Refinement Types as

Proof Irrelevance

William Lovas
with Frank Pfenning

Overview

Refinement types sharpen existing type systems
without complicating their metatheory

Subset interpretation soundly and completely
eliminates them

Shows the expressive power of refinements

William Lovas, Refinement Types as Proof Irrelevance

Overview

Refinement types sharpen existing type systems
without complicating their metatheory

Subset interpretation soundly and completely
eliminates them

Shows the expressive power of refinements

» Translation is quite complicated!

William Lovas, Refinement Types as Proof Irrelevance

Refinement types

New layer of “sorts” above usual “type” layer
» subsorting, intersection sorts

» every sort refines a type

Refinement restriction
» only sort-check well-typed terms
» ... and only at sorts refining their type

Goal: more precisely classity well-typed terms

William Lovas, Refinement Types as Proof Irrelevance

Example: natural numbers

nat : type.
Z . hat.
S : nat — nat.

William Lovas, Refinement Types as Proof Irrelevance

Example: natural numbers

nat : type.
Z . hat.
S : nat — nat.

% double relation: [double N N2] iff N2 =N * 2
double : nat — nat — type.
dbl/z : double z z.
dbl/s : [IN:nat. [IN2:nat. double N N2
— double (s N) (s (s N2)).

LF methodology: judgements as types

William Lovas, Refinement Types as Proof Irrelevance

Example: natural numbers

even C nat. odd C nat.

7 :: even.
s:: (even — odd) A (odd — even).

LFR methodology: properties as sorts

William Lovas, Refinement Types as Proof Irrelevance

Example: natural numbers

even C nat. odd C nat.

7 :: even.
s:: (even — odd) A (odd — even).

% double™: just like double, but second arg even
double* C double :: T — even — sort.

dbl/z :: double* z z.
dbl/s :: IIN:: T. [IN2::even. double* N N2
— double* (s N) (s (s N2)).

LFR methodology: properties as sorts

William Lovas, Refinement Types as Proof Irrelevance

Example: natural numbers

even C nat. odd c nat.
Z i even.
s:: (even — odd) A (odd — even).

% double™: just like double, but second arg even

double* c double :: T sort.

dbl/z :: double* z z.
dbl/s :: IIN:: T. [IN2::even. double* N N2

— double* (s N) (s (s N2)).

LFR methodology: properties as sorts

William Lovas, Refinement Types as Proof Irrelevance

(Aside: other examples)

More precise types = more precise
judgements!

Statically capture many interesting properties:

» even and odd natural numbers

» big-step evaluation returns a value

» uniform yet stratified encoding of PTSes

» normal natural deductions / cut-free sequent derivations
» hereditary Harrop formulas for logic programming

)

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat.

odd C nat.

7 .. even.

S :: (even — odd)
A (odd — even).

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd) pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : typ Translation follows this idea:
7 nat. » refinements become predicates
S : nat — » sort declarations become proof constructors

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd) pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).

William Lovas, Refinement Types as Proof Irrelevance

Outline

v Overview

v Example: even and odd natural numbers
Theorems: soundness, completeness, adequacy
Technical detail: role of proof irrelevance

Conclusions

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd) pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).

William Lovas, Refinement Types as Proof Irrelevance

Example: sorts as predicates

nat : type. N ::eveniff P: even N

Z: (for some P)
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.
s:: (even — odd) pf-s1:IIx:nat. even x — odd

A (odd — even). pf-sz:Ilx:nat. odd x — even

William Lovas, Refinement Types as Proof Irrelevance

Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)

» derivations of N :: S into proofs N’

William Lovas, Refinement Types as Proof Irrelevance

Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)
» derivations of N :: S into proofs N’

Theorem: if S ~ S’and N:: S ~ N’, then N’: S’(N)
Theorem: if S ~ S’and N’: S°(N), then N:: S

William Lovas, Refinement Types as Proof Irrelevance

Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)
» derivations of N :: S into proofs N’

Theorem: if S ~ S’and N:: S ~ N’, then N’: S’(N)
Theorem: if S ~ S’and N’: S°(N), then N:: S

Corollary: Preservation ot Adequacy

William Lovas, Refinement Types as Proof Irrelevance

Adequacy

LF enjoys a well-developed theory of adequate
representations

» Adequacy: compositional bijection between
informal entities and canonical (f-normal n-
long) terms

informal math LFR encoding

William Lovas, Refinement Types as Proof Irrelevance

Adequacy

adequacy
informal math | €= | LFR encoding

William Lovas, Refinement Types as Proof Irrelevance

Adequacy

informal math

adequacy
e

LER encoding

LFI encoding

William Lovas, Refinement Types as Proof Irrelevance

Adequacy

informal math

adequacy
e

LER encoding

LFI encoding

William Lovas, Refinement Types as Proof Irrelevance

Key lemmas

Translation “derivation-directed”:

William Lovas, Refinement Types as Proof Irrelevance

Key lemmas

Translation “derivation-directed”:

Lemma (Erasure): If N:: S~ N, then N:: S
Lemma (Reconstruction): If N:: S, then N:: S ~ N’

William Lovas, Refinement Types as Proof Irrelevance

Key lemmas

Translation “derivation-directed”:

Lemma (Erasure): If N:: S~ N, then N:: S
Lemma (Reconstruction): If N:: S, then N:: S ~ N’

Lemma (Compositionality): Let o denote [M/X].
IfS~ S’and ¢ S ~ S”, then o S’'(N) = S”(o N)

William Lovas, Refinement Types as Proof Irrelevance

Outline

v Overview

v Example: even and odd natural numbers

v Theorems: soundness, completeness, adequacy
» Technical detail: role of proof irrelevance

o Conclusions

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!

Crucial ditterence: inhabitation vs. formation

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!
Crucial ditterence: inhabitation vs. formation

» even and odd: subsets of nat

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!
Crucial ditterence: inhabitation vs. formation
» even and odd: subsets of nat

» double*: same as double, but with invariant

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation family: inhabited when the sort is
well-formed at all

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation family: inhabited when the sort is
well-formed at all

% fm-double*: formation family
fm-double* : nat — nat — type.

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed

% fm-double*/i: formation proof constructor
fm-double*/i : [Ix:nat. [Iy:nat. even y — fm-double* x y.

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even

double* = double :: T sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed

% fm-double*/i: formation proof constructor
fm-double* /i : [Ix:nat. Ily:na n@ fm-double* x y.

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)

% double*: predicate family
double* : IIx:nat. [Iy:nat. fm-double* x y —

double x y — type.

William Lovas, Refinement Types as Proof Irrelevance

Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)

% double*: predicate famil
double* : IIx:nat. [Iy:nat] fm-double* x y

double x y — type.

William Lovas, Refinement Types as Proof Irrelevance

Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
fm-double* : nat — nat — type.

% fm-double*/i: formation proof constructor
fm-double*/i : [Ix:nat. [Iy:nat. even y — fm-double* x y.

% double*: predicate family
double* : [Ix:nat. IIy:nat. fm-double* x y —

double x y — type.

William Lovas, Refinement Types as Proof Irrelevance

What about irrelevance?

William Lovas, Refinement Types as Proof Irrelevance

What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

William Lovas, Refinement Types as Proof Irrelevance

What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofts of fm-double* M N, say P; and P:

William Lovas, Refinement Types as Proof Irrelevance

What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofs of fm-double* M N, say P; and P:

» two different translations of double* M N:
double* M N P; (-) and double* M N P; (-)

William Lovas, Refinement Types as Proof Irrelevance

What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofs of fm-double* M N, say P; and P:

» two different translations of double* M N:
double* M N P; (-) and double* M N P; (-)

» if D :: double* M N and D ~ D’, soundness
requires D" : double® M N P; (D)

William Lovas, Refinement Types as Proof Irrelevance

Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).

William Lovas, Refinement Types as Proof Irrelevance

Seeing double twice

Zero C nat.
Z .. €EVEIl A Z€rO0.

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
pP-Z1: even z. p-zz : Zero Z.

William Lovas, Refinement Types as Proof Irrelevance

Seeing double twice

Zero C nat.
Z .. €EVEIl A Z€rO0.

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
pP-Z1: even z. p-zz : Zero Z.

William Lovas, Refinement Types as Proof Irrelevance

Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
P-Z1 : EVENZ: P-Z oS ZE ik

% fm-double*/i: formation proof constructor
fm-double*/i; : [Ix:nat. IIy:nat. even y — fm-double* x y.

fm-double*/iz : Ilx:nat. [ly:nat. zero x — zero y —
fm-double* x y.

William Lovas, Refinement Types as Proof Irrelevance

Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).

double*zz ?

Zero : nat — type.
P-Z1 : EVENZ: P-Z oS ZE ik

% fm-double*/i: formation proof constructor
fm-double*/i; : [Ix:nat. IIy:nat. even y — fm-double* x y.

fm-double*/iz : Ilx:nat. [ly:nat. zero x — zero y —
fm-double* x y.

William Lovas, Refinement Types as Proof Irrelevance

Proof irrelevance

Hides the identity of certain terms
» Proofs of propositions: identity is immaterial
» Equivalence of terms ignores irrelevant items

Particularly interesting in a dependent setting:
term equalities atfect type equalities!

William Lovas, Refinement Types as Proof Irrelevance

Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
% fm-double*/ix: formation proof constructors

% double*: predicate family
double* : [Ix:nat. [ly:nat. fm-double* x y ==

double x y — type.

William Lovas, Refinement Types as Proof Irrelevance

Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
% fm-double*/ix: formation proof constructors

% double*: predicate family
double* : [Ix:nat. IIy:nat. fm-double* x @
double x y — type.

William Lovas, Refinement Types as Proof Irrelevance

Conclusions

Possible to translate away refinements, even in
the rich, dependent setting of LF

Uniform translation is quite complicated,
proofs of theorems intricate

Perhaps it’s better to keep refinements
primitive

William Lovas, Refinement Types as Proof Irrelevance

secret/backup slides

William Lovas, Refinement Types as Proof Irrelevance

Related work

Matthieu Sozeau
» subset types for CIC

» refinement types for PVS

William Lovas, Refinement Types as Proof Irrelevance

Other gotchas

Intersections:

William Lovas, Refinement Types as Proof Irrelevance

Other gotchas

Intersections:

pf-c1: S1’(c).
pf-cz2 : S2’(c).

William Lovas, Refinement Types as Proof Irrelevance

Other gotchas

Intersections:

pf-c1 : S1’(0).

pf-c2 : S2’(c). pt-c: S1'(c) x S2’(c).

William Lovas, Refinement Types as Proof Irrelevance

Other gotchas

Intersections:

pf-c1: S1’(c).

pf-c2 : S2’(c). pt-c: S1'(c) x S2'(c).

Subsorting must generate proof coercions

William Lovas, Refinement Types as Proof Irrelevance

LF: a logical framework

Harper, Honsell, and Plotkin, 1987, 1993
Dependently-typed lambda-calculus

Encode deductive systems and metatheory,
uniformly and machine-checkably

» e.9. a programming language and its type safety theorem

» e.9. alogic and its cut elimination theorem

William Lovas, Refinement Types as Proof Irrelevance

Judgements as types

Syntax
P e e e

Simple type
» exp:type. tp:type.

Judgement
pilsb et

Type family
» of:exp — tp — type.

Derivation
> ‘fj clke:t

Well-typed term
» M:ofET

Proof checking

Type checking

William Lovas, Refinement Types as Proof Irrelevance

