Refinement Types as Proof Irrelevance

William Lovas with Frank Pfenning

Overview

- Refinement types sharpen existing type systems without complicating their metatheory
- Subset interpretation soundly and completely eliminates them
- Shows the expressive power of refinements

Overview

- Refinement types sharpen existing type systems without complicating their metatheory
- Subset interpretation soundly and completely eliminates them
- Shows the expressive power of refinements
 - Translation is quite complicated!

Refinement types

- New layer of "sorts" above usual "type" layer
 - subsorting, intersection sorts
 - every sort refines a type
- Refinement restriction
 - only sort-check well-typed terms
 - ... and only at sorts refining their type
- Goal: more precisely classify well-typed terms

```
nat: type.
```

z:nat.

 $s: nat \rightarrow nat.$

```
nat : type.
z : nat.
s : nat → nat.

% double relation: [double N N2] iff N2 = N * 2
double : nat → nat → type.
dbl/z : double z z.
dbl/s : ΠN:nat. ΠN2:nat. double N N2
→ double (s N) (s (s N2)).
```

• LF methodology: judgements as types

```
even \sqsubset nat. odd \sqsubset nat.
z:: even.
s:: (even \rightarrow odd) \land (odd \rightarrow even).
```

• LFR methodology: properties as sorts

```
even □ nat. odd □ nat.
z :: even.
s :: (even \rightarrow odd) \land (odd \rightarrow even).
% double*: just like double, but second arg even
double^* \sqsubset double :: \top \rightarrow even \rightarrow sort.
dbl/z :: double* z z.
dbl/s :: \Pi N:: \top. \Pi N2:: even. double* N N2
        \rightarrow double* (s N) (s (s N2)).
```

• LFR methodology: properties as sorts

```
even □ nat. odd □ nat.
z :: even.
s :: (even \rightarrow odd) \land (odd \rightarrow even).
% double*: just like double, but second arg even
double^* \sqsubset double :: \top \rightarrow even \rightarrow sort.
dbl/z :: double* z z.
dbl/s :: \Pi N:: \top. \Pi N 2:: even. double* N N 2
        \rightarrow double* (s N) (s (s N2)).
```

• LFR methodology: properties as sorts

(Aside: other examples)

- More precise types ⇒ more precise judgements!
- Statically capture many interesting properties:
 - even and odd natural numbers
 - big-step evaluation returns a value
 - uniform yet stratified encoding of PTSes
 - normal natural deductions / cut-free sequent derivations
 - hereditary Harrop formulas for logic programming
 - **)** ...

nat: type.

z:nat.

 $s: nat \rightarrow nat.$

```
nat: type.
z:nat.
s: nat \rightarrow nat.
even 

□ nat.
odd □ nat.
z :: even.
s :: (even \rightarrow odd)
  \land (odd \rightarrow even).
```

```
nat: type.

z: nat.

s: nat \rightarrow nat.

even \sqsubseteq nat.

odd \sqsubseteq nat.

z:: even.

s:: (even \rightarrow odd)

\wedge (odd \rightarrow even).

even: nat \rightarrow type.

odd: nat \rightarrow type.

pf-z: even z.

pf-s<sub>1</sub>: \Pi x:nat. even x \rightarrow odd (s x)

pf-s<sub>2</sub>: \Pi x:nat. odd x \rightarrow even (s x).
```

```
nat: typ
```

z:nat.

s:nat-

- Translation follows this idea:
 - refinements become predicates
 - sort declarations become proof constructors

```
even □ nat.
odd □ nat.
```

z :: even.

 $s :: (even \rightarrow odd)$

 \land (odd \rightarrow even).

```
even : nat \rightarrow type.
```

odd: nat \rightarrow **type**.

pf-z : even z.

pf-s₁: Πx :nat. even $x \rightarrow \text{odd}(s x)$

pf-s₂: Πx :nat. odd $x \rightarrow$ even (s x).

Outline

- **√**Overview
- ✓ Example: even and odd natural numbers
- Theorems: soundness, completeness, adequacy
- Technical detail: role of proof irrelevance
- Conclusions

```
nat: type.

z: nat.

s: nat \rightarrow nat.

even \sqsubseteq nat.

even: nat \rightarrow type.

odd \sqsubseteq nat.

z:: even.

s:: (even \rightarrow odd)

\wedge (odd \rightarrow even).

proper even: nat \rightarrow type.

odd: nat \rightarrow type.

proper even: propere
```

```
nat: type.
```

z:nat.

 $s: nat \rightarrow nat.$

N :: even iff P : even N(for some P)

```
even □ nat.
```

odd

□ nat.

z :: even.

 $s :: (even \rightarrow odd)$

 \land (odd \rightarrow even).

```
even : nat \rightarrow type.
```

odd: nat \rightarrow type.

pf-z: even z.

pf-s₁: Πx :nat. even $x \rightarrow \text{odd}(s x)$

pf-s₂: Πx :nat. odd $x \rightarrow$ even (s x).

Soundness & Completeness

- Translation turns:
 - well-formed sorts S into predicates S'(-)
 - derivations of N :: S into proofs N'

Soundness & Completeness

- Translation turns:
 - well-formed sorts S into predicates S'(-)
 - derivations of N :: S into proofs N'

```
Theorem: if S \rightsquigarrow S' and N :: S \rightsquigarrow N', then N' : S'(N)
```

Theorem: if $S \rightsquigarrow S'$ and N': S'(N), then N:: S

Soundness & Completeness

- Translation turns:
 - well-formed sorts S into predicates S'(-)
 - derivations of N :: S into proofs N'

```
Theorem: if S \rightsquigarrow S' and N :: S \rightsquigarrow N', then N' : S'(N)
```

Theorem: if $S \rightsquigarrow S'$ and N': S'(N), then N:: S

Corollary: Preservation of Adequacy

- LF enjoys a well-developed theory of adequate representations
 - Adequacy: compositional bijection between informal entities and canonical (β-normal ηlong) terms

informal math

adequacy

LFR encoding

Key lemmas

• Translation "derivation-directed":

Key lemmas

• Translation "derivation-directed":

Lemma (Erasure): If $N :: S \rightsquigarrow N'$, then N :: S

Lemma (Reconstruction): If N :: S, then $N :: S \rightsquigarrow N'$

Key lemmas

• Translation "derivation-directed":

```
Lemma (Erasure): If N :: S \rightsquigarrow N', then N :: S
```

Lemma (Reconstruction): If N :: S, then $N :: S \rightsquigarrow N'$

Lemma (Compositionality): Let σ denote [M/x]. If $S \rightsquigarrow S'$ and $\sigma S \rightsquigarrow S''$, then $\sigma S'(N) = S''(\sigma N)$

Outline

- **√**Overview
- ✓ Example: even and odd natural numbers
- √ Theorems: soundness, completeness, adequacy
- Technical detail: role of proof irrelevance
- Conclusions

- Simple sorts (like even and odd) are easy
- Dependent sorts (like double*) trickier!
- Crucial difference: inhabitation vs. formation

- Simple sorts (like even and odd) are easy
- Dependent sorts (like double*) trickier!
- Crucial difference: inhabitation vs. formation
 - even and odd: subsets of nat

- Simple sorts (like even and odd) are easy
- Dependent sorts (like double*) trickier!
- Crucial difference: inhabitation vs. formation
 - even and odd: subsets of nat
 - double*: same as double, but with invariant

% double*: just like double, but second arg even double* \sqsubset double :: $\top \rightarrow$ even \rightarrow **sort**.

- Dependent sort families translate three ways:
 - formation family: inhabited when the sort is well-formed at all

```
\% double*: just like double, but second arg even double* \sqsubset double :: \top \rightarrow even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - formation family: inhabited when the sort is well-formed at all

```
% fm-double*: formation family fm-double*: nat \rightarrow nat \rightarrow type.
```

% double*: just like double, but second arg even double* \sqsubset double :: $\top \rightarrow$ even \rightarrow **sort**.

- Dependent sort families translate three ways:
 - formation proof constructors: ways of proving a sort family well-formed

```
\% double*: just like double, but second arg even double* \sqsubset double :: \top \rightarrow even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - formation proof constructors: ways of proving a sort family well-formed

```
% fm-double*/i: formation\ proof\ constructor fm-double*/i: \Pi x:nat. \Pi y:nat. even y \to fm-double* x\ y.
```

```
% double*: just like double, but second arg even double* \sqsubset double :: \top even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - formation proof constructors: ways of proving a sort family well-formed

```
% fm-double*/i: formation\ proof\ constructor fm-double*/i: \Pi x:nat. \Pi y:nat. even y \Rightarrow fm-double* x\ y.
```

Translating judgements

```
\% double*: just like double, but second arg even double* \sqsubset double :: \top \rightarrow even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - predicate family: holds of terms that have the sort (provided the sort is well-formed)

Translating judgements

```
\% double*: just like double, but second arg even double* \sqsubset double :: \top \rightarrow even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - predicate family: holds of terms that have the sort (provided the sort is well-formed)

```
% double*: predicate family double*: \Pi x:nat. \Pi y:nat. fm-double* x y \rightarrow double x y \rightarrow type.
```

Translating judgements

```
\% double*: just like double, but second arg even double* \sqsubset double :: \top \rightarrow even \rightarrow sort.
```

- Dependent sort families translate three ways:
 - predicate family: holds of terms that have the sort (provided the sort is well-formed)

```
% double*: predicate family
double*: \Pi x:nat. \Pi y:nat fm-double* x y \rightarrow double x y \rightarrow type.
```

Translating double

% double*: just like double, but second arg even double* \sqsubset double :: $\top \rightarrow$ even \rightarrow **sort**.

% fm-double*: formation family

fm-double*: nat \rightarrow nat \rightarrow type.

% fm-double*/i: formation proof constructor

fm-double*/i : Πx :nat. Πy :nat. even $y \rightarrow$ fm-double* x y.

% double*: predicate family

double* : Πx :nat. Πy :nat. fm-double* $x y \rightarrow$

double $xy \rightarrow \mathbf{type}$.

• Suppose double* *M N* could be well-formed for two reasons. Then:

- Suppose double* *M N* could be well-formed for two reasons. Then:
 - two proofs of fm-double* MN, say P_1 and P_2

- Suppose double* *M N* could be well-formed for two reasons. Then:
 - two proofs of fm-double* MN, say P_1 and P_2
 - two different translations of double* MN: double* MNP_1 (-) and double* MNP_2 (-)

- Suppose double* *M N* could be well-formed for two reasons. Then:
 - two proofs of fm-double* MN, say P_1 and P_2
 - two different translations of double* MN: double* MNP_1 (-) and double* MNP_2 (-)
 - if $D :: double* M N and <math>D \leadsto D'$, soundness requires $D' : double* M N P_i (D)$

```
zero \sqsubset nat.
z:: even \land zero.
double* \sqsubset double:: (\top \rightarrow even \rightarrow sort)
\land (zero \rightarrow zero \rightarrow sort).
```

```
zero \sqsubset nat.
z:: even \land zero.
double* \sqsubset double:: (\top \rightarrow even \rightarrow sort)
\land (zero \rightarrow zero \rightarrow sort).
```

```
zero : nat \rightarrow type.
```

p-z₁: even z. p-z₂: zero z.

```
zero \sqsubset nat.
z:: even \land zero.
double* \sqsubset double:: (\top \rightarrow even \rightarrow sort)
\land (zero \rightarrow zero \rightarrow sort).
```

```
zero : nat \rightarrow type.
```

p-z₁: even z. p-z₂: zero z.

```
z :: even \land zero.
double^* \sqsubset double :: (\top \rightarrow even \rightarrow sort)
                           \land (zero \rightarrow zero \rightarrow sort).
zero : nat \rightarrow type.
p-z<sub>1</sub>: even z. p-z<sub>2</sub>: zero z.
% fm-double*/i: formation proof constructor
fm-double*/i<sub>1</sub>: \Pi x:nat. \Pi y:nat. even y \rightarrow fm-double* x y.
fm-double*/i<sub>2</sub>: \Pi x:nat. \Pi y:nat. zero x \rightarrow zero y \rightarrow z
                        fm-double* x y.
```

zero □ nat.

```
zero □ nat.
                                                         double* z z?
z :: even \land zero.
double^* \sqsubset double :: (\top \rightarrow even \rightarrow sort)
                          \land (zero \rightarrow zero \rightarrow sort).
zero : nat \rightarrow type.
p-z<sub>1</sub>: even z. p-z<sub>2</sub>: zero z.
% fm-double*/i: formation proof constructor
fm-double*/i<sub>1</sub>: \Pi x:nat. \Pi y:nat. even y \rightarrow fm-double* x y.
fm-double*/i<sub>2</sub>: \Pi x:nat. \Pi y:nat. zero x \rightarrow zero y \rightarrow z
                        fm-double* x y.
```

Proof irrelevance

- Hides the identity of certain terms
 - Proofs of propositions: identity is immaterial
 - Equivalence of terms ignores irrelevant items
- Particularly interesting in a *dependent* setting: term equalities affect type equalities!

Translating double

% double*: just like double, but second arg even double* \sqsubset double :: $\top \rightarrow$ even \rightarrow **sort**.

```
% fm-double*: formation family
...
% fm-double*/i<sub>k</sub>: formation proof constructors
...
% double*: predicate family
double*: Πx:nat. Πy:nat. fm-double* x y ⇒
double x y → type.
```

Translating double

% double*: just like double, but second arg even double* \sqsubset double :: $\top \rightarrow$ even \rightarrow **sort**.

```
% fm-double*: formation family
...
% fm-double*/i<sub>k</sub>: formation proof constructors
...
% double*: predicate family
double*: Πx:nat. Πy:nat. fm-double* x x ↔
double x y → type.
```

Conclusions

- Possible to translate away refinements, even in the rich, dependent setting of LF
- Uniform translation is quite complicated, proofs of theorems intricate
- Perhaps it's better to keep refinements primitive

secret/backup slides

Related work

- Matthieu Sozeau
 - subset types for CIC
 - refinement types for PVS

• Intersections:

 $c :: S_1 \wedge S_2$.

• Intersections:

• Intersections:

• Intersections:

Subsorting must generate proof coercions

LF: a logical framework

- Harper, Honsell, and Plotkin, 1987, 1993
- Dependently-typed lambda-calculus
- Encode deductive systems and metatheory, uniformly and machine-checkably
 - e.g. a programming language and its type safety theorem
 - e.g. a logic and its cut elimination theorem

Judgements as types

On paper	In LF
Syntax • e ::= τ ::=	Simple type • exp: type. tp: type.
Judgement $\Gamma \vdash e : \tau$	Type family of: $\exp \rightarrow tp \rightarrow type$.
Derivation $\mathcal{D}:: \Gamma \vdash e: \tau$	Well-typed term ► <i>M</i> : of <i>E T</i>
Proof checking	Type checking