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Overview

Refinement types sharpen existing type systems
without complicating their metatheory

Subset interpretation soundly and completely
eliminates them

Shows the expressive power of refinements
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Overview

Refinement types sharpen existing type systems
without complicating their metatheory

Subset interpretation soundly and completely
eliminates them

Shows the expressive power of refinements

» Translation is quite complicated!
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Refinement types

New layer of “sorts” above usual “type” layer
» subsorting, intersection sorts

» every sort refines a type

Refinement restriction
» only sort-check well-typed terms
» ... and only at sorts refining their type

Goal: more precisely classity well-typed terms
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Example: natural numbers

nat : type.
Z . hat.
S : nat — nat.
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Example: natural numbers

nat : type.
Z . hat.
S : nat — nat.

% double relation: [double N N2] iff N2 =N * 2
double : nat — nat — type.
dbl/z : double z z.
dbl/s : [IN:nat. [IN2:nat. double N N2
— double (s N) (s (s N2)).

LF methodology: judgements as types
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Example: natural numbers

even C nat. odd C nat.

7 :: even.
s:: (even — odd) A (odd — even).

LFR methodology: properties as sorts
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Example: natural numbers

even C nat. odd C nat.

7 :: even.
s:: (even — odd) A (odd — even).

% double™: just like double, but second arg even
double* C double :: T — even — sort.

dbl/z :: double* z z.
dbl/s :: IIN:: T. [IN2::even. double* N N2
— double* (s N) (s (s N2)).

LFR methodology: properties as sorts
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Example: natural numbers

even C nat. odd c nat.
Z i even.
s:: (even — odd) A (odd — even).

% double™: just like double, but second arg even

double* c double :: T sort.

dbl/z :: double* z z.
dbl/s :: IIN:: T. [IN2::even. double* N N2

— double* (s N) (s (s N2)).

LFR methodology: properties as sorts
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(Aside: other examples)

More precise types = more precise
judgements!

Statically capture many interesting properties:

» even and odd natural numbers

» big-step evaluation returns a value

» uniform yet stratified encoding of PTSes

» normal natural deductions / cut-free sequent derivations
» hereditary Harrop formulas for logic programming

)
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Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.
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Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat.

odd C nat.

7 .. even.

S :: (even — odd)
A (odd — even).
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Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd)  pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).
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Example: sorts as predicates

nat : typ Translation follows this idea:
7 nat. » refinements become predicates
S : nat — » sort declarations become proof constructors

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd)  pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).
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Outline

v Overview

v Example: even and odd natural numbers
Theorems: soundness, completeness, adequacy
Technical detail: role of proof irrelevance

Conclusions
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Example: sorts as predicates

nat : type.
Z . hat.
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.

s:: (even — odd)  pf-s1:IIx:nat. even x — odd (s x]
A (odd — even). pf-s2:IIx:nat. odd x — even (s x).

William Lovas, Refinement Types as Proof Irrelevance



Example: sorts as predicates

nat : type. N ::eveniff P: even N

Z: (for some P)
S : nat — nat.

even C nat. even : nat — type.

odd C nat. odd : nat — type.

Z i even. pf-z : even z.
s:: (even — odd)  pf-s1:IIx:nat. even x — odd

A (odd — even). pf-sz:Ilx:nat. odd x — even
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Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)

» derivations of N :: S into proofs N’
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Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)
» derivations of N :: S into proofs N’

Theorem: if S ~ S’and N:: S ~ N’, then N’: S’(N)
Theorem: if S ~ S’and N’: S°(N), then N:: S
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Soundness & Completeness

Translation turns:
» well-formed sorts S into predicates S'(-)
» derivations of N :: S into proofs N’

Theorem: if S ~ S’and N:: S ~ N’, then N’: S’(N)
Theorem: if S ~ S’and N’: S°(N), then N:: S

Corollary: Preservation ot Adequacy
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Adequacy

LF enjoys a well-developed theory of adequate
representations

» Adequacy: compositional bijection between
informal entities and canonical (f-normal n-
long) terms

informal math LFR encoding
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Adequacy

adequacy
informal math | €= | LFR encoding
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Adequacy

informal math

adequacy
e

LER encoding

LFI encoding
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Adequacy

informal math

adequacy
e

LER encoding

LFI encoding
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Key lemmas

Translation “derivation-directed”:
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Key lemmas

Translation “derivation-directed”:

Lemma (Erasure): If N:: S~ N, then N:: S
Lemma (Reconstruction): If N:: S, then N:: S ~ N’
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Key lemmas

Translation “derivation-directed”:

Lemma (Erasure): If N:: S~ N, then N:: S
Lemma (Reconstruction): If N:: S, then N:: S ~ N’

Lemma (Compositionality): Let o denote [M/X].
IfS~ S’and ¢ S ~ S”, then o S’'(N) = S”(o N)
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Outline

v Overview

v Example: even and odd natural numbers

v Theorems: soundness, completeness, adequacy
» Technical detail: role of proof irrelevance

o Conclusions
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Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!

Crucial ditterence: inhabitation vs. formation
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Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!
Crucial ditterence: inhabitation vs. formation

» even and odd: subsets of nat
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Translating judgements

Simple sorts (like even and odd) are easy
Dependent sorts (like double*) trickier!
Crucial ditterence: inhabitation vs. formation
» even and odd: subsets of nat

» double*: same as double, but with invariant
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation family: inhabited when the sort is
well-formed at all
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation family: inhabited when the sort is
well-formed at all

% fm-double*: formation family
fm-double* : nat — nat — type.
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed

% fm-double*/i: formation proof constructor
fm-double*/i : [Ix:nat. [Iy:nat. even y — fm-double* x y.
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Translating judgements

% double™: just like double, but second arg even

double* = double :: T sort.

Dependent sort families translate three ways:

» formation proof constructors: ways of
proving a sort family well-formed

% fm-double*/i: formation proof constructor
fm-double* /i : [Ix:nat. Ily:na n@ fm-double* x y.
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)

% double*: predicate family
double* : IIx:nat. [Iy:nat. fm-double* x y —

double x y — type.
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Translating judgements

% double™: just like double, but second arg even
double* C double :: T — even — sort.

Dependent sort families translate three ways:

» predicate family: holds of terms that have
the sort (provided the sort is well-formed)

% double*: predicate famil
double* : IIx:nat. [Iy:nat] fm-double* x y

double x y — type.
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Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
fm-double* : nat — nat — type.

% fm-double*/i: formation proof constructor
fm-double*/i : [Ix:nat. [Iy:nat. even y — fm-double* x y.

% double*: predicate family
double* : [Ix:nat. IIy:nat. fm-double* x y —

double x y — type.
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What about irrelevance?
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What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:
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What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofts of fm-double* M N, say P; and P:
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What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofs of fm-double* M N, say P; and P:

» two different translations of double* M N:
double* M N P; (-) and double* M N P; (-)
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What about irrelevance?

Suppose double* M N could be well-formed for
two reasons. Then:

» two proofs of fm-double* M N, say P; and P:

» two different translations of double* M N:
double* M N P; (-) and double* M N P; (-)

» if D :: double* M N and D ~ D’, soundness
requires D" : double® M N P; (D)
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Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).
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Seeing double twice

Zero C nat.
Z .. €EVEIl A Z€rO0.

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
pP-Z1: even z. p-zz : Zero Z.
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Seeing double twice

Zero C nat.
Z .. €EVEIl A Z€rO0.

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
pP-Z1: even z. p-zz : Zero Z.

William Lovas, Refinement Types as Proof Irrelevance



Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).

Zero : nat — type.
P-Z1 : EVENZ: P-Z oS ZE ik

% fm-double*/i: formation proof constructor
fm-double*/i; : [Ix:nat. IIy:nat. even y — fm-double* x y.

fm-double*/iz : Ilx:nat. [ly:nat. zero x — zero y —
fm-double* x y.
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Seeing double twice

Zero C nat.
ZiE EV CTIR 7 GO

double* C double :: (T — even — sort)
A (zero — zero — sort).

double*zz ?

Zero : nat — type.
P-Z1 : EVENZ: P-Z oS ZE ik

% fm-double*/i: formation proof constructor
fm-double*/i; : [Ix:nat. IIy:nat. even y — fm-double* x y.

fm-double*/iz : Ilx:nat. [ly:nat. zero x — zero y —
fm-double* x y.
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Proof irrelevance

Hides the identity of certain terms
» Proofs of propositions: identity is immaterial
» Equivalence of terms ignores irrelevant items

Particularly interesting in a dependent setting:
term equalities atfect type equalities!
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Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
% fm-double*/ix: formation proof constructors

% double*: predicate family
double* : [Ix:nat. [ly:nat. fm-double* x y ==

double x y — type.
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Translating double

% double™: just like double, but second arg even
double* C double :: T — even — sort.

AN>

% fm-double*: formation family
% fm-double*/ix: formation proof constructors

% double*: predicate family
double* : [Ix:nat. IIy:nat. fm-double* x @
double x y — type.
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Conclusions

Possible to translate away refinements, even in
the rich, dependent setting of LF

Uniform translation is quite complicated,
proofs of theorems intricate

Perhaps it’s better to keep refinements
primitive
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secret/backup slides
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Related work

Matthieu Sozeau
» subset types for CIC

» refinement types for PVS
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Other gotchas

Intersections:

William Lovas, Refinement Types as Proof Irrelevance



Other gotchas

Intersections:

pf-c1: S1’(c).
pf-cz2 : S2’(c).
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Other gotchas

Intersections:

pf-c1 : S1’(0).

pf-c2 : S2’(c). pt-c: S1'(c) x S2’(c).
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Other gotchas

Intersections:

pf-c1: S1’(c).

pf-c2 : S2’(c). pt-c: S1'(c) x S2'(c).

Subsorting must generate proof coercions
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LF: a logical framework

Harper, Honsell, and Plotkin, 1987, 1993
Dependently-typed lambda-calculus

Encode deductive systems and metatheory,
uniformly and machine-checkably

» e.9. a programming language and its type safety theorem

» e.9. alogic and its cut elimination theorem
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Judgements as types

Syntax
P e e e

Simple type
» exp:type. tp:type.

Judgement
pilsb et

Type family
» of:exp — tp — type.

Derivation
> ‘fj clke:t

Well-typed term
» M:ofET

Proof checking

Type checking
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