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Abstract

The logical framework LF and its implementation as the Twelf metalogic
provide both a practical system and a proven methodology for representing
deductive systems and their metatheory in a machine-checkable way. An
extension of LF with refinement types provides a convenient means for
representing certain kinds of judgemental inclusions in an intrinsic manner.
I propose to carry out such an extension in full, adapting as much of the
Twelf metatheory engine as possible to the new system, and I intend to
argue that the extension is both useful and practical.

1 Introduction

Thesis: Refinement types are a useful and practical extension to the
LF logical framework.

The logical framework LF [HHP93] and its metalogic Twelf [PS99] can be
used to encode and reason about a wide variety of logics, languages, and other
deductive systems in formal, machine-checkable way. The key representation
strategy used to encode deductive systems in LF is the judgements-as-types
principle. Under judgements-as-types, the deductive system’s judgements are
represented as LF type families, and derivations of evident judgements are
represented as LF terms of particular types.

Recent studies have shown that ML-like languages can profitably be ex-
tended with a notion of subtyping called refinement types. A refinement type
discipline uses an extra layer of term classification above the usual type sys-
tem to more accurately capture certain properties of terms. Refinements, also
known as sorts, are usually only checked after normal typechecking succeeds,
resulting in a system that admits no more terms as well-typed but one that
classifies more precisely the terms that do typecheck.

In this work, I intend to show that such a refinement type system can also
profitably be added to LF. Under LF’s judgements-as-types representation
methodology, refinement types represent more precise judgements than those
represented by ordinary types, with subtyping between refinements acting as
a kind of judgemental inclusion. Things previously tricky to encode in LF, like
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subsyntactic relations between terms of an object language, become trivial to
encode with the availability of refinement types. Refinement types are a truly
useful addition to the LF representation language.

Of course, expressive power always comes at a cost, so I also intend to show
that the cost of refinement types is in fact quite small. Since a logical framework
like LF is usually one of the few “trusted components” in formal, machine-
checkable proofs, it is critical that its own metatheory rest on solid foundations,
and I will show that the addition of refinement types to LF does not overly
complicate its metatheory. In fact, I hope to show that refinement types are an
excellent match for LF: modern canonical forms-only presentations of LF make
use of bidirectional typechecking similar to that which has been used in recent
refinement type systems, and since LF is pure, no issues relating to effects arise
with the addition of refinements. Modern techniques make refinement types a
natural extension to LF, rather than a technical tour-de-force: refinement types
are a practical addition to LF.

To demonstrate that adding refinement types to LF is both useful and prac-
tical, I intend to exhibit an extension of LF with refinement types called LFR,
to work out important details of its meta(meta)theory, and to exhibit several
example programs that highlight the utility of refinement types for mechanized
metatheory.

To that end, much work has already been done. The first half of this pro-
posal reviews the completed work, which has focused primarily on specifying
the type theory underlying LFR and proving important metatheoretic proper-
ties. I first describe the LFR system by way of a series of illustrative examples
(Section 2), and then I present a high-level overview of certain metatheoretic
properties crucial to any logical framework, namely decidability of typecheck-
ing and the identity and substitution principles (Section 3). After that, I observe
that LFR as specified only appeals to subsorting at base sorts, but I go on to
explain how, surprisingly, higher-sort subsorting is an implicit feature of the
system by virtue of its canonical forms presentation (Section 4).

The rest of the proposal describes what more should be done to convincingly
demonstrate the utility and practicality of refinements for LF. Core components
include coming to a fuller understanding of LFR’s representation methodology
and specifying a unification algorithm suitable for type reconstruction and cov-
erage checking (described in Section 5). There are also several additional di-
rections for further study that could be worthwhile time permitting (described
in Section 6), including an operational interpretation, a prototype implemen-
tation, and various other useful components for metalogical reasoning. The
proposal concludes with a discussion of related work (Section 7) and a rough
timeline for completion (Section 8).

2 System and Examples

The design of the LFR type theory is heavily inspired by the canonical forms-
style presentations of logical frameworks popularized by Watkins in the spec-
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ification of the Concurrent Logical Framework CLF [WCPW02, WCPW04];
Harper and Licata recently presented core LF in this style [HL07]. In the canon-
ical forms-style, only β-normal, η-long (“canonical”) forms are admitted as
well-formed, and therefore ordinary substitution must be replaced by “hered-
itary substitution”, a partial function which hereditarily computes a canonical
form.

LFR is best understood through several examples. These examples not only
serve to motivate the design of the type theory, but also they begin to suggest
why refinement types are a useful addition to LF. In what follows, R refers to
atomic terms and N to normal terms. As in previous work on refinement types,
the refinement system does not change the underlying term structure, so our
atomic and normal terms are exactly the terms from canonical presentations of
LF.

R ::= c | x | R N atomic terms

N,M ::= R | λx.N normal terms

In this style of presentation, typing is defined bidirectionally by two judge-
ments: R⇒ A, which says atomic term R synthesizes type A, and N ⇐ A, which
says normal term N checks against type A. Since λ-abstractions are always
checked against a given type, they need not be decorated with their domain
types.

Types are similarly stratified into atomic and normal types.

P ::= a | P N atomic type families

A,B ::= P | Πx:A.B normal type families

The operation of hereditary substitution, written [N/x]
A

, is a partial function
which computes the canonical form of the standard capture-avoiding substitu-
tion of N for x. It is indexed by the putative type of x, A, to ensure termination,
but neither the variable x nor the substituted term N are required to bear any
relation to this type index for the operation to be defined. We show in Section 3
that when N and x do have type A, hereditary substitution is a total function on
well-typed terms.

Our layer of refinements uses metavariables Q for atomic sorts and S for
normal sorts. These mirror the definition of types above, except for the addition
of intersection and “top” sorts.

Q ::= s | Q N atomic sort families

S,T ::= Q | Πx::S⊏A.T | ⊤ | S1 ∧ S2 normal sort families

Sorts are related to types by a refinement relation, S ⊏ A (“S refines A”),
discussed below. We only sort-check well-typed terms, and a term of type A
can be assigned a sort S only when S ⊏ A. These constraints are collectively
referred to as the “refinement restriction”. We occasionally omit the “⊏ A” from
function sorts when it is clear from context.
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2.1 Example: Natural Numbers

For the first running example we will use the natural numbers in unary notation.
In LF, they would be specified as follows

nat : type.
zero : nat.
succ : nat→ nat.

Suppose we would like to distinguish the odd and the even numbers as
refinements of the type of all numbers.

even ⊏ nat.
odd ⊏ nat.

The form of the declaration is s ⊏ a where a is a type family already declared
and s is a new sort family. Sorts headed by s are declared in this way to refine
types headed by a. The relation S ⊏ A is extended through the whole sort
hierarchy in a compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:

zero :: even.

The general form of this declaration is c :: S, where c is a constant already
declared in the form c : A, and where S ⊏ A. The declaration for the successor
is slightly more difficult, because it maps even numbers to odd numbers and
vice versa. In order to capture both properties simultaneously we need to use
an intersection sort, written as S1 ∧ S2.1

succ :: even→ odd ∧ odd→ even.

In order for an intersection to be well-formed, both components must refine the
same type. The nullary intersection ⊤ can refine any type, and represents the
maximal refinement of that type.2

s ⊏ a ∈ Σ

s N1 . . .Nk ⊏ a N1 . . .Nk

S ⊏ A T ⊏ B

Πx::S.T ⊏ Πx:A.B

S1 ⊏ A S2 ⊏ A

S1 ∧ S2 ⊏ A ⊤ ⊏ A

To show that the declaration for succ is well-formed, we establish that even →
odd ∧ odd→ even ⊏ nat→ nat.

The refinement relation S ⊏ A should not be confused with the usual subtyping
relation. Although each is a kind of subset relation3, they are quite different:

1Intersection has lower precedence than arrow.
2As usual in LF, we use A → B as shorthand for the dependent type Πx:A.B when x does not

occur in B.
3It may help to recall the interpretation of S ⊏ A: for a term to be judged to have sort S, it must

already have been judged to have type A for some A such that S ⊏ A. Thus, the refinement relation
represents an inclusion “by fiat”: every term with sort S is also a term of sort A, by invariant. By
contrast, subsorting S1 ≤ S2 is a more standard sort of inclusion: every term with sort S1 is also a
term of sort S2, by subsumption (see Section 4).
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subtyping relates two types, is contravariant in the domains of function types,
and is transitive, while refinement relates a sort to a type, so it does not make
sense to consider its variance or whether it is transitive. We will discuss our
notion of subtyping, subsorting, below and in Section 4.

Now suppose that we also wish to distinguish the strictly positive natural
numbers. We can do this by introducing a sort pos refining nat and declaring
that the successor function yields a pos when applied to anything, using the
maximal sort.

pos ⊏ nat.
succ :: · · · ∧ ⊤ → pos.

Since we only sort-check well-typed programs and succ is declared to have type
nat→ nat, the sort ⊤ here acts as a sort-level reflection of the entire nat type.

We can specify that all odds are positive by declaring odd to be a subsort of
pos.

odd ≤ pos.

Although any ground instance of odd is evidently pos, we need the subsorting
declaration to establish that variables of sort odd are also pos.

Putting it all together, we have the following:

even ⊏ nat. odd ⊏ nat. pos ⊏ nat.
odd ≤ pos.
zero :: even.
succ :: even→ odd ∧ odd→ even ∧ ⊤ → pos.

Now we should be able to verify that, for example, succ (succ zero) ⇐ even.
To explain how, we analogize with pure canonical LF. Recall that atomic types
have the form a N1 . . .Nk for a type family a and are denoted by P. Arbitrary
types A are either atomic (P) or (dependent) function types (Πx:A.B). Canonical
terms are then characterized by the rules shown in the left column above.

There are two typing judgements, N ⇐ A which means that N checks
against A (both given) and R ⇒ A which means that R synthesizes type A (R
given as input, A produced as output). Both take place in a context Γ assigning
types to variables. To force terms to be η-long, the rule for checking an atomic
term R only checks it at an atomic type P. It does so by synthesizing a type
P′ and comparing it to the given type P. In canonical LF, all types are already
canonical, so this comparison is just α-equality.

On the right-hand side we have shown the corresponding rules for sorts.
First, note that the format of the context Γ is slightly different, because it declares
sorts for variables, not just types. The rules for functions and applications are
straightforward analogues to the rules in ordinary LF. The rule switch for
checking atomic terms R at atomic sorts Q replaces the equality check with a
subsorting check and is the only place where we appeal to subsorting (defined
below). For applications, we use the type A that refines the type S as the index
parameter of the hereditary substitution.
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Canonical LF LF with Refinements

Γ, x:A ⊢ N ⇐ B

Γ ⊢ λx.N⇐ Πx:A.B

Γ ⊢ R⇒ P′ P′ = P

Γ ⊢ R⇐ P

x:A ∈ Γ

Γ ⊢ x⇒ A

c:A ∈ Σ

Γ ⊢ c⇒ A

Γ ⊢ R⇒ Πx:A.B Γ ⊢ N ⇐ A

Γ ⊢ R N ⇒ [N/x]A B

Γ, x::S⊏A ⊢ N ⇐ T

Γ ⊢ λx.N ⇐ Πx::S⊏A.T
(Π-I)

Γ ⊢ R⇒ Q′ Q′ ≤ Q

Γ ⊢ R⇐ Q
(switch)

x::S⊏A ∈ Γ

Γ ⊢ x⇒ S
(var)

c :: S ∈ Σ

Γ ⊢ c⇒ S
(const)

Γ ⊢ R⇒ Πx::S⊏A.T Γ ⊢ N⇐ S

Γ ⊢ R N ⇒ [N/x]A T
(Π-E)

Subsorting is exceedingly simple: it only needs to be defined on atomic
sorts, and is just the reflexive and transitive closure of the declared subsorting
relationship. For dependent sort families, the indices must be equal.

s1≤s2 ∈ Σ

s1 N1 . . .Nk ≤ s2 N1 . . .Nk Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

The sorting rules do not yet treat intersections. In line with the general
bidirectional nature of the system, the introduction rules are part of the checking
judgement, and the elimination rules are part of the synthesis judgement. Binary
intersection S1 ∧ S2 has one introduction and two eliminations, while nullary
intersection ⊤ has just one introduction.

Γ ⊢ N⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2

(∧-I)
Γ ⊢ N ⇐ ⊤

(⊤-I)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S1

(∧-E1)
Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S2

(∧-E2)

Note that although canonical forms-style LF type synthesis is unique, LFR sort
synthesis is not, due to the intersection elimination rules.

Now we can see how these rules generate a deduction of succ (succ zero)⇐
even. The context is always empty and therefore omitted. To save space, we
abbreviate even as e, odd as o, pos as p, zero as z, and succ as s, and we omit
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reflexive uses of subsorting.

⊢ s⇒ e→ o ∧ (o→ e ∧ ⊤ → p)

⊢ s⇒ o→ e ∧ ⊤ → p

⊢ s⇒ o→ e

⊢ s⇒ e→ o ∧ (. . .)
⊢ s⇒ e→ o

⊢ z⇒ e
⊢ z⇐ e

⊢ s z⇒ o
⊢ s z⇐ o

⊢ s (s z)⇒ e

⊢ s (s z)⇐ e

Using the ∧-I rule, we can check that succ zero is both odd and positive:

...
⊢ s z⇐ o

...
⊢ s z⇐ p

⊢ s z⇐ o ∧ p

Each remaining subgoal now proceeds similarly to the above example.
To illustrate the use of sorts with non-trivial type families, consider the

definition of the double relation in LF.

double : nat→ nat→ type.
dbl-zero : double zero zero.
dbl-succ : ΠX:nat.ΠY:nat. double X Y→ double (succ X) (succ (succ Y)).

With sorts, we can now directly express the property that the second argument
to double must be even. But to do so, we require a notion analogous to kinds
that may contain sort information. We call these classes and denote them by L.

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S⊏A. L | ⊤ | L1 ∧ L2 classes

Classes L mirror kinds K, and they have a refinement relation L ⊏ K similar to
S ⊏ A. (We elide the rules here.) Now, the general form of the s ⊏ a declaration
is s ⊏ a :: L, where a : K and L ⊏ K; this declares sort constant s to refine type
constant a and to have class L.

We reuse the type name double as a sort, as no ambiguity can result. As
before, we use ⊤ to represent a nat with no additional restrictions.

double ⊏ double :: ⊤ → even→ sort.
dbl-zero :: double zero zero.
dbl-succ :: ΠX::⊤.ΠY::even. double X Y→ double (succ X) (succ (succ Y)).

After these declarations, it would be a sort error to pose an Elf-like logic
programming query such as “?- double X (succ (succ (succ zero))).” before any
search is ever attempted. In LF, queries like this could fail after a long search
or even not terminate, depending on the search strategy. One of the important
motivations for considering sorts for LF is to avoid uncontrolled search in favor
of decidable static properties whenever possible.

7



The tradeoff for such precision is that now sort checking itself is non-
deterministic and has to perform search because of the choice between the two
intersection elimination rules. As Reynolds has shown, this non-determinism
causes intersection type checking to be PSPACE-hard [Rey96], even for nor-
mal terms as we have here [Rey89]. As discussed in Section 5, one element of
this proposal is to determine the practicality of LFR sort checking by seeking
heuristics that help in common cases.

2.2 A Second Example: The λ-Calculus

As a second example, we use an intrinsically typed version of the call-by-
value simply-typed λ-calculus. This means every object language expression
is indexed by its object language type. We use sorts to distinguish the set of
values from the set of arbitrary computations. While this can be encoded in LF
in a variety of ways, it is significantly more cumbersome.

tp : type. % the type of object language types
➪ : tp→ tp→ tp. % object language function space
%infix right 10 ➪ .

exp : tp→ type. % the type of expressions
cmp ⊏ exp. % the sort of computations
val ⊏ exp. % the sort of values

val ≤ cmp. % every value is a (trivial) computation

lam :: (val A→ cmp B)→ val (A ➪ B).
app :: cmp (A ➪ B)→ cmp A→ cmp B.

In the last two declarations, we follow Twelf convention and leave the
quantification over A and B implicit, to be inferred by type reconstruction.
Also, we did not explicitly declare a type for lam and app, since a practical front
end should be able to recover this information from the refinement declarations
for val and cmp, avoiding redundancy. Part of the proposed work is to specify
a front end that does this kind of type reconstruction.

The most interesting declaration is the one for the constant lam. The argu-
ment type (val A→ cmp B) indicates that lam binds a variable which stands for
a value of type A and the body is an arbitrary computation of type B. The result
type val (A ➪ B) indicates that any λ-abstraction is a value. Now we have, for
example (parametrically in A and B): A::⊤⊏tp,B::⊤⊏tp ⊢ lam λx. lam λy. x ⇐
val (A ➪ (B ➪ A)).

Now we can express that evaluation must always returns a value. Since
the declarations below are intended to represent a logic program, we follow
the logic programming convention of reversing the arrows in the declaration
of ev-app.

eval :: cmp A→ val A→ sort.
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ev-lam :: eval (lam λx.E x) (lam λx.E x).
ev-app :: eval (app E1 E2) V

← eval E1 (lam λx.E′
1

x)
← eval E2 V2

← eval (E′
1

V2) V.

Sort checking the above declarations demonstrates that evaluation always re-
turns a value. Moreover, if type reconstruction gives E′

1
the “most general”

sort val A → cmp A, the declarations also ensure that the language is indeed
call-by-value: it would be a sort error to ever substitute a computation for a
lam-bound variable, for example, by evaluating (E′

1
E2) instead of (E′

1
V2) in

the ev-app rule. An interesting question for future work is whether type recon-
struction can always find such a “most general” sort for implicitly quantified
metavariables.

A side note: through the use of sort families indexed by object language
types, the sort checking not only guarantees that the language is call-by-value
and that evaluation, if it succeeds, will always return a value, but also that the
object language type of the result remains the same (type preservation).

2.3 A Final Example: The Calculus of Constructions

As a final example, we present the Calculus of Constructions. Usually, there is
a great deal of redundancy in its presentation because of repeated constructs
at the level of objects, families, and kinds. Using sorts, we can enforce the
stratification and write typing rules that are as simple as if we assumed the
infamous type : type.

term : type. % terms at all levels

hyp ⊏ term. % hyperkinds (the classifier of “kind”)
knd ⊏ term. % kinds
fam ⊏ term. % families
obj ⊏ term. % objects

tp :: hyp ∧ knd.
pi :: fam→ (obj→ fam)→ fam ∧ % dependent function types, Πx:A.B

fam→ (obj→ knd)→ knd ∧ % type family kinds, Πx:A.K
knd→ (fam→ fam)→ fam ∧ % polymorphic function types, ∀α:K.A
knd→ (fam→ knd)→ knd. % type operator kinds, Πα:K1.K2

lm :: fam→ (obj→ obj)→ obj ∧ % functions, λx:A.M
fam→ (obj→ fam)→ fam ∧ % type families, λx:A.B
knd→ (fam→ obj)→ obj ∧ % polymorphic abstractions, Λα:K.M
knd→ (fam→ fam)→ fam. % type operators, λα:K.A

ap :: obj→ obj→ obj ∧ % ordinary application, M N
fam→ obj→ fam ∧ % type family application, A M
obj→ fam→ obj ∧ % polymorphic instantiation, M [A]
fam→ fam→ fam. % type operator instantiation, A B
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The typing rules can now be given non-redundantly, illustrating the implicit
overloading afforded by the use of intersections. We omit the type conversion
rule and auxiliary judgements for brevity.

of :: knd→ hyp→ sort ∧

fam→ knd→ sort ∧

obj→ fam→ sort.

of-tp :: of tp tp.

of-pi :: of (pi T1 λx.T2 x) tp
← of T1 tp
← (Πx:term. of x T1 → of (T2 x) tp).

of-lm :: of (lm U1 λx.T2 x) (pi U1 λx.U2 x)
← of U1 tp
← (Πx:term. of x U1 → of (T2 x) (U2 x)).

of-ap :: of (ap T1 T2) (U1 T2)
← of T1 (pi U2 λx.U1 x)
← of T2 U2.

Intersection types also provide a degree of modularity: by deleting some con-
juncts from the declarations of pi, lm, and ap above, we can obtain an encoding
of any point on the λ-cube.

Note, though, that in the rules of-pi and of-lm, we omit the sort annotation
from the Π-bound variable, leaving it to be inferred by type reconstruction:
each declaration actually turns into an intersection of declarations, and the
type of the variable is different for each one. So the price of modularity is
more complicated type reconstruction, part of the proposed work described in
Section 5.

3 Metatheory

In this section, we present some metatheoretic results about our framework.
These follow a similar pattern as previous work using hereditary substitutions
[WCPW02, NPP07, HL07]. The following is only a high-level whirlwind tour of
the LFR metatheory: we elide nearly all proofs and auxiliary lemmas. Details
of the development can be found in the LFR technical report [LP07].

3.1 Hereditary Substitution

Recall that we replace ordinary capture-avoiding substitution with hereditary
substitution, [N/x]

A
, an operation which contracts any redexes it might create

in the course of substitution. The operation is indexed by the putative type of
N and x to facilitate a proof of termination. In fact, the type index on hereditary
substitution need only be a simple type to ensure termination. To that end, we
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denote simple types by α and define an erasure to simple types (A)−.

α ::= a | α1 → α2 (a N1 . . .Nk)− = a (Πx:A.B)− = (A)− → (B)−

For clarity, we also index hereditary substitutions by the syntactic category on
which they operate, so for example we have [N/x]n

A
M =M′ and [N/x]s

A
S = S′.

We write [N/x]n
A

M =M′ as short-hand for [N/x]n
(A)−

M =M′.

Hereditary substitution is defined judgementally by inference rules. The
only place β-redexes might be introduced is when substituting a normal term
N into an atomic term R: N might be a λ-abstraction, and the variable being
substituted for may occur at the head of R. Therefore, the judgements defining
substitution into atomic terms are the most interesting ones.

We denote substitution into atomic terms by two judgements: [N0/x0]rr
α0

R =
R′, for when the head of R is not x, and [N0/x0]rn

α0
R = (N′, α′), for when the head

of R is x, where α′ is the simple type of the output N′. The former is just defined
compositionally; the latter is defined by two rules:

[N0/x0]rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(subst-rn-β)

The rule subst-rn-var just returns the substitutend N0 and its putative type
index α0. The rule subst-rn-β applies when the result of substituting into
the head of an application is a λ-abstraction; it avoids creating a redex by
hereditarily substituting into the body of the abstraction.

A simple lemma establishes that these two judgements are mutually exclu-
sive by examining the head of the input atomic term.

head(x) = x head(c) = c head(R N) = head(R)

Lemma 3.1.

1. If [N0/x0]rr
α0

R = R′, then head(R) , x0.

2. If [N0/x0]rn
α0

R = (N′, α′), then head(R) = x0.

Proof. By induction over the given derivation. �

Substitution into normal terms has two rules for atomic terms R, one which
calls the “rr” judgement and one which calls the “rn” judgement.

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
(subst-n-atom)

[N0/x0]rn
α0

R = (R′, a′)

[N0/x0]n
α0

R = R′
(subst-n-atom-norm)

Note that the latter rule requires both the term and the type returned by the
“rn” judgement to be atomic.
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Every other syntactic category’s substitution judgement is defined compo-
sitionally.

Although we have only defined hereditary substitution relationally, it is
easy to show that it is in fact a partial function by proving that there only ever
exists one “output” for a given set of “inputs”.

Theorem 3.2 (Functionality of Substitution). Hereditary substitution is a func-
tional relation. In particular:

1. If [N0/x0]rr
α0

R = R1 and [N0/x0]rr
α0

R = R2, then R1 = R2,

2. If [N0/x0]rn
α0

R = (N1, α1) and [N0/x0]rn
α0

R = (N2, α2), then N1 = N2 and
α1 = α2,

3. If [N0/x0]n
α0

N = N1 and [N0/x0]n
α0

N = N2, then N1 = N2,

and similarly for other syntactic categories.

Additionally, it is worth noting that hereditary substitution so-defined be-
haves just as “ordinary” substitution on terms that do not contain the distin-
guished free variable.

Theorem 3.3 (Trivial Substitution). Hereditary substitution for a non-occurring
variable has no effect.

1. If x0 < FV(R), then [N0/x0]rr
α0

R = R,

2. If x0 < FV(N), then [N0/x0]n
α0

N = N,

and similarly for other syntactic categories.

3.2 Decidability

A hallmark of the canonical forms/hereditary substitution approach is that it
allows a decidability proof to be carried out comparatively early, before prov-
ing anything about the behavior of substitution, and without dealing with any
complications introduced by β/η-conversions inside types. Ordinarily in a de-
pendently typed calculus, one must first prove a substitution theorem before
proving typechecking decidable, since typechecking relies on type equality,
type equality relies on β/η-conversion, and β/η-conversions rely on substitu-
tion preserving well-formedness. (See for example [HP05] for a typical non-
canonical account of LF definitional equality.)

In contrast, if only canonical forms are permitted, then type equality is just
α-convertibility, so one only needs to show decidability of substitution in order to
show decidability of typechecking. Since LF encodings represent judgements
as type families and proof-checking as typechecking, it is comforting to have a
decidability proof that relies on so few assumptions.

Theorem 3.4 (Decidability of Substitution). Hereditary substitution is decidable.
In particular:
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1. Given N0, x0, α0, and R, either∃R′. [N0/x0]rr
α0

R = R′, or∄R′. [N0/x0]rr
α0

R = R′,

2. Given N0, x0, α0, and R, either ∃(N′, α′). [N0/x0]rn
α0

R = (N′, α′), or
∄(N′, α′). [N0/x0]rn

α0
R = (N′, α′),

3. Given N0, x0, α0, and N, either ∃N′. [N0/x0]n
α0

N = N′, or ∄N′. [N0/x0]n
α0

N =
N′,

and similarly for other syntactic categories.

Theorem 3.5 (Decidability of Subsorting). Given Q1 and Q2, either Q1 ≤ Q2 or
Q1 6≤ Q2.

Proving decidability of the given typing rules directly is technically tricky
due to a combination of the bidirectional character of natural deduction and our
non-deterministic intersection synthesis rules: since the intersection elimina-
tion rules are not directed by the structure of the term, there’s nothing obvious
to induct on. Intuitively, though, the checking rules always decrease the size of
the sort on the way up a derivation while the synthesis rules always decrease
the size of the sort on the way down, making both judgements decidable.

To make this argument precise, we give an alternative deterministic for-
mulation of the typing rules that is sound and complete with respect to the
original rules; the intersection eliminations are delayed as long as possible and
no information is discarded during synthesis. Details of the alternative system
and its soundness and completeness can be found in the LFR technical report
[LP07].

Theorem 3.6 (Decidability of Sort Checking). Sort checking is decidable. In par-
ticular:

1. Given Γ, N, and S, either Γ ⊢ N ⇐ S or Γ 0 N ⇐ S,

2. Given Γ, S, and A, either Γ ⊢ S ⊏ A or Γ 0 S ⊏ A, and

3. Given Σ, either ⊢ Σ sig or 0 Σ sig.

3.3 Identity and Substitution Principles

Since well-typed terms in our framework must be canonical, that is β-normal
and η-long, it is non-trivial to prove S → S for non-atomic S, or to compose
proofs of S1 → S2 and S2 → S3. The Identity and Substitution principles
ensure that our type theory makes logical sense by demonstrating the reflexivity
and transitivity of entailment. Reflexivity is witnessed by η-expansion, while
transitivity is witnessed by hereditary substitution.

The Identity Principle effectively says that synthesizing (atomic) objects can
be made to serve as checking (normal) objects. The Substitution Principle du-
ally says that checking objects may stand in for synthesizing assumptions, that
is, variables. The Substitution Theorem also tells us that if all of its subjects are
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well-formed, a heriditary substitution exists—a non-trivial fact, since heredi-
tary substitution is in general a partial operation. In this way, the Substitution
Theorem is effectively a normalization theorem.

Theorem 3.7 (Expansion). If Γ ⊢ S ⊏ A and Γ ⊢ R⇒ S, then Γ ⊢ ηA(R)⇐ S.

Theorem 3.8 (Identity). If Γ ⊢ S ⊏ A, then Γ, x::S⊏A ⊢ ηA(x)⇐ S.

Theorem 3.9 (Substitution). Suppose ΓL ⊢ N0 ⇐ S0 . Then:

1. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx , and

• ΓL, x0::S0⊏A0, ΓR ⊢ S ⊏ A , and

• ΓL, x0::S0⊏A0, ΓR ⊢ N ⇐ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and

• [N0/x0]s
A0

S = S′ and [N0/x0]a
A0

A = A′ and ΓL, Γ
′
R
⊢ S′ ⊏ A′ , and

• [N0/x0]n
A0

N = N′ and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

2. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx and

• ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and [N0/x0]s
A0

S = S′ , and either

– [N0/x0]rr
A0

R = R′ and ΓL, Γ
′
R
⊢ R′ ⇒ S′ , or

– [N0/x0]rn
A0

R = (N′, α′) and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

and similarly for other syntactic categories.

The proofs of the Identity and Substitution principles use only elementary
methods like structural induction—in particular, they require nothing akin log-
ical relations. Despite their proof-theoretic simplicity, though, they must be
very carefully staged. Substitution as stated does not admit a straightforward
inductive proof: instead, it is broken up into several “Proto-Substitution” the-
orems which do not require well-formedness of all their subjects, but instead
assume just those properties that are required for each step of the proof.

For instance, Proto-Substitution for normal terms Γ ⊢ N ⇐ S does not re-
quire the context Γ or the classifying sort S to be well-formed, but it instead
merely requires that hereditary substitution be defined on them. This is suffi-
cient to show that hereditary substitution is defined on the term N and that its
substitution instance has the substituted sort in the substituted context.
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After proving Proto-Substitution for terms, we can go on to show Proto-
Substitution for sorts and types. Using this, we can show Proto-Substitution
for contexts. Finally, we have enough to prove the stated Substitution Theorem
as a direct corollary.

The Expansion principle’s proof is a straightforward structural induction,
with one appeal to Substitution to determine that hereditary substitution is de-
fined on a well-formed sort. The Identity principle follows as a direct corollary.

Along the way, we require two lemmas, one about how substitutions com-
pose and another about how they commute with η-expansions. To prove
the Substitution theorem, we need a lemma analogous to the property of
non-hereditary substitutions that [N0/x0] [N2/x2] N = [[N0/x0] N2/x2] [N0/x0] N.
Hereditary substitutions enjoy a similar property, with an additional proviso
about definedness: if the three “inner” substitutions are defined, then the two
“outer” ones are also defined, and equal. For the Expansion theorem, we need
to know that substitution of variable’s η-expansion for itself acts as an identity
substitution.4

Lemma 3.10 (Composition of Substitutions). Suppose [N0/x0]n
α0

N2 = N8
2

and
x2 < FV(N0). Then if

[N0/x0]n
α0

N = N8 and [N2/x2]n
α2

N = N′,

then for some N8′,

[N82/x2]n
α2

N8 = N8′ and [N0/x0]n
α0

N′ = N8′.

and similarly for other syntactic categories.

Lemma 3.11 (Commutativity of Substitution and η-expansion). Substitution
commutes with η-expansion. In particular:

1. If [ηα(x)/x]n
αN = N′, then N′ = N ,

2. If [N/x]n
α ηα(x) = N′, then N′ = N ,

and similarly for other syntactic categories.

4 Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule,
the switch rule when we switch modes from checking to synthesis. Since we
insist on typing only canonical forms, this rule is limited to checking at atomic
sorts Q, and consequently, subsorting need only be defined on atomic sorts.
These observations naturally lead one to ask, what is the status of higher-sort
subsorting in LFR? How do our intuitions about things like structural rules,
variance, and distributivity—in particular, the rules shown in Figure 1—fit into
the LFR picture?

4The categorically-minded reader might think of the composition lemma as the associativity
of ◦ and commutativity as the right- and left-unit laws for ◦, where ◦ in the category represents
substitution, as usual.
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S1 ≤ S2

S ≤ S
(refl)

S1 ≤ S2 S2 ≤ S3

S1 ≤ S3

(trans)
S2 ≤ S1 T1 ≤ T2

Πx::S1.T1 ≤ Πx::S2.T2

(S-Π)

S ≤ ⊤
(⊤-R)

T ≤ S1 T ≤ S2

T ≤ S1 ∧ S2

(∧-R)
S1 ≤ T

S1 ∧ S2 ≤ T
(∧-L1)

S2 ≤ T

S1 ∧ S2 ≤ T
(∧-L2)

⊤ ≤ Πx::S.⊤
(⊤/Π-dist)

(Πx::S.T1) ∧ (Πx::S.T2) ≤ Πx::S. (T1 ∧ T2)
(∧/Π-dist)

Figure 1: Derived rules for subsorting at higher sorts.

It turns out that despite not explicitly including subsorting at higher sorts,
LFR implicitly includes an intrinsic notion of higher-sort subsorting through the
η-expansion associated with canonical forms. The simplest way of formulating
this intrinsic notion is as a variant of the identity principle: S is taken to be a
subsort of T if Γ, x::S⊏A ⊢ ηA(x)⇐ T. This notion is equivalent to a number of
other alternate formulations, including a subsumption-based formulation and
a substitution-based formulation.

Theorem 4.1 (Alternate Formulations of Subsorting). Suppose that for some Γ0,
Γ0 ⊢ S1 ⊏ A and Γ0 ⊢ S2 ⊏ A, and define:

1. S1 ≤1 S2
def
= for all Γ and R: if Γ ⊢ R⇒ S1, then Γ ⊢ ηA(R)⇐ S2.

2. S1 ≤2 S2
def
= for all Γ: Γ, x::S1⊏A ⊢ ηA(x)⇐ S2.

3. S1 ≤3 S2
def
= for all Γ and N: if Γ ⊢ N ⇐ S1, then Γ ⊢ N⇐ S2.

4. S1 ≤4 S2
def
= for all ΓL, ΓR, N, and S: if ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S then

ΓL, x::S1⊏A, ΓR ⊢ N ⇐ S

5. S1 ≤5 S2
def
= for all ΓL, ΓR, N, S, and N1: if ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S and

ΓL ⊢ N1 ⇐ S1, then ΓL, [N1/x]
γ

A
ΓR ⊢ [N1/x]n

A
N ⇐ [N1/x]s

A
S.

Then, S1 ≤1 S2 ⇐⇒ S1 ≤2 S2 ⇐⇒ · · · ⇐⇒ S1 ≤5 S2.

Proof. Each implication 1 =⇒ 2 =⇒ · · · =⇒ 5 =⇒ 1 follows directly from the
Identity and Substitution principles along with Lemma 3.11, the Commutativity
of Substitution with η-expansion. �
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If we take “subsorting as η-expansion” to be our model of subsorting, we
can show the “usual” presentation in Figure 1 to be both sound and complete
with respect to this model. In other words, subsorting as η-expansion really
is subsorting (soundness), and it is no more than subsorting (completeness).
Alternatively, we can say that completeness demonstrates that there are no
subsorting rules missing from the usual declarative presentation: Figure 1
accounts for everything covered intrinsically by η-expansion.

Theorem 4.2 (Soundness of Declarative Subsorting). If S ≤ T, then Γ, x::S⊏A ⊢
ηA(x)⇐ T.

Theorem 4.3 (Completeness of Declarative Subsorting). If Γ, x::S⊏A ⊢ ηA(x)⇐
T, then S ≤ T.

Soundness is a straightforward inductive argument. The proof of com-
pleteness is considerably more intricate. We demonstrate completeness via a
detour through an algorithmic subsorting system very similar to the algorith-
mic typing system used to show decidability, mentioned above in Section 3.2.
To show completeness, we show that intrinsic subsorting implies algorithmic
subsorting and that algorithmic subsorting implies declarative subsorting; the
composition of these theorems is our desired completeness result.

5 Proposed Work

The main core of the proposed work revolves around understanding enough
of LFR that it would be possible to build a practical logical framework suitable
for mechanized metatheory, similar to the Twelf system [PS99]. In particular,
this entails understanding LFR representation methodology, solving a suitable
fragment of higher-order unification for LFR terms, and determining a useful
enough type reconstruction algorithm.

5.1 Representation Methodology

An important step in designing a new logical framework is to understand its
representation methodology. The original LF was founded on the principle of
judgements as types, in which a deductive system’s judgements are represented
as LF type families. The linear logical framework LLF was designed to make
use of state as linear hypotheses [CP02], where the evolution of a stateful sys-
tem is represented as a context of linear resources. Most recently, Watkins et
al. described the concurrent logical framework CLF and its guiding principle
of concurrent computations as monadic expressions [WCPW02, WCPW04], where
possible reorderings of concurrent computations are captured by an equality
relation modding out by permutative conversions of monadic binding.

A complete understanding of representation methodology entails an under-
standing of the notion of adequacy. Normally, one’s LF formalizations are backed
by an adequacy theorem, which exhibits an isomorphism between constructs
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of one’s deductive system and canonical forms of certain LF type families; then
formal results about an encoding automatically represent results about the in-
formal system. What kind of isomorphism must we exhibit to show an LFR
encoding adequate? Is the nature of the isomorphism changed by the fact that
synthesized sorts are not unique, as synthesized types are in LF? Does our
interpretation that terms are typechecked before they are sort-checked allow us
to leverage an LF adequacy theorem when proving an LFR adequacy theorem
for an extended system?

What is the representation methodology embodied by the design of LFR?
Our sorts, through the intrinsic interpretation of subsorting, represent a form
of judgemental inclusion, so perhaps it should be something like judgemental
inclusion as refinement types. In order to better characterize the general methods
of representing deductive systems in LFR, I propose to create a suite of example
encodings from a variety of domains representative of the kinds of formaliza-
tions I expect LFR users to carry out. Not only would a suite of examples
elucidate a representation methodology, but also it would serve to demonstrate
the utility of LFR—although the examples from Section 2 suggest the utility of
LFR, they only begin to scratch the surface.

Furthermore, in order to understand the meaning of adequacy for LFR
encodings, I propose to do several careful proofs of adequacy, in the style of
Harper and Licata [HL07], for a representative subset of this suite of examples.

5.2 Subset Interpretation

The subset interpretation is a translation of LFR signatures and derivations into
ordinary LF signatures and derivations. Sorts are represented as predicates on
type families, and sort declarations for constants turn into predicate declara-
tions for those constants. The running example of natural numbers illustrates
the key ideas succinctly. Recall the signature:

nat : type.
zero : nat.
succ : nat→ nat.

even, odd, pos ⊏ nat.
zero :: even.
succ :: even→ odd
∧ odd→ even
∧ ⊤→ pos.

Under the subset interpretation, even, odd, and pos are represented as predicates
over natural numbers, i.e. unary type families, and the two sort declarations
for zero and succ turn into declarations of ways to prove those predicates for
given natural numbers.

nat : type.
zero : nat.

18



succ : nat→ nat.

even, odd, pos : nat→ type.

p−zero : even zero.
p−succ : (Πx:nat. even x→ odd (succ x))
× (Πx:nat. odd x→ even (succ x))
× (Πx:nat. 1→ pos (succ x)).

As you can see, the sort declaration for the constant zero turned into a con-
structor for predicates that hold of zero and the sort declaration for the constant
succ turned into a constructor for predicates that hold of natural numbers con-
structed using succ. For compositionality’s sake it is convenient to let our target
language extend LF with products and unit. This is really no extension at all,
though: products can always be eliminated by distributing them over arrows
until they reach the top-level of the signature, where they can then be split into
multiple declarations.

A compositional translation following these principles is relatively straight-
forward to carry out, if slightly tedious. The translation works over sorting

derivations: a derivation of Γ ⊢ S ⊏ A turns into a type with a hole, Ŝ(−), and a

derivation of Γ ⊢ N ⇐ S turns into a proof N̂ : Ŝ(N) representing evidence that
the term N has property S. Intersections of sorts become products of proofs,
and the trivial sort ⊤ becomes the trivial unit type.

As with any translation based on non-unique derivations, we must be care-
ful to ensure coherence [BTCGS91, Rey91]: any two translations of the same
judgement should be equal. Although working with a canonical forms-only
presentation obviates any of the usual reasoning about β/η-equality, we have
introduced something new to the game: equality of evidences.

As it turns out, the naı̈ve subset interpretation is not coherent: some equal-
ities that hold in the source might not hold after translation. Since LF typing
depends upon term equality, some terms which typechecked in the source
might not typecheck in the translation. A slightly contrived example illustrates
the phenomenon:

a : type.
c : a.

s ⊏ a.
c :: s ∧ s. % note nondeterminism!

eq : a→ a→ type. % equality on a’s
eq/i : Πx:a. eq x x.

seq ⊏ eq :: s→ s→ sort. % equality on s’s
eq/i ::Πx::s. seq x x.
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Under this signature, we can derive both · ⊢ seq c c ⊏ eq c c and · ⊢ eq/i c ⇐
seq c c. But beware, for both derivations will contain subderivations of · ⊢ c⇐ s,
and there are two derivations that · ⊢ c ⇐ s—one derivation uses the first
conjunct of c’s sort declaration, the other uses the second. The signature’s
translation under the subset interpretation is as follows:

a : type.
c : a.
s : a→ type.
p−c : s c × s c.

eq : a→ a→ type.
eq/i : Πx:a. eq x x.

seq :Πx:a. s x→Πy:a. s y→ eq x y→ type.
p−eq/i : Πx:a. Πpx:s x. seq x px x px (eq/i x).

Owing to the nondeterminism discussed above, there are two translations
of · ⊢ c ⇐ s, namely · ⊢ π1 p−c ⇐ s c and · ⊢ π2 p−c ⇐ s c. Conse-
quently, there are several translations for the sort · ⊢ seq c c ⊏ eq c c; one of
them is seq c (π1 p−c) c (π2 p−c) (−), where we use (−) to represent the hole
of type eq c c. We also have that the term · ⊢ eq/i c ⇐ seq c c translates to
the proof p−eq/i c (π1 p−c). But it is impossible to derive · ⊢ p−eq/i c (π1 p−c)⇐
seq c (π1 p−c) c (π2 p−c) (eq/i c), as our soundness criterion above would require—
the sort uses two different translations for c, and the signature requires them to
be equal.

The solution to the coherence problem proof irrelevance [Pfe01]. If we specify
in our translation that proofs of sorting predicates appear in irrelevant positions,
then we obtain exactly the equalities we need for the translation to be coherent.
Proof irrelevance provides the essential ingredient: for a term to belong to a
sort, we require a proof that it has that sort, but we don’t care which one: any
proof will suffice, and all such proofs should be treated as equal.

To date, I have exhibited several candidate subset interpretations, differing
chiefly in minor syntactic details. I propose to settle on one presentation as
canonical and to carry out the requisite proof that it is sound and complete in
the appropriate sense, along the way demonstrating that by treating sorting
proofs as irrelevant, we obtain all the desired equalities in the target of the
translation.

5.3 Coercion Interpretation

An alternative interpretation of LFR into some form of LF without refinements
is the coercion interpretation. Under this interpretation, sorts are represented as
types, objects with sorts are represented as objects with types, and inclusions
between sorts are represented as coercion functions. The coercion interpretation
corresponds to so-called “intrinsic encodings” in LF, where for instance, values
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in a λ-calculus are represented as a separate type family and an explicit coercion
from values to expressions is assumed. The LFR signature

exp : type.
val ⊏ exp.

lam : (exp→ exp)→ exp.
app : exp→ exp→ exp.

lam :: (val→ exp)→ val.

might be translated to the LF signature

exp : type.
val : type.
val2exp : val→ exp.

lam : (exp→ exp)→ exp.
app : exp→ exp→ exp.

vlam : (val→ exp)→ val.

The issues here are subtler than in the subset interpretation. We would like the
terms val2exp (vlam λx.val2exp x) and lam λx.x to be equal, since their sources
were equal before translation. This is another manifestation of the coherence
problem, but perhaps one more closely related to coercive interpretations of
subtyping for functional languages [BTCGS91].

The coercion interpretation has been studied previously by Chaudhuri (per-
sonal communication). In his studies, he came to believe that a variation on the
usual notion of proof irrelevance might handle the coherence problem. The pre-
cise characterization of this notion was never completed successfully, however,
so no viable coercion interpretation has been exhibited to date.

It is possible that using the modern canonical forms-style presentation of
LFR, the relevant issues will be more transparent than they were in previous
studies. Therefore, I propose to carry out a brief study of the coercion interpre-
tation, not only to see if its character becomes clearer when viewed through a
more modern lens, but also to glean any useful knowledge it may have to offer
about the relation between LFR and LF without refinements: such knowledge
will be invaluable when trying to extend LFR with the metatheoretic capabili-
ties of Twelf. It may turn out that this branch of study yields no useful insights
or artifacts, but I believe it is worth exploring at least briefly.

5.4 Contextual Modal Formulation

Contextual Modal Type Theory [NPP07] provides an account of logic program-
ming metavariables, an integral component to an understanding of unification.
Thus, before embarking on a study of metalogical reasoning in LFR, I propose
to reformulate Contextual Modal Type Theory in the presence of refinement
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types. I do not anticipate any great difficulties in the extension to sorts, es-
pecially since CMTT is already presented in a modern canonical forms style.
Nonetheless, an account of metavariables is a necessary first step to turning
LFR into a usable metalogical framework.

5.5 Unification

Unification lies at the heart of a metalogical framework: it is an integral com-
ponent of logic programming, type reconstruction, pattern matching, and cov-
erage checking, at least. In short, unification is the engine that makes formal
reasoning possible. I therefore propose to examine the problem of unification
in the presence of refinement types.

Many of the essential difficulties of unification in the presence of intersec-
tion types have been studied in the simply-typed case by Kohlhase and Pfen-
ning [KP93]. Kohlhase and Pfenning primarily studied problem of unifiability,
though, without necessarily seeking most general unifiers. It remains therefore
not only to adapt their techniques to the dependent case, but also to bring their
presentation more into line with modern views of pattern unification.

The main problem of unification with intersection types is choosing the
types of generated metavariables. Consider the following fragment, which
defines a type of boolean formulas and refinements for true formulas and false
formulas.

bool : type.

t ⊏ bool.
f ⊏ bool.

true :: t.
false :: f.

and :: t→ t→ t
∧ t→ f→ f
∧ f→ t→ f
∧ f→ f→ f.

As you can see, the sort given for and specifies its truth table completely, giving
a great deal of type information for the unification algorithm to work with.
Suppose that in this signature we are presented with a unification problem
X::t→ f; y::t ⊢ X y � and M N : f. Following standard pattern unification tech-
niques, we can set X to λb.and (X1 b) (X2 b), with one of

X1 :: t→ t,X2 :: t→ f, or

X1 :: t→ f,X2 :: t→ t, or

X1 :: t→ f,X2 :: t→ f.

The question is how do we choose which of these incomparable metavariable
typings to proceed with? Following Kohlhase, we can make up type variables
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to represent the codomain types of X1 and X2 and adding a subtyping constraint
to be solved later. In particular, for this problem, we can set

X1 :: t→ α1,X2 :: t→ α2

and include the constraint

t→ f→ f ∧ f→ t→ f ∧ f→ f→ f ≤ α1 → α2 → f

Each conjunct in the left-hand side represents one of the possible typings given
above; the two argument positions of each conjunct represent the codomain
types of X1 and X2, respectively; and the final f represents the type of the
original unification problem. Inverting the subtyping constraint, we can see
that it is equivalent to asserting that either α1 is t and α2 is f, or that α1 is f and
α2 is t, or that α1 and α2 are both f — in other words, exactly the disjunction we
wanted to specify above.

Since in LFR, we only have primitive subtyping at base types, this may
not be precisely the right strategy for encoding subtyping constraints, but it is
comforting nonetheless to know that the essential ingredients of intersection
unification have been studied before. Ideally, we would like to exhibit a unifi-
cation algorithm that cleanly separates term unification from refinement type
checking, and to prove that such an algorithm is still complete.

5.6 Type Reconstruction

Some form of type reconstruction is essential for making a logical frame-
work practical for mechanized metatheory. In Twelf, type reconstruction is
mainly concerned with quantifying over and determining the types of implicit
metavariables. Reconstruction can be tricky because the implicit metavariables
in a clause may not always be syntactically evident due to dependencies.

Twelf solves the problem using a two-pass algorithm that first computes
simple types to determine which metavariables require quantification and sec-
ond uses pattern unification to solve for the types of the metavariables [PS99].
Although the general problem is undecidable [Gol81], Twelf’s algorithm al-
ways terminates, at the very least with an error saying that the original source
requires more annotations to ensure successful reconstruction. Anecdotal ex-
perience suggests that its algorithm is quite good for many kinds of examples
that arise in practice.

The chief difficulty in adapting Twelf-style type reconstruction to LFR is that
inferred sorts may not be unique. By analogy with unification-based inference
returning a most-general unifier, we conjecture that the correct behavior is for
inference to choose the most general sort that is type correct, if a most general
sort exists. Consider the doubling relation example from above:

double ⊏ double :: ⊤→ even→ sort.
dbl−zero :: double zero zero.
dbl−succ :: double X Y→ double (succ X) (succ (succ Y)).
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In the last line, the sort of X is unconstrained: the most general sort that makes
the clause well-sorted is X :: ⊤. The metavariable Y, however, must be given
sort even for the clause to be well-sorted, and this sort is the only such sort.
Therefore, after reconstruction, the clause reads as follows:

dbl−succ ::ΠX::⊤.ΠY::even.
double X Y→ double (succ X) (succ (succ Y)).

A slightly more interesting example comes from the evaluation relation for the
simply-typed lambda calculus discussed above.

eval :: cmp A→ val A→ sort.
ev−app :: eval (app E1 E2) V
← eval E1 (lam λx.E1’ x)
← eval E2 V2
← eval (E1’ V2) V.

Most of the metavariable sorts here are straightforward consequences of prop-
agating type information. For E1’ though, there is a choice: it could be given
sort val A→ cmp A or sort cmp A→ cmp A. By the above claim that we should
assign it the most general sort, we should give it sort val A→ cmp A, since
cmp A→ cmp A ≤ val A→ cmp A. Indeed, this is not only the sort that gives us
the most precise typing guarantees (as discussed above), but also the sort that
helps coverage checking the most (as discussed below)

An open question is what should be done when a metavariable could be
assigned several incomparable sorts. Consider two equality relations on natural
numbers, a “smart” equality smart−eq and a “dumb” equality dumb−eq, with a
coercion from the former to the latter:

equal : nat→ nat→ type.
smart−eq ⊏ equal :: even→ even→ sort ∧ odd→ odd→ sort.
dumb−eq ⊏ equal :: ⊤→ ⊤→ sort.

coerce :: smart−eq X Y→ dumb−eq X Y.

To make the last clause well-sorted, there are two possibilities: either X and Y
must both be odd or they must both be even. Therefore, reconstruction should
convert it to the following clause:

coerce :: ΠX::even.ΠY::even. smart−eq X Y→ dumb−eq X Y
∧ ΠX::odd.ΠY::odd. smart−eq X Y→ dumb−eq X Y.

It is unclear exactly how type reconstruction should proceed to come up with
this clause, and part of the proposed work is to closely examine examples like
this to come up with a practical type reconstruction algorithm for LFR. (The
encoding of the Calculus of Constructions in Section 2 is another good example
of this phenomenon.)

Another motivation of LFR type reconstruction is to avoid redundancy
between LF typing declarations and LFR sorting declarations. For sorts that
do not include the maximal sort ⊤, it is clear what sort they refine, and so
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type reconstruction could automatically come up with such “obvious” typing
declarations. For instance, if we specify

nat : type.
even ⊏ nat.
odd ⊏ nat.

zero :: even.
succ :: even→ odd ∧ odd→ even.

then we should not need to include declarations

zero : nat.
succ : nat→ nat.

since we can see that they must exist for the given sorting declarations to be
well-formed. Even if our sorting declaration for s included some conjuncts
with ⊤’s in them, as in

pos ⊏ nat.

succ :: even→ odd ∧ odd→ even ∧ ⊤→ pos.

the typing declarations are still inferrable since at least one conjunct makes
them obvious.

I propose to study several examples along these lines to come up with (a) a
suitable concrete syntax for LFR signatures and (b) a practical type reconstruc-
tion algorithm for LFR signatures. Both should be on par with Twelf’s own
syntax and reconstruction in terms of convenience and practicality.

5.7 Coverage Checking

Coverage checking is the problem of determining whether a set of pattern
clauses cover all possible instances of a type family [SP03], and it is a crucial
component of metatheorem checking in a metalogical framework such as Twelf.
As with type reconstruction, the general problem is undecidable, but experience
with Twelf shows that many practical examples are tractable with an incomplete
solution. Owing to its importance to mechanized metatheory, I propose to study
the problem of coverage checking for LFR type families.

I expect the issues to be similar to the issues in core LF coverage checking,
but sometimes sorts provide more precise information than types alone. Recall
the intrinsic encoding of the simply-typed lambda calculus from above, with
its evaluation judgement,

eval :: cmp A→ val A→ sort.
ev−app :: eval (app E1 E2) V
← eval E1 (lam λx.E1’ x)
← eval E2 V2
← eval (E1’ V2) V.
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Under this signature, coverage checking should be able to determine that for
every closed e :: cmp A there exists a closed v :: val A such that eval e v, or in
other words, that the sort family eval e v covers all inputs of sort cmp A and all
outputs of sort val A.

An affirmative answer from the proposed coverage checking algorithm
would amount to an intrinsic progress theorem for the given evaluation judge-
ment by guaranteeing that for every input expression, proof search for an
evaluation derivation would never fail due to an unmatched case. By lever-
aging sort information, coverage checking can prove a property that normally
requires an entire metatheorem; this is similar to how simply sort checking the
eval declarations can “prove” the metatheorem that evaluation always returns
a value.

Initial investigations suggest that coverage checking should be relatively
straightforward given a “sorted unification” algorithm as proposed above.
There is some indication though that choices made during type reconstruc-
tion could have a non-trivial effect. If for example, as discussed above, type
reconstruction chose to give E1’ the sort cmp A→ cmp A instead of the more
general val A→ cmp A, output coverage checking would fail on the second
subgoal of rule ev−app. A careful study should reveal interesting details.

6 Additional Directions

In addition to the proposal core, there are a number of research avenues that
would be interesting and useful, provided enough time remains after comple-
tion of the core components discussed above. In this section, I outline several
such avenues, including a prototype implementation of LFR and explorations
into termination and uniqueness checking for LFR logic programs, two key
components of a usable metatheory-checking engine.

6.1 Implementation

It would be nice to have some sort of an implementation in order to play with
the examples already given and those proposed. Such an implementation could
fall anywhere in between a formalization of LFR and some of its metatheory in
Twelf and a full-scale ML implementation of a Twelf-style metareasoning en-
vironment including elements discussed below, but more likely on the smaller
end of the scale, like a proof-of-concept prototype of some of the algorithms
proposed.

At the very least it would be worthwhile to formalize in Twelf the basic
metatheory of some fragment of LFR, since arguments similar to those given in
Section 3 have been reconstructed several times by several different people over
the last few years but never actually formalized. A formal artifact would ben-
efit future researchers of canonical forms-based logical frameworks. (Crary’s
formalization of the singleton metatheory an SML internal language [LCH07]
would be a suitable starting point, since it is based on the canonical forms
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methodology, but many of the complexities introduced by singletons could be
ignored.)

6.2 Operational Semantics

Twelf is endowed with an operational semantics based on logic programming
proof search, and this semantics is the main vehicle for establishing metathe-
oretic results about encoded object languages. It is unclear how the addition
of refinements affects this operational semantics, beyond the changes required
to unification already discussed above. But it seems worthwhile to investi-
gate, since an operational semantics would be a key component in a realistic
metalogical framework based on LFR.

6.3 Termination Checking

Logic programs in Twelf can be checked for termination, which ensures that any
recursive calls occur at smaller arguments in a well-founded order. Coverage
and termination checking together provide a means for determining when a
relation encoded as a logic program is total, and thus represents a proof of
an object language metatheorem. An account of termination checking for the
LFR operational semantics would be another step towards a full account of
metareasoning about LFR encodings of deductive systems.

6.4 Uniqueness Checking

Uniqueness checking is the problem of determining whether a relation encoded
as a logic program is functional, i.e. that given its inputs, its outputs are unique,
if they exist. A great deal of metatheoretic reasoning depends on knowing
the functionality of certain relations, and current Twelf users are required to
encode this reasoning directly in the form of tedious uniqueness and equality
lemmas. For this reason, Anderson and Pfenning [AP04] undertook a study of
uniqueness checking for Twelf.

It has been suggested that the addition of sort information might make
uniqueness checking easier. It would therefore be worthwhile to study the
interaction of sorts and uniqueness, in order to pave the way for future metar-
easoning engines based on LFR.

7 Related Work

7.1 Automath

One would be remiss to propose a thesis about LF without acknowledging its
roots in the Automath tradition [dB94b]. A great many of the ideas and method-
ologies used for representing systems in LF owe to early work by de Bruijn. LF
has been compared quite closely to the AUT-QE system in particular [NG94].
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De Bruijn’s treatise on the “Mathematical Vernacular” [dB94a] describes a
system MV inspired by Automath but attempting to adhere more closely to
accepted mathematical practice; similarly, one can see LFR as being (heavily)
inspired by LF, but with an attempt to make a stronger connection to mathe-
matical practice. MV distinguishes between substantives, the classes to which
objects might belong, and archetypes, the largest possible substantive to which
an object belongs. Its substantives are somewhat analogous to our sorts, and its
archetypes to our types. In a similar manner to how MV’s archetypes are “never
mentioned in the language rules”, our sorting rules nearly never mention the
types that sorts refine: in effect, sorting can really be seen as a separate matter
from typing.

7.2 Regular tree types and order-sorted logics for logic pro-
gramming

Types naturally arise in logic programming and automated theorem proving as
a way to curtail meaningless search. For example, given a clause ∀n. nat(n) →
· · · → prime(n), one may end up searching for a proof of nat(Peter) → · · · →
prime(Peter) after instantiating n; even though this search will never succeed,
since it is not the case that nat(Peter), it would be better to avoid such mean-
ingless search in the first place. This observation leads to the introduction of
order-sorted logics, from which we borrow the term “sort”. The clause above
might be rewritten as ∀n : nat. · · · → prime(n), capturing the appropriate con-
straint statically.

One class of types that has proved particularly profitable is the regular tree
types [DZ92] (see [YFS92] for example), so-called due to their connection with
regular tree grammars. A key property that makes the regular tree types useful
is the existence of computable intersections, and this property eventually led to
the introduction of intersections in the context of refinement type systems for
functional languages, described below.

Among order-sorted logics are systems with “term declarations” [SS89];
several people have studied the problem of unification in such systems [SA93,
Koh94]. Term declarations have the form ∀x1::S1 . . .∀xn::Sn.M : S, meaning that
in any context extending x1::S1, . . . , xn::Sn the term M can be judged to have sort
S. For instance, one might declare

∀x::even. succ x :: odd.

∀x::odd. succ x :: even.

to achieve roughly the same effect as our succ :: even→ odd ∧ odd→ even. One
problem with such systems is that they fail to give first-class status to the notion
that a term can have multiple sorts, like our intersection sorts do. Furthermore,
the typechecking problem for systems with term declarations is tricky at best,
since it requires the use of higher-order matching, a problem whose status was
until recently open and for which no practical implementation currently exists.
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7.3 Intersection types

Intersection types were introduced by Coppo et al. [CDCV81] to describe a type
theory in which types are preserved not only by reduction but also by convert-
ibility, i.e. in which subject expansion holds in addition to subject reduction. Since
β-conversion preserves types, they were able to precisely characterize the class
of normalizing terms as those that have a non-trivial (essentially, non-⊤) type.

Later, Reynolds used intersection types to simplify the design of the pro-
gramming language Forsythe [Rey96], e.g. by representing n-ary records as
n-ary intersections of single-field records. Although Reynolds’s setting of im-
perative programming was vastly different from our world of logical frame-
works, many of his core motivations were similar to ours: namely, intersections
can be used to capture multiple properties of individual terms. Furthermore,
despite his working under assumptions and constraints quite different from
ours, one can see shades of many of his ideas reflected in our development.

7.4 Refinement types for functional languages

The utility of regular tree types in logic programming led Freeman to inves-
tigate them for functional languages [Fre94]. Freeman studied a system of
refinement types for a fragment of ML based on ideas relating to regular trees,
but intersection types were also a crucial addition for many of his examples.
His focus was on maintaining decidable inference with minimal declarations,
but ultimately the theory fell prey to algorithmic efficiency issues.

Later, Davies sought to tame the complexities and make refinement types
practical for Standard ML [Dav05]. Davies’s key decision was to abandon
pure inference of unannotated programs in favor of a bidirectional type system
and minimally annotated programs. The focus then was on minimizing the
annotation burden, a task somewhat alleviated by the apparent positive ben-
efits of annotations during program construction and their interpretation as
machine-checked documentation. Along the way, Davies discovered a curious
interaction of intersection types with effects quite similar to the interaction of
polymorphism with effects; the solution was to impose a value restriction similar
to the one familiar from ML-style let-polymorphism [DP00]. Additionally, the
system had to be weakened by the removal of the ∧/→ distributivity subtyping
rule, which could allow users to circumvent the value restriction.

Dunfield unified Davies work with a form of dependent typing inspired by
Xi’s Dependent ML [XP99], and extended the resulting system with the “indefi-
nite” union and existential types [Dun07]. Dunfield abandoned the refinement
restriction, studying a type system with arbitrary intersections and unions di-
rectly at the type level, but he maintained a bidirectional typing discipline. To
properly account for the indefinite property types, he extended bidirectional
checking with an evaluation order-directed “tridirectional rule” [DP04].

All of this work was in the context of functional programming, and thus
quite different from our work in logical frameworks. Obviously, since LF has
no side effects—indeed no reduction at all!—we have no need of Davies’s
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value restriction, and since we treat only negative types, we have no need of
Dunfield’s tridirectional rule. But there are still some similarities that help
guide the present work, such as Freeman’s and Davies’s refinement restriction
and Davies’s and Dunfield’s bidirectional typing.

Subtler differences arise from different assumptions about the world at
typechecking time. The work on functional languages is all concerned with
typing closed terms, and datatypes embody a closed-world assumption, both
of which can be leveraged to reason about things like the emptiness of the
intersection even ∧ odd. In our setting, though, we have an inherently open-
ended signature and we work under non-empty contexts: it is impossible to
show that even ∧ odd is empty because one might always have an assumption
of type even ∧ odd.5 However, it is exactly this open-endedness, coupled with
LF’s very weak, purely representational function space, that allows us to show
such strong theorems as the soundness and completeness of subtyping via η-
expansion, a theorem one would not expect to hold generally in the presence
of a large, computational function space.

7.5 Subtyping in dependent type theories

Pfenning described in a workshop paper a proposed extension of LF with
refinement types [Pfe93]. The present work can be seen as a reconstruction,
reformulation, and extension of his ideas, with a focus on canonical forms,
decidability, and good proof-theoretic properties.

Aspinall and Compagnoni [AC01] studied a type theory λP≤ with both
dependent types and subtyping, but they treated subtyping directly rather
than introducing a refinement layer. Their chief difficulty was breaking the
cycle that arises between subtyping, kinding, and typing in order to show
decidability, which they did by splitting ordinary β-reduction into two levels,
one that reduces terms and one that reduces types. In our setting, the restriction
of attention to canonical forms obviates the need to consider β-reduction and
its properties (e.g. subject reduction, Church-Rosser, etc.) at the cost of a more
involved Substitution theorem, an arguably simpler development.

Aspinall [Asp00] also studied an unconventional system of subtyping with
dependent types using “power types”, a type-level analogue of power sets. As-
pinall’s system λPower has uniform “subtyping” at all levels since power “types”
can in fact classify type families; although the system remains predicative, this
generalization complicates the system’s metatheory. Aspinall’s use of a “rough
typing” judgement in formulating the metatheory of λPower is somewhat re-
lated to our use of simple types in the metatheory of hereditary substitution
and η-expansion.

Both Aspinall and Compagnoni’sλP≤ and Aspinall’sλPower are more general
than LFR in a certain sense, since they allow subtyping declarations between

5One might imagine extending LFR with declarations of the form even ∧ odd ≤ empty to allow
the user to capture this property explicitly. As currently specified, LFR does not give the user the
ability to define any arbitrary subtyping lattice since it excludes such declarations.
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atomic families whose arities and indices might be different. So far in the
development of LFR, no examples have wanted for such declarations. The
primary shortcoming of both λP≤ and λPower is their lack of intersection types,
which are essential for even the simplest of our examples.

Kopylov [Kop03] studied a dependent intersection
∧

x::A.B, a generaliza-
tion of ordinary intersection A ∧ B where the second type may depend on
the element that has both types.6 His motivation was finding a simple way
to define dependent records in NuPRL in terms of only single-field records
(following Reynolds’s trick in the design of Forsythe [Rey96]). It is tempting
to consider a dependent intersection sort

∧
x::S⊏A.T generalizing our S ∧ T,

but it turns out not to fit in the refinement framework: the sorts S and T must
both refine the same type A, but this precludes T from depending on x; in other
words, a dependent intersection would always be degenerate.

7.6 Coercive subtyping in logical frameworks

A number of people have investigated “coercive subtyping” [Luo99] for logical
frameworks, in which subtyping declarations induce certain identity coercions
which are inserted implicitly at typechecking time. Coercive subtyping has
been implemented in several logical frameworks and proof assistants, notably
Coq [Saı̈97]. Coercive subtyping is undoubtedly related to the proposed coer-
cion interpretation of LFR.

8 Plan

The material proposed in Section 5 follows a logical progression.

1. Motivation: Representation methodology

2. Type theory: Subset interpretation, coercion interpretation, contextual
modal formulation

3. Algorithms: Unification

4. Applications: Type reconstruction, coverage checking

I therefore propose to proceed in the order presented, for the most part. Of
course, a strict division between phases is unlikely, since there is some overlap,
but the organization above gives a clear accounting for exactly what contribu-
tion each part of the work will make.
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