be a text region, we assign 1 to the corresponding feature
added during stacking. For instance, considering Candidate 1 in Figure 3, if Candidate 2(right
neighbor) has been predicted as 1, Candidate 3(down neighbor) as 1, and the competitor as 0,
C(xi, ŷ) returns (1, 0, 0, 1, 0).

4

We use a maximum entropy learner as the base learner. The features for the base learner are
obtained via image processing and contain binary features indicating whether Optical Character
Recognition(OCR) extracts a character or not from the candidate region and its neighbors [8].

The second problem is the document classification problem. We consider the webpage classi-
fication on the WebKB dataset[10], which contains webpages from four computer science depart-
ments, and paper classification on the Cora dataset and the CiteSeer dataset[11]. The WebKB data
contains aproximately 3800 webpages labelled from 6 categories and 8000 hyperlinks. The rela-
tional template applies the COUNT aggregator and returns the number of outgoing and incoming
links in each category, given one webpage. The Cora data[12] contains 2708 papers labelled from
seven categories and 5429 citations. If paper A cites paper B, we consider there is a link from paper
A to paper B. The relational template applies the COUNT aggregator and returns the number of
outgoing and incoming links in each category to one paper. The Citeseer data[13] contains 3312
papers labelled from six categories and 4732 citations. The relational template is the same as the
template for the Cora data.

We use a maximum entropy learner as the base learner in stacked graphical learning for docu-
ment classification and a bag-of-word feature set.

The third problem we study is named entity extraction from Medline abstracts and emails.
We used three datasets to evaluate our method for protein name extractions. The University of
Texas, Austin dataset contains 748 labeled abstracts[14]; the GENIA dataset contains 2000 labeled
abstracts[15]; and the YAPEX dataset contains 200 labeled abstracts[16]. We also study person
name extraction from the email message corpus. The CSpace corpus we used in this paper contains
216 email messages collected from a management course at Carnegie Mellon University[17].

We use conditional random fields [18] as the base learner and the feature set described in our
previous paper [19] for protein name extraction and the feature set described in [20] for person
name extraction. The relational template will retrieve the predictions for the nearby words (with
window size 3) and for the same word appearing in one abstract, apply the COUNT aggregator,
and return the number of words in each category, given one word. That is, let xi be the word in a
document. For words xj = xi in the same document, we count the number of times xj appearing
with label y and use it as one of the stacked features for xi.

3.2 Accuracy of Stacked Graphical Learning
To evaluate the effectiveness of stacked graphical learning, we compare five models. The first
model is a competitive graphical model. For the SLIF and document classification problems, we
compare to relational dependency network (RDN) models [1]. The RDN model uses the same
features as the stacked model, but learns via a pseudo-likelihood method, and does inference with
Gibbs sampling, which usually converge after 100 iterations. For name extraction, we compare to a
stacked sequential CRF model [7]. The second model is a local model, i.e., the model trained with
the base learner. For the SLIF and document classification problem, the local model is a MaxEnt
model. For the name extraction, the local model is a CRF model. The third and fourth models are
stacked graphical models. The fifth model is a probabilistic upper-bound (noted as ceiling model
in Table 1) for the stacked graphical model, i.e., we use the stacked graphical model but allow true
labels of related instances to be added during the feature extension at both training and testing time.

5

Table 1: Evaluation on five models. The accuracy for “SLIF” and “Document classification” and F1-
measure for named entity extraction are reported. We compared stacked graphical model to a local model,
another relational model, and its probabilistic ceiling. The local models for “SLIF” and “Document classifi-
cation” are MaxEnt models, and the local models for “named entity extraction” are CRFs. The competitive
relational models for “SLIF” and “Document classification” are RDN models, and the competitive relational
models for “named entity extraction” are stacked-CRFs.

SLIF Document classification Named Entity Extraction
WebKB Cora CiteSeer UT Yapex Genia CSpace

Local model
MaxEnt 77.2 58.3 63.9 55.3 - - - -
CRFs - - - - 73.1 65.7 72.0 80.3
Competitive Model
RDNs 86.7 74.2 72.9 58.7 - - - -
Stacked Sequential CRFs - - - - 76.8 66.8 77.1 81.2
Stacked model (k=1) 90.1 73.2 73.8 59.8 78.3 69.3 77.9 82.5
Stacked model (k=2) 90.1 72.1 73.9 59.8 78.4 69.2 78.0 82.4
Ceiling for stacked model 96.3 73.6 76.9 62.3 80.5 70.5 80.3 84.6

This can not be implemented in practice but gives some idea of what performance is theoretically
achievable using collective classification with our model.

Table 1 shows the accuracy1 for each of the five models on eight real-world datasets. We
used 5 fold cross validation (except for WebKB data, where we used 4 fold cross validation by
departments).

We use paired t-tests to access the significance of the accuracy. The t-tests compare the stacked
graphical models with k=1 to each of the other four models. The null hypothesis is that there is no
difference in the accuracy of the two models. On all of the eight datasets, stacked graphical learning
improves the performance of the base learner significantly (p < .05). On all the tasks, stacked
graphical learning achieves statistically indistinguishable results to the competitive models, except
that on the SLIF data stacked graphical learning is statistically significantly better than RDNs.
On the WebKB and Yapex datasets, stacked graphical learning achieves comparable results to the
ceiling models.

On all the tasks, there is no significant difference (p < .05) in accuracy for k=1 and k=2 in
stacking, which suggests that stacking converges very quickly and does not require many iterations.

3.3 Efficiency of Stacked Graphical Learning
One advantage of stacked graphical learning is that the inference is very efficient. We compared the
accuracy and computational cost of inference in stacked graphical models (with one iteration) to
that of Gibbs sampling in RDNs with 50 iterations and 100 iterations, evaluating on the SLIF prob-

1For the third and fourth problem, we report the F1 accuracy.

6

0 1 2.7 7.4 20 55 148 403
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy vs. number of iterations k, WebKB data

k (# iterations)

A
cc

ur
ac

y

RDN,sampling starting randomly
RDN,sampling starting with y0

Stacked graphical learning

0 1 2.7 7.4 20 55 148 403
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

k (# iterations)

A
cc

ur
ac

y

Accuracy vs. number of iterations k, SLIF data

RDN,sampling starting randomly
RDN,sampling starting with y0

Stacked graphical learning

Figure 4: Convergence rate of stacking and Gibbs sampling

lem and the document classification problems, to demonstrate this. Table 2 shows the speedup,
i.e., in the table “39.6” means the inference in stacked graphical learning is 39.6 times faster than
Gibbs sampling. If the accuracy of stacked graphical learning is statistically significantly better
than the accuracy of Gibbs sampling, there is a “+” marked by the number indicating the speedup.
If there is no significant difference, there is no mark.

Table 2 shows that compared to Gibbs sampling with 50 iterations, stacked graphical learning
generally achieves better accuracy but is about 40 times faster during inference. Compared to
Gibbs sampling with 100 iterations, stacked graphical learning can achieve competitive or better
accuracy but is more than 80 times faster during inference.

Table 2: Comparison on performance and efficiency. “39.6” means that the inference in stacked graphical
learning is 39.6 times faster than Gibbs sampling. “+” means that the accuracy of stacked graphical learning
is statistically significantly better than the accuracy of Gibbs sampling.

Gibbs 50 Gibbs 100
SLIF 39.6+ 79.3+

WebKB 43.4+ 87.0
Cora 42.7+ 85.4
Citeseer 43.6+ 87.3
Average speed-up 42.3 84.8

Figure 4 shows the convergence rate of stacking compared to Gibbs sampling on RDNs. The
plots were generated using SLIF data and WebKB data. We run 10 iterations of stacking and 150
iterations of Gibbs sampling on RDNs and recorded the accuracy. We created the plots using a
natural logarithmic scale of iteration number k. In addition to the Gibbs sampling with random

7

starting points, we also evaluated Gibbs sampling starting with same y0 as the corresponding
stacked graphical models, i.e., with predictions of local models as starting points.

We observe that stacked models converge more quickly than Gibbs sampling and achieve a
satisfactory performance much faster, even if the Gibbs sampling starts with same y0 as the cor-
responding stacked graphical models. Stacked graphical models can achieve significant improve-
ment over the base learner after the first iteration. More iterations of stacking do not seem to be
more helpful, with the performance staying at about the same level. We observe that Gibbs sam-
pling converges to the same level after many more iterations and the convergence rate when k is
small depends heavily on the starting points. We plot error bars along the curve for Gibbs sampling
with random starting points. The error bars are calculated over 5 randomly initial samples, i.e., in
each fold, Gibbs sampling is run 5 times with random initial starting points.

4 Formal Analysis
The previous sections show that stacked graphical learning works well in practise. In this section
we will now formally analyze an idealized version of the algorithm, in order to better understand
its performance. We use upper case letters and their bold-faced equivalents, such as Y and Y for
(vectors of) random variables. We use lower case letters for (vectors of) concrete assignments to
these variables.

4.1 Gibbs sampling and dependency networks
We will assume that the data to be modeled D = {(xi,yi)}, can be generated by a homogeneous
Markov chain. In other words, we assume that each yi is drawn from a distribution π(Y|X = xi),
where π(Y|X) can be defined as the limit of the following process as T →∞:

1. for i = 1 . . . n, pick y0
i ∼ Pr(Yi|X = x, θ0)

2. for t = 1 . . . T

(a) for i = 1 . . . n,
pick yt

i ∼ Pr(Yi|Y−i = yt−1
−i ,X = x, θ+)

Under relatively mild conditions, this limit will exist, and will be independent of y0 (and hence
θ0).2

In the algorithm above, Y−i represents the values of all random variables in Y other than Yi, θ0

is some set of parameters that define the initial choice of values for yi, and θ+ is a set of parameters
that defines a process for incrementally updating Yi given estimated values for Y−i and x. We will
assume that θ+ and θ0 are shorthand for a set of n probabilistic classifiers, one that predicts each
Yi.

2However, our experiments show that different choices of θ0 do greatly effect the convergence rate of the Gibbs
sampler. It is also convenient to introduce it in the context of the following remarks.

8

Often Yi does not depend on all the other variables Y, but on only a few. Let MBi(Y) de-
note the Markov blanket of Yi, i.e., a subset of the values from Y such that Yi is conditionally
independent of Y−i given x and MBi(Y):

Pr(Yi|Y−i,X = x, θ+) = Pr(Yi|MBi(Y),X = x, θ+)

To simplify our notation let us introduce these abbreviations:

Pi(Yi|x; θ) ≡ Pr(Yi|X = x, θ)

Pi(Yi|x,y; θ) ≡ Pr(Yi|MBi(Y) = MBi(y),X = x, θ)

P (Y|x; θ) ≡
∏

i

Pi(Yi = yi|x; θ)

P (Y|x,y′; θ) ≡
∏

i

Pi(Yi = yi|x,y′; θ)

The process above can now be re-written as follows.

Definition 1 Gibbs sampling is the following stochastic process:

1. for i = 1 . . . n, pick y0
i ∼ Pi(x; θ0)

2. for t = 1 . . . T

(a) for i = 1 . . . n, pick yt
i ∼ Pi(x,yt−1; θ+)

(The limit of) Gibbs sampling is one means of approximating inference in a conditionally-
defined Markov random field. It is intuitively appealing, as it simply requires iteratively applying
and re-applying a set of conditional probability models—such as could be learned by logistic re-
gression, probabilistic decision trees, probabilistic SVMs, etc—each of which predicts a single
variable Yi from x and some set of “related” variables, as defined by MBi.

To make these definitions more concrete, let us use them to define the following well-known
learning method.

Definition 2 The pseudo-likelihood learning method [22] for a Gibbs sampler and a class of mod-
els M is defined as follows.

θ̂0 = argmaxθ∈M
∏

(x,y)∈D

P (y|x, θ)

θ̂+ = argmaxθ∈M
∏

(x,y)∈D

P (y|x,y, θ)

= argmaxθ∈M
∏

(x,y)∈D

∏
i

Pi(yi|x,y, θ)

The “argmax” here means that θ̂+ will be the maximum-likelihood (ML) model in M for each
Yi. The optimization over Pr(yi|MBi(y),x, θ) means that in the ML optimization used to train
each probabilistic classifier for Yi, the values for the “related” values MBi will be taken from
values for y seen in the training data D. The model learned by this method is sometimes called a
dependency network [4].

9

4.2 An idealized version of stacked graphical learning
Pseudo-likelihood/dependency net learning approximates the unknown Gibbs sampling parameters
θ0, θ+ with estimates θ̂0, θ̂+ that will be used in a Gibbs sampler of the same form. We propose to
approximate the unknown Gibbs sampler with a different samping procedure:

Definition 3 Inhomogeneous Gibbs sampling is the following stochastic process:

1. for i = 1 . . . n, pick y0
i ∼ Pi(x; θ0)

2. for k = 1 . . . K

(a) for i = 1 . . . n, pick yk
i ∼ Pi(x,yk−1; θk)

Note that this sampling procedure is defined by K +1 sets of parameters, θ0, θ1, . . . , θK , rather
than only two. We will use Qk(x; θ0, . . . , θk) to denote the distribution produced after k iterations
of inhomogeneous Gibbs sampling.

Clearly, inhomogeneous Gibbs samplers include all ordinary Gibbs samplers, since it could be
that K is large and θ1 = θ2 = . . . = θ+. Hence inhomogeneous samplers produce a larger class
of distributions. There are several potential advantages of considering this larger class. First, there
may be practical problems that are better approximated by the larger class. Second, it is possible
that even distributions generated by a long homogeneous Gibbs sampler can be well-approximated
by a short inhomogeneous Gibbs sampler—notice that a short inhomogeneous Gibbs sampler can
be executed quickly.

Finally, the larger class of inhomogeneous samplers may be computationally more efficient to
learn. This may seem counter-intuitive, but recall that there are many instances of learning tasks
which are made computationally easier by expanding the class of possible models (e.g., [23]).

To learn the parameters of an inhomogeneous Gibbs sampler, we propose the following method.

Definition 4 Idealized stacked graphical learning is the following learning method.

1. Let θ̂0 = argmaxθ∈M
∏

(x,y)∈D Pr(y|x, θ)

2. For k = 1, . . . , K:

(a) Create Dk by replacing each (x,y) ∈ D with (x,y′) where y′ was drawn from
Qk−1(x; θ̂0, . . . , θ̂k−1). Let y′k−1

x denote the y′ so drawn.

(b) Set
θ̂k = argmaxθ∈M

∏

(x,y)∈D

Q(y|x,y′k−1
x , θ)

The optimization over Pr(yi|MBi(y),x, θ) means that in the ML optimization used to train the k-
th probabilistic classifier for Yi, the values for the “related” values MBi will be taken from values
for y′ constructed in Step 2a.

10

4.3 Stacked graphical learning as greedy learning of an inhomogeneous sam-
pler

To understand the idealized stacked graphical learning method better, first notice that the learning
algorithm picks θ̂0 as in pseudo-likelihood training. Let us now consider how θ̂1 is chosen. We
will show that the method picks θ̂1 so as to force the distribution Q1(x) to be as close as possible
to the unknown Pr(Y|X) on the data D.

Intuitively, in the unknown target inhomogeneous Gibbs sampler that we are trying to learn, θ1

will be applied to values (x,y′) where y′ is generated according to Q0(x; θ0). We do not know
θ0, but we can approximate θ0 with θ̂0, and pick θ1 by maximizing the empirical probability of
Pr(y|MBi(y

′),x, θ) where y′ is sampled from Q0(x; θ̂0):

θ̂1 = argmaxθ∈M Pr(y|MBi(y
′),x, θ)

The idealized stacked graphical learning method does exactly this, and then continues this process
for K further iterations.

One can formalize the claim that idealized stacked graphical learning is a greedy learner for ho-
mogeneous Gibbs-sampler distributions. Let M be some set of parameter values θ, and let Pk

M be
the set of all distributions defined by inhomogeneous Gibbs samplers using parameters θ0, . . . , θk

from M. Let Pk
M(θ̃0, . . . , θ̃k−1, ∗) be the set of all distributions defined by inhomogeneous Gibbs

samplers using parameters θ0 = θ̃0, . . . , θk−1 = θ̃k−1 and θk ∈M. We have the following claim.

Theorem 1 Let π ∈ PK
M, and let dataset D be generated by picking each x from a fixed distribu-

tion, and picking the associated y according to π(Y|x). Let θ̂0, . . . , θ̂K be the parameters learned
by idealized stacked graphical learning from dataset D, and consider the limit as |D| → ∞. For
all i : 0 ≤ i ≤ K,

Qi(θ̂0, . . . , θ̂i) = argminQ∈Pi
M(θ̂0,...,θ̂i−1,∗)KL(Q||π)

where KL(Q||P) is the KL-divergence of Q and P .

Proof. Every distribution in P i
M(θ̂0, . . . , θ̂i−1, ∗) is defined by an inhomogeneous Gibbs sam-

pler with parameters θ̂0, . . . , θ̂i−1 and some θi ∈ M. Let π̃i−1 denote Qi(θ̂0, . . . , θ̂i−1), and let
π̃i ∈ P i

M(θ̂0, . . . , θ̂i−1, ∗). For any such π̃i and any x, π̃i(y|x) is defined by

π̃i(y|x) = π̃i−1(y
′|x) · P (y|x,y′; θi)

In the limit as |D| → ∞, minimizing KL-divergence to P is equivalent to maximizing the proba-
bility of a dataset drawn from from the distribution P . Thus minimizing KL(πi||π) can be accom-
plished by choosing θi to maximize probability of

∏

(x,y,y′)∈D′
P (y|x,y′; θi)

where y is drawn from π(Y|x) and y′ is drawn from π̃i−1(Y|x). Notice that Step 2a of idealized
stacked graphical learning constructs the appropriate y′ for x, and Step 2b performs the appropriate
optimization.

11

Notice that idealized stacked graphical learning is nearly identical to the algorithm used in this
paper, if we assume that the relational template C(xi,y) returns MBi(y). The main differences
are the use of most-likely predictions from cross-validation rather than sampling to produce values
y′kx , and the use of aggregation functions in our implementation.

5 Conclusions
In this paper we presented stacked graphical learning, a meta-learning scheme in which a base
learner is augmented by expanding one instance’s features with predictions on other related in-
stances. Formally stacked graphical learning can be viewed as approximating a homogeneous
Markov chain by greedily extending a short inhomogeneous Markov chain.

Compared to other graphical models, stacked graphical learning is efficient, especially during
inference. This property allows it to be very competitive in applications where an efficient infer-
ence algorithm is extremely important. The evaluations on eight real-world datasets indicate that
classification with stacked graphical models can improve the performance of a base learner signif-
icantly and achieve accuracy competitive to other graphical models via much faster inference.

In this paper, we extend the stacked sequential model[7] to a more general case, where rela-
tional data is considered as the application. Krishnan and Manning[6] independently developed a
“two stage” learning method for Named Entity Recognition, in which predictions from one CRF
are used to generate predictions for another. This method is like Cohen and Carvalho’s stacked
CRFs [7], but in Krishnan and Manning’s experiments, they used different functions to aggregate
the predictions of the base classifier. Stacked graphical models are a generalization of Krishnan
and Manning’s method. McCallum and Sutton introduced parameter independence diagrams for
introducing additional independence assumptions into parameter estimation for efficient training of
undirected graphical models[26]. Their method obtained a gain in accuracy via training in less than
one-fifth the time. Our work is focusing on an approach which is efficient in inference. In paper
[27], we described an in-depth study of stacked graphical learning and applied it to the matching
of two inter-related sub-tasks in SLIF system.

Future work will compare stacked models to more graphical models such as relational Markov
networks, and further explore relational template design and base learner selection. For example,
integrating an online learning algorithm will enable fast training of stacked graphical models. We
are also considering more applications of stacked graphical learning to inter-related classification
problems in an information extraction system.

References
[1] D. JENSEN AND J. NEVILLE , Dependency Networks for Relational Data, Proceedings of

ICDM-04, Brighton, UK 2004.

[2] B. TASKAR AND P. ABBEEL AND D. KOLLER , Discriminative Probabilistic Models for
Relational Data, Proceedings of UAI-02, Edmonton, Canada, 2002.

12

[3] M. RICHARDSON AND P. DOMINGOS, Markov Logic Networks, Machine Learning, 62,
pp107–136, 2006.

[4] D. HECKERMAN, ET AL., Dependency Networks for Inference, Collaborative Filtering, and
Data Visualization,Journal of Machine Learning Research, 1, pp49–75, 2000.

[5] D. H. WOLPERT, Stacked generalization, Neural Networks, vol. 5, pp241–259, 1992.

[6] V. KRISHNAN AND C. D. MANNING, An Effective Two-Stage Model for Exploiting Non-
Local Dependencies in Named Entity Recognition, Proceedings of Coling/ACL2006, Sydney,
Australia, 2006.

[7] V. R. CARVALHO AND W. W. COHEN, Stacked Sequential Learning, Proceedings of Pro-
ceedings of the IJCAI-05, Edinburgh, Scotland, 2005.

[8] Z. KOU, W. W. COHEN AND R. F. MURPHY, Extracting Information from Text and Images
for Location Proteomics, Proceedings of the BIOKDD 2003.

[9] R. F. MURPHY, Z. KOU, J. HUA, M. JOFFE AND W. W. COHEN, Extracting and Structuring
Subcellular Location Information from on-line Journal Articles: the Subcellular Location
Image Finder, Proceedings of KSCE-04, St. Thomas, US Virgin Islands, 2004.

[10] M. CRAVEN, ET AL., Learning to Extract Symbolic Knowledge from the World Wide Web,
Proceedings of AAAI-98, Madison, WI, 1998.

[11] Q. LU AND L. GETOOR, Link-based Classification, Proceedings of ICML-03, Washington,
DC, 2003.

[12] A. MCCALLUM, K. NIGAM, J. RENNIE, AND K. SEYMORE, Automating the construction
of internet portals with machine learning, Information Retrieval, 3, pp127-63.

[13] C. L. GILES, K. BOLLACKER, AND S. LAWRENCE, Cite- Seer: An automatic citation in-
dexing system, ACM Digital Libraries 98.

[14] R. BUNESCU, ET AL., Comparative Experiments on Learning Information Extractors for
Proteins and their Interactions, Artificial Intelligence in Medicine, 33, 2 (2005), pp 139-155.

[15] N. COLLIER, ET AL., The GENIA project: Corpus-based knowledge acquisition and infor-
mation extraction from genome research papers, Proceedings of EACL-99, pp271-272.

[16] K. FRANZÉ, ET AL., Protein names and how to find them, International Journal of Medical
Informatics, 2002, 67(1-3), pp49-61.

[17] W. W. COHEN AND S. SARAWAGI, Exploiting Dictionaries in Named Entity Extraction:
Combining Semi-Markov Extraction Processes and Data Integration Methods, Proceedings
of KDD 2004.

13

[18] J. LAFFERTY, A. MCCALLUM AND F. PEREIRA, Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data, Proceedings of ICML-2001, Williams,
MA 2001.

[19] Z. KOU, W. W. COHEN, AND R. F. MURPHY, High-Recall Protein Entity Recognition Using
a Dictionary, Proceedings of ISMB 2005.

[20] W. W. COHEN AND S. SARAWAGI, Exploiting Dictionaries in Named Entity Extraction:
Combining Semi-Markov Extraction Processes and Data Integration Methods, Proceedings
of KDD 2004.

[21] R. NEAL, Probabilistic inference using Markov chain Monte Carlo methods, CRGTR -93-1,
Department of Computer Science, University of Toronto, 1993.

[22] J. BESAG, Efficiency of pseudolikelihood estimation for simple Gaussian fields, Biometrika,
64, pp616–618, 1977.

[23] R. L. RIVEST, Learning Decision Lists, Machine Learning, vol. 1, no. 2, pp229–246, 1987.

[24] V. CARVALHO AND W. W. COHEN , On the Collective Classification of Email Speech Acts,
Proceedings of SIGIR 2005.

[25] Z. KOU AND W. W. COHEN, Notes on Stacked Graphical Learning for Efficient Inference
in Markov Random Fields, ML-07-100, Machine Learning Department, Carnegie Mellon
University, 2007.

[26] A. MCCALLUM AND C. SUTTON, Piecewise Training of Undirected Models, Proceedings
of UAI 2005.

[27] Z. KOU, W. W. COHEN, R. F. MURPHY, A Stacked Graphical Model for Associating Sub-
Images with Sub-Captions, Proceedings of PSB 2007.

14

