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Thesis

Refinement types are a
useful and practical extension
to the LF logical framework.
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Contributions

Refinements are useful:

‣ many case studies

‣ subset interpretation

Refinements are practical:

‣ rich yet simple metatheory

‣ sort reconstruction
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Outline

Overview and motivation
Basic formalism
‣ LFR type theory and metatheory
‣ Higher-sort subsorting

Rest of the story
‣ Subset interpretation
‣ Sort reconstruction
‣ Case studies
Summary
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LF: a logical framework

Harper, Honsell, and Plotkin, 1987, 1993

Dependently-typed lambda-calculus

Encode deductive systems and metatheory, 
uniformly, and machine-checkably
‣ e.g. a programming language and its type safety theorem
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LF: a logical framework

Harper, Honsell, and Plotkin, 1987, 1993

Dependently-typed lambda-calculus

Encode deductive systems and metatheory, 
uniformly, and machine-checkably
‣ e.g. a programming language and its type safety theorem

Guiding principle: “judgements as types”

7



Judgements as types

8

On paper In LF

Syntax
‣ e ::= …      τ ::= …

Simple type
‣ exp : type.   tp : type.

Judgement
‣ Γ ⊢ e : τ

Type family
‣ of : exp → tp → type.

Derivation
‣ D :: Γ ⊢ e : τ

Well-typed term
‣ M : of E T

Proof checking Type checking
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Refinement types / Sorts
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S ⊏ A

S 

A

T 

S ≤ T

S ≤ T

T ∧ U
U 

⊤

“refines”

“subsort”

“subsort”

“intersect” “top”



LFR

Properties as sorts

Even and odd natural numbers,

Expressions that are values,

Normal natural deductions,

Cut-free sequent proofs,

Derivations without a particular rule,

Prenex and rank-2 polymorphism,

…
10



Example: natural numbers
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Example: natural numbers
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nat : type.
z : nat.
s : nat → nat.

double : nat → nat → type.
dbl‐z : double z z.
dbl‐s : double (s N) (s (s (N2))
    ← double N N2.

always even!



Option 1: explicit proofs

Represent evenness and oddness as judgments  
on natural numbers.

12



Option 1: explicit proofs

Represent evenness and oddness as judgments  
on natural numbers.
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even : nat → type.
odd : nat → type.
ev‐z : even z.
ev‐s : even (s N) 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odd N.
od‐s 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odd (s N) 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even N.

double : nat → ΠN2:nat. even N2 → type.
dbl‐z : double z z ev‐z.
dbl‐s : double N (s (s N2)) (ev‐s (od‐s Deven))
    ← double N N2 Deven.



Option 1: explicit proofs

Represent evenness and oddness as judgments  
on natural numbers.

Cumbersome: definitions must be “proof-
carrying”, manipulate witnesses.

14



Option 2: implicit proofs

Represent even and odd as new types, distinct 
from the natural numbers.
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Option 2: implicit proofs
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even : type.
odd : type.
ze : even.
se : odd → even.
so : even → odd.

double : nat → even → 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Option 2: implicit proofs
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even2nat : even → nat → type.
odd2nat : odd → nat → type.
e2n‐ze : even2nat ze z.
e2n‐se : even2nat (se O) (s N)
      ← odd2nat O N.
o2n‐so : odd2nat (so E) (s N)
      ← even2nat E N.

But… need erasures from even and odd to nat



Option 2: implicit proofs

Represent even and odd as new types, distinct 
from the natural numbers.

Heavyweight: need conversions between 
various types.

18



Option 3: metatheorem

Represent evenness and oddness as judgments  
(as in Option 1 above).

Prove a Twelf metatheorem: for every doubling 
derivation, there’s an evenness derivation.
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Option 3: metatheorem
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even : nat → type.
odd : nat → type.
% … ev­z, ev­s, od­s …

double‐even : double N N2 → even N2 → type.
%mode double‐even +Ddbl ‐Deven
‐ : double‐even dbl‐z even‐z
‐ : double‐even (dbl‐s Ddbl) (ev‐s (od‐s Deven))
  ← double‐even Ddbl Deven.
%worlds () (double‐even Ddbl Deven).
%total Ddbl (double‐even Ddbl Deven).



Option 3: metatheorem

Represent evenness and oddness as judgments  
(as in Option 1 above).

Prove a Twelf metatheorem: for every doubling 
derivation, there’s an evenness derivation.

Indirect: metatheorem checking is complex.

21



Better option: refinements
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z :: even.
s :: even → odd  ∧  odd → even.
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Better option: refinements

Simple: doubling judgment doesn’t change.
Lightweight: constructors remain the same.
Direct: strong typing guarantee on derivations.

23

simple lightweight direct

1. implicit proofs

2. explicit proofs

3. metatheorem

4. refinements



Outline

✓Overview and Motivation
Basic formalism
‣ LFR type theory and metatheory
‣ Higher-sort subsorting

Rest of the story
‣ Subset interpretation
‣ Sort reconstruction
‣ Case studies
Summary
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Adequacy

Does my encoding mean anything?

Strategy: exhibit a compositional bijection that 
preserves properties.

‣ “Canonical forms” are β-normal and η-long.

25

mathematical 
objects

canonical 
forms



Canonical forms method

Represent only the canonical forms:

‣ β-normal syntactically

‣ η-long through typing

‣ hereditary substitutions contract redexes

Simplifies metatheory, emphasizes adequacy

Concurrent LF (Watkins, et al, 2003)

26



LF typing

Bidirectional typing

Synthesis: Γ ⊢ R ⇒ A

‣ elims: R ::= x | c | R N

Checking: Γ ⊢ N ⇐ A

‣ intros: N ::= R | λx. N

27



Checking

Key rule:

28

Γ ⊢ R ⇒ P’ P’ = P
Γ ⊢ R ⇐ P

Γ ⊢ N ⇐ A  
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Checking

Key rule:

‣ base type, so atoms fully applied

‣ the only appeal to type equality

28

Γ ⊢ R ⇒ P’ P’ = P
Γ ⊢ R ⇐ P

Γ ⊢ N ⇐ A  



Checking with subsorting

Key change:

‣ equality becomes subsorting

‣ subsorting… only at base sorts?

29

Γ ⊢ R ⇒ Q’ Q’ ≤ Q
Γ ⊢ R ⇐ Q

Γ ⊢ N ⇐ S  
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Key change:

‣ equality becomes subsorting
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Intersections

Similar to product types, but no proof term

30

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2 Γ ⊢ N ⇐ ⊤

Γ ⊢ R ⇒ S1 ∧ S2

Γ ⊢ R ⇒ S1

Γ ⊢ R ⇒ S1 ∧ S2

Γ ⊢ R ⇒ S2



Important principles

Substitution:
       if Γ, x::S⊏A ⊢ N ⇐ T and Γ ⊢ M ⇐ S,
  then Γ ⊢ [M/x]A N ⇐ T.

Identity: for all A: Γ, x::S⊏A ⊢ ηA(x) ⇐ S.

31



Key rule:

‣ Bidirectional: subsorting only at mode switch

‣ Canonical: mode switch only at base sort

Γ ⊢ R ⇒ Q’ Q’ ≤ Q
Γ ⊢ R ⇐ Q

Subsorting

32

Γ ⊢ N ⇐ S  



Subsorting at higher sorts?

Structural rules?  e.g.

Distributivity?

33

S2 ≤ S1 T1 ≤ T2 
S1 → T1  ≤  S2 → T2

(S → T1) ∧ (S → T2)  ≤  S → (T1 ∧ T2)



Subsorting at higher sorts!

Intrinsic subsorting:
  if S ≤ T and Γ ⊢ N ⇐ S, then Γ ⊢ N ⇐ T.
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Subsorting at higher sorts!

Intrinsic subsorting:
  if S ≤ T and Γ ⊢ N ⇐ S, then Γ ⊢ N ⇐ T.

Equivalently:
  if S ≤ T, then Γ, x::S⊏A ⊢ ηA(x) ⇐ T.

‣ just like the Identity principle!
‣… also the Substitution principle …

Usual rules all sound in this sense.
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Subsorting at higher sorts‽

… and also complete!

Theorem: if Γ, x::S⊏A ⊢ ηA(x) ⇐ T, then S ≤ T.

Or: if Γ ⊢ N ⇐ S implies Γ ⊢ N ⇐ T, then S ≤ T.
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Subsorting at higher sorts‽

… and also complete!

Theorem: if Γ, x::S⊏A ⊢ ηA(x) ⇐ T, then S ≤ T.

Or: if Γ ⊢ N ⇐ S implies Γ ⊢ N ⇐ T, then S ≤ T.

There are no new subtyping principles.

35



Outline

✓Introduction: Motivation
✓Basic formalism
‣ LFR type theory and metatheory
‣ Higher-sort subsorting

Rest of the story
‣ Subset interpretation
‣ Sort reconstruction
‣ Case studies
Summary
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Subset Interpretation

Refinement types sharpen existing type systems 
without complicating their metatheory

Subset interpretation soundly and completely 
eliminates them

Shows the expressive power of refinements
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Subset Interpretation

Refinement types sharpen existing type systems 
without complicating their metatheory

Subset interpretation soundly and completely 
eliminates them

Shows the expressive power of refinements

‣ Translation is quite complicated!

37
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nat.
s : nat 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nat.

Sorts as predicates
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‣ refinements become predicates
‣ sort declarations become proof constructors
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Translation follows this idea:
‣ refinements become predicates
‣ sort declarations become proof constructors(One twist: proof irrele

vance)
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N :: even iff M : even N
(for some M)



LF enjoys a well-developed theory of adequate 
representations

‣ Adequacy: compositional, property-
preserving bijection between informal 
entities and canonical terms

Adequacy

informal math LFR encoding

40
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LF + proof irrelevance

Adequacy

informal math LFR encoding
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Sort Reconstruction

Three phases:

‣ LFR Type Reconstruction: reconstruct 
implicit arguments and types of subterms by 
matching.

‣ Constraint generation: reduce a sort-
checking problem to a constraint.

‣ Constraint solving: solve that constraint.

41
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Sort Reconstruction

Theorem (Soundness): result of reconstruction 
is well-formed

Theorem (Principality): any other possible 
reconstruction is less general

45
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3 THE TYPED OPERATIONAL SEMANTICS 13

Definition 3.1 (Weak-Head Normal)
T!, A1→A2, ∀X≤A:K.B, and ΛX≤A:K.B are weak head normal.
X(A1, . . . , An) is weak head normal if A1, . . . , An are in normal form.

In order to prove the admissibility of transitivity in the semantics, we need to consider
a stronger definition of weak head normal form. We consider expressions of the form
X(A1, . . . , An) weak head normal only if each Ai is fully normalized. It may be possible to
strengthen the model in Section 5 and use the standard definition of this notion instead.

We use the following notations:

• Γ $S A : K is notation for Γ $S A !w B w!n C : K, for some B, C.

• Γ $S K is notation for Γ $S K !n K ′, for some K ′.

• Γ $S A w!n B : K is notation for Γ $S A !w A w!n B : K.

• Γ $S A !w B : K is notation for Γ $S A !w B w!n C : K, for some C.

• Γ $S A !n B : K means Γ $S A !w C w!n B : K, for some C.

• Γ $S A, B !n C : K means Γ $S A !n C : K and Γ $S B !n C : K.

• Γ $S K, K ′ !n K ′′ means Γ $S K !n K ′′ and Γ $S K ′ !n K ′′.

The rules are presented as simultaneously defined inductive relations.

3.1 Context Formation
∅ $S ok (SC-Empty)

Γ $S A : ! x &∈ dom(Γ)
Γ, x:A $S ok

(SC-Var)

Γ $S A : K ′ Γ $S K !n K ′ X &∈ dom(Γ)
Γ, X≤A:K $S ok

(SC-TVar)

3.2 Kind Normalization
Γ $S ok

Γ $S ! !n !
(SK-!)

Γ $S K1 !n K ′
1 Γ $S A !n B : K ′

1 Γ, X≤A : K1 $S K2 !n K ′
2

Γ $S ΠX≤A:K1.K2 !n ΠX≤B:K ′
1.K

′
2

(SK-Π)

Context formation and kind normalization rules follow from modifications to the context
formation and kind equality rules of the system in Section 2.2. For example, in the type
variable rule (ST-TVar) the kind of A and the kind in the declaration of X are β-equal
but not necessarily identical.
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Context formation and kind normalization rules follow from modifications to the context
formation and kind equality rules of the system in Section 2.2. For example, in the type
variable rule (ST-TVar) the kind of A and the kind in the declaration of X are β-equal
but not necessarily identical.

(Compagnoni and Goguen, Typed Operational Semantics 
for Higher-Order Subtyping, Inf. & Comput. 2003)
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Context formation and kind normalization rules follow from modifications to the context
formation and kind equality rules of the system in Section 2.2. For example, in the type
variable rule (ST-TVar) the kind of A and the kind in the declaration of X are β-equal
but not necessarily identical.

(Compagnoni and Goguen, Typed Operational Semantics 
for Higher-Order Subtyping, Inf. & Comput. 2003)

3 steps:
‣ translate grammar of types
‣ characterize normal types
‣ characterize weak head normal types



Case Study 1: normal forms

48

kd : type.
tp : type.

T* : tp.
arrow : tp → tp → tp.    
all : tp → kd → (tp → tp) → tp.
Lam : tp → kd → (tp → tp) → tp.
App : tp → tp → tp.

A ::= X | A → A |∀X≤A:K. A | ΛX≤A:K. A | A A | T★ 
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A ::= P | A → A | ∀X≤A:K. A | ΛX≤A:K. A | T★ 

P ::= X | P A

btp ⊏ tp.  ntp ⊏ tp.

T* :: ntp.
arrow :: ntp → ntp → ntp.    
all :: ntp → ⊤ → (btp → ntp) → ntp.
Lam :: ntp → ⊤ → (btp → ntp) → ntp.
App :: btp → ntp → btp.
btp ≤ ntp.
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• Γ $S K, K ′ !n K ′′ means Γ $S K !n K ′′ and Γ $S K ′ !n K ′′.
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Γ, x:A $S ok
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(SK-Π)

Context formation and kind normalization rules follow from modifications to the context
formation and kind equality rules of the system in Section 2.2. For example, in the type
variable rule (ST-TVar) the kind of A and the kind in the declaration of X are β-equal
but not necessarily identical.

whntp ⊏ tp.

T* :: whntp.
arrow :: ⊤ → ⊤ → whntp.    
all :: ⊤ → ⊤ → (btp → ⊤) → whntp.
Lam :: ⊤ → ⊤ → (btp → ⊤) → whntp.
btp ≤ whntp.
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simplify the direct semantics. The more usual definitions of

and as special constants can be recovered by

using the following definitions:

Note that due to the greater expressiveness of the type

system, it is not necessary to introduce a throw operator or a

special type of continuations as it is in ML [8].

The typing rules for appear in the appendix.

3 Operational Semantics for

In this section, we introduce the two main evaluation strate-

gies for , each with a call-by-value and a call-by-

name variant.

The “standard” strategies treat constructor abstractions as

values and constructor applications as significant compu-

tation steps. Standard strategies in this sense are used in

Quest [4] and LEAP [35], and are directly compatible with

extensions that make significant uses of types at run time

(for example, “dynamic” types [1, 4]). Since polymorphic

expressions are kept distinct from their instances, the anoma-

lies that arise in implicitly polymorphic languages in the

presence of references [45] and control operators [18] do not

occur.

The “ML-like” strategies are inspired by the operational

semantics of ML [29]. Evaluation proceeds beneath con-

structor abstractions, leading to a once-for-all-instances eval-

uation of polymorphic terms. Constructor application is re-

tained as a computation step, but its force is significantly at-

tenuated by the fact that type expressions may have free type

variables in them, precluding primitives that inductively an-

alyze their type arguments. The superficial efficiency im-

provement gained by evaluating beneath type abstractions

comes at considerable cost since it is incompatible with ex-

tensions such as mutable data structures and control opera-

tors [45, 18, 19].

3.1 Notation

The definitions of these strategies make use of Plotkin’s no-

tion of a syntactic value [36] and Felleisen’s notion of an

evaluation context [11], chosen suitably for each situation.

To specify a strategy using this method, we first give a gram-

mar which defines three syntactic categories: , a set of val-

ues, , a set of redices, and , a set of evaluation contexts.

As an example, the grammar used to specify a call-by-value

strategy for the simply-typed fragment of is as follows:

The expression is called a “hole”; an evaluation context

has exactly one occurrence of a hole. If is an evaluation

context, we write for the result of “filling the hole” in

with , possibly incurring capture of free variables in .

A program is a closed term of type . Unless we

say otherwise, programs and terms are drawn from the full

language and typed using . Pure

programs and terms can be considered to be drawn from and

typed using .

We will arrange things so that a program can only be

represented in at most one way as where is an eval-

uation context and is a redex. If can be so represented,

then is said to be the program context of , while is

said to be the current redex of . If can not be so repre-

sented, it is considered to be in normal form for the strategy.

In order to complete the specification of a strategy, we must

specify how to reduce (by one step) each possible kind of re-

dex given its surrounding context. For the example strategy,

the reduction rules are as follows:

It should be noted that in all the strategies we consider, val-

ues are in normal form for that strategy. We say that a pro-

gram evaluates to a value iff , i.e., iff is the

terminus of a maximal one-step evaluation sequence starting

at .

3.2 Standard Strategies

We consider two “standard” evaluation strategies, call-by-

value and call-by-name. In both cases constructor abstrac-

tions are values, and constructors applications are significant

computation steps. The two variants differ from one another

in the treatment of ordinary applications.

3.2.1 Call-By-Value (CBV) Strategy

The standard call-by-value strategy is defined as follows:

Theorem 3.1 (Decomposition) If is a closed, well-typed

term of type , then either is a CBV value, or else there

exists a unique CBV evaluation context , a unique CBV

redex , and a type expression such that

1. ;

2. ;

3. .

Theorem 3.2 (Subject Reduction) If is a program, and

, then is a program.

Proof: If , then by the decomposition theorem

for some CBV evaluation context and CBV

redex such that and

for some type . Using this, it

is straightforward to verify that each of the evaluation rules

preserves typing.

It follows from these two theorems that a terminatingCBV

evaluation sequence starting from a program terminates with

a CBV value of type — CBV evaluation does not “get

stuck”. The restriction of CBV evaluation to pure programs

is a particular -reduction strategy. It follows from the strong

normalization property of [14, 13] that CBV evaluation of

pure programs terminates. Termination of CBV evaluation

for full will be established in Section 5. The

following property of CBV evaluation will be important to

that argument.

Lemma 3.3 Any infinite CBV evaluation sequence starting

from a program contains infinitely many -reduction steps.

Proof: If where

and is a program then is a

proper subterm of .

3.2.2 Call-By-Name (CBN) Strategy

The standard call-by-name strategy is defined as follows:

The decomposition and subject reduction theorems (stated

above for the CBV strategy) can be proved in a similar way

for the call-by-name strategy case. The analysis of termi-

nation is identical. Once again, an infinite CBN evaluation

sequence must contain infinitely many steps.

3.3 ML-like Strategies

An evaluation strategy is said to be ML-like if it evaluates

under constructor abstractions. We shall consider two ML-

like strategies, a call-by-value variant, designated ML-CBV,

and a call-by-name variant, designatedML-CBN.

3.3.1 ML-CBV Strategy

The ML-like call-by-value strategy is defined as follows:

Notice that a constructor abstraction is a ML-CBV value

only if its body is a ML-CBV value and that ML-CBV eval-

uation contexts may extend within the scopes of constructor

abstractions. The decomposition property for the ML-CBV

strategy is somewhat more complex than that for the stan-

dard CBV strategy due to the possibility of evaluation under

constructor abstractions.

Theorem 3.4 (Decomposition) If is a well-typed, closed

term of type , then either is a ML-CBV value, or there

exists a unique ML-CBV evaluation context , a unique ML-

CBV redex , a constructor context , and a type expression

such that

1. ;

2. ;

3. for any term such

that .

Notice that the typing condition on is strictly weaker than

the condition .

Theorem 3.5 (Subject Reduction for ) If is a pure

program and , then is a pure program.

Proof: Follows from the fact that the restriction of the ML-

CBV strategy to terms of is a particular -reduction strat-

egy and from subject reduction for .

Similarly, since is strongly normalizing, ML-CBV eval-

uation on pure terms must terminate; by the decomposition

theorem, the terminus must be a ML-CBV value of type .

The subject reduction property cannot be extended to

full , for essentially the same reasons that type

soundness fails for the extension of ML with callcc [8,
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mar which defines three syntactic categories: , a set of val-

ues, , a set of redices, and , a set of evaluation contexts.

As an example, the grammar used to specify a call-by-value

strategy for the simply-typed fragment of is as follows:

The expression is called a “hole”; an evaluation context

has exactly one occurrence of a hole. If is an evaluation

context, we write for the result of “filling the hole” in

with , possibly incurring capture of free variables in .

A program is a closed term of type . Unless we

say otherwise, programs and terms are drawn from the full

language and typed using . Pure

programs and terms can be considered to be drawn from and

typed using .

We will arrange things so that a program can only be

represented in at most one way as where is an eval-

uation context and is a redex. If can be so represented,

then is said to be the program context of , while is

said to be the current redex of . If can not be so repre-

sented, it is considered to be in normal form for the strategy.

In order to complete the specification of a strategy, we must

specify how to reduce (by one step) each possible kind of re-

dex given its surrounding context. For the example strategy,

the reduction rules are as follows:

It should be noted that in all the strategies we consider, val-

ues are in normal form for that strategy. We say that a pro-

gram evaluates to a value iff , i.e., iff is the

terminus of a maximal one-step evaluation sequence starting

at .

3.2 Standard Strategies

We consider two “standard” evaluation strategies, call-by-

value and call-by-name. In both cases constructor abstrac-

tions are values, and constructors applications are significant

computation steps. The two variants differ from one another

in the treatment of ordinary applications.

3.2.1 Call-By-Value (CBV) Strategy

The standard call-by-value strategy is defined as follows:

Theorem 3.1 (Decomposition) If is a closed, well-typed

term of type , then either is a CBV value, or else there

exists a unique CBV evaluation context , a unique CBV

redex , and a type expression such that

1. ;

2. ;

3. .

Theorem 3.2 (Subject Reduction) If is a program, and

, then is a program.

Proof: If , then by the decomposition theorem

for some CBV evaluation context and CBV

redex such that and

for some type . Using this, it

is straightforward to verify that each of the evaluation rules

preserves typing.

It follows from these two theorems that a terminatingCBV

evaluation sequence starting from a program terminates with

a CBV value of type — CBV evaluation does not “get

stuck”. The restriction of CBV evaluation to pure programs

is a particular -reduction strategy. It follows from the strong

normalization property of [14, 13] that CBV evaluation of

pure programs terminates. Termination of CBV evaluation

for full will be established in Section 5. The

following property of CBV evaluation will be important to

that argument.

Lemma 3.3 Any infinite CBV evaluation sequence starting

from a program contains infinitely many -reduction steps.

Proof: If where

and is a program then is a

proper subterm of .

3.2.2 Call-By-Name (CBN) Strategy

The standard call-by-name strategy is defined as follows:

The decomposition and subject reduction theorems (stated

above for the CBV strategy) can be proved in a similar way

for the call-by-name strategy case. The analysis of termi-

nation is identical. Once again, an infinite CBN evaluation

sequence must contain infinitely many steps.

3.3 ML-like Strategies

An evaluation strategy is said to be ML-like if it evaluates

under constructor abstractions. We shall consider two ML-

like strategies, a call-by-value variant, designated ML-CBV,

and a call-by-name variant, designatedML-CBN.

3.3.1 ML-CBV Strategy

The ML-like call-by-value strategy is defined as follows:

Notice that a constructor abstraction is a ML-CBV value

only if its body is a ML-CBV value and that ML-CBV eval-

uation contexts may extend within the scopes of constructor

abstractions. The decomposition property for the ML-CBV

strategy is somewhat more complex than that for the stan-

dard CBV strategy due to the possibility of evaluation under

constructor abstractions.

Theorem 3.4 (Decomposition) If is a well-typed, closed

term of type , then either is a ML-CBV value, or there

exists a unique ML-CBV evaluation context , a unique ML-

CBV redex , a constructor context , and a type expression

such that

1. ;

2. ;

3. for any term such

that .

Notice that the typing condition on is strictly weaker than

the condition .

Theorem 3.5 (Subject Reduction for ) If is a pure

program and , then is a pure program.

Proof: Follows from the fact that the restriction of the ML-

CBV strategy to terms of is a particular -reduction strat-

egy and from subject reduction for .

Similarly, since is strongly normalizing, ML-CBV eval-

uation on pure terms must terminate; by the decomposition

theorem, the terminus must be a ML-CBV value of type .

The subject reduction property cannot be extended to

full , for essentially the same reasons that type

soundness fails for the extension of ML with callcc [8,

(Harper and Lillibridge, Explicit Polymorphism 
and CPS Conversion, POPL 1993)
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kd : type.  tp : type.  tm : type.

lam : tp → (tm → tm) → tm.
app : tm → tm → tm.
Lam : kd → (tp → tm) → tm.
App : tm → tp → tm.
callcc : tp → tm → tm.
abort : tp → tm → tm.

evctx : type.

<> : evctx.
capp1 : evctx → tm → evctx.
capp2 : tm → evctx → evctx.
cLam : kd → (tp → evctx) → evctx.
cApp : evctx → tp → evctx.

The addition of continuation primitives to polymorphic

languages has not, however, been an unalloyed success. In

particular, a very natural typing discipline for first-class con-

tinuations in StandardML has proved to be unsound [18, 19].

Since the semantics of first-class continuations may be ex-

pressed by conversion into continuation-passing style, it is

natural to investigate their typing properties by considering

the relation between the type of a term and the type of its

CPS transform. Work in this area was initiated by Meyer

and Wand for a call-by-value interpretation of the simply-

typed -calculus [27], and extended to continuation-passing

primitives by Griffin [16] and Duba, et. al. [8]. In earlier

work, the authors extended these analyses to implicit poly-

morphism, and established some limitative results [19].

In this paper, we conduct a systematic investigation of

the typing properties of CPS conversion for ,

the higher-order polymorphic -calculus of Girard and

Reynolds [14, 39] extended with the control primitives

and . Extensions and variations of lie at the core of

Quest [4] and LEAP [35], and it is the underlying program-

ming language of the Calculus of Constructions [6, 33]. We

extend with control primitives in order to illustrate the

role of “impure” programming language features in the anal-

ysis of typing properties of realistic programming languages.

(Similar issues and trade-offs arise with mutable data struc-

tures (see Tofte [44]) and exceptions [46]. See Leroy [24]

for related discussion.)

We consider two classes of evaluation strategies for

, each with a call-by-value and a call-by-name

variant. Under the “standard” strategies, type abstractions

are values and type applications are significant evaluation

steps. These strategies are compatible with extensions to the

language involving primitive operations that are sensitive to

type information — e.g., storage allocation operations that

determine the size of the allocation based on the type of the

argument. The “ML-like” strategies are inspired by implicit

polymorphism. Under these strategies, evaluation proceeds

beneath type abstractions. This limits the ability of primi-

tive operations to use types because types are no longer al-

ways ground types. (In particular, they may contain free type

variables.) The full language enjoys the subject reduction

property for complete programs evaluated under the standard

strategies and the ML-like call-by-name strategy, but only a

restricted language enjoys this propertywhen interpreted un-

der the ML-like call-by-value strategy.

The focus of our study is on the typing properties of

CPS conversion of , following the seminal work

of Plotkin [36] (extended by Felleisen, et. al. [10, 9]) and

Meyer and Wand [27] (extended by Griffin [16] and Duba,

et. al. [8, 18]). First, we isolate several “continuation-passing

style” sub-languages of . The “standard” CPS language is

the largest sub-language of on which the by-value and

by-name variants of the standard strategies coincide, and

the “ML-like” CPS language is the largest sub-language on

which the ML-like strategies coincide. The ML-like CPS

form is a proper subset of the standard CPS form, and hence

the two variants of the standard strategy and the two vari-

ants of the ML-like strategy coincide with each other on

terms in ML-like CPS form. However, the standard call-

by-value (call-by-name) and ML-like call-by-value (call-by-

name) strategies do not coincide on terms in ML-like CPS

form. We define a “strict” CPS form on which all four strate-

gies coincide.

With this in mind, we define a CPS conversion algorithm

for each of the standard strategies that preserves typing in

a generalization of the Meyer-Wand sense, and which yields

terms in strict CPS form. It turns out that we can use the stan-

dard call-by-name algorithm to handle the ML-like call-by-

name strategy case as well. Such a result can be achieved for

the ML-like call-by-value strategy only if we restrict atten-

tion to a restriction in which type abstractions

are limited to values. On this fragment, the ML-like and

standard strategies coincide, and hence the standard CPS al-

gorithms may be used for the ML-like interpretations. How-

ever, the standard CPS conversion algorithms do not ade-

quately reflect the “spirit” of the ML-like strategies, and we

therefore consider variant transforms that do embody this

“spirit” but which yield terms in a “relaxed” CPS form in-

troduced solely for this purpose.

2 The Language

The language is the extension of the “pure”

language by two primitive control operators, and

. By pure we mean that the language has no

effect producing terms where an effect is something other

than a simple value computation. Effects include side ef-

fects (i.e., assignment), non-termination, and non-local con-

trol changes. For the purposes of this paper, when we say

something is pure, we mean it does not contain any control

operators.

Definition 2.1 (Syntax)

The meta-variable ranges over constructor variables,

and the meta-variable ranges over term variables. The con-

structor is a distinguished base type, representing the type

of “answers”. We make and primitives taking

one type and term argument each as a technical device to
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lambda ⊏ tm.  Lambda ⊏ tm.

lam :: ⊤ → (⊤ → ⊤) → lambda.
Lam :: ⊤ → (⊤ → ⊤) → Lambda.

control ⊏ tm.

abort :: ⊤ → ⊤ → control.
callcc :: ⊤ → ⊤ → control.

Useful observations about redexes:

‣ need to recognize lambdas for redexes

‣ control operators are always redexes
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1. ;

2. ;

3. .

Theorem 3.2 (Subject Reduction) If is a program, and

, then is a program.

Proof: If , then by the decomposition theorem

for some CBV evaluation context and CBV

redex such that and

for some type . Using this, it

is straightforward to verify that each of the evaluation rules

preserves typing.

It follows from these two theorems that a terminatingCBV

evaluation sequence starting from a program terminates with

a CBV value of type — CBV evaluation does not “get

stuck”. The restriction of CBV evaluation to pure programs

is a particular -reduction strategy. It follows from the strong

normalization property of [14, 13] that CBV evaluation of

pure programs terminates. Termination of CBV evaluation

for full will be established in Section 5. The

following property of CBV evaluation will be important to

that argument.

Lemma 3.3 Any infinite CBV evaluation sequence starting

from a program contains infinitely many -reduction steps.

Proof: If where

and is a program then is a

proper subterm of .

3.2.2 Call-By-Name (CBN) Strategy

The standard call-by-name strategy is defined as follows:

The decomposition and subject reduction theorems (stated

above for the CBV strategy) can be proved in a similar way

for the call-by-name strategy case. The analysis of termi-

nation is identical. Once again, an infinite CBN evaluation

sequence must contain infinitely many steps.

3.3 ML-like Strategies

An evaluation strategy is said to be ML-like if it evaluates

under constructor abstractions. We shall consider two ML-

like strategies, a call-by-value variant, designated ML-CBV,

and a call-by-name variant, designatedML-CBN.

3.3.1 ML-CBV Strategy

The ML-like call-by-value strategy is defined as follows:

Notice that a constructor abstraction is a ML-CBV value

only if its body is a ML-CBV value and that ML-CBV eval-

uation contexts may extend within the scopes of constructor

abstractions. The decomposition property for the ML-CBV

strategy is somewhat more complex than that for the stan-

dard CBV strategy due to the possibility of evaluation under

constructor abstractions.

Theorem 3.4 (Decomposition) If is a well-typed, closed

term of type , then either is a ML-CBV value, or there

exists a unique ML-CBV evaluation context , a unique ML-

CBV redex , a constructor context , and a type expression

such that

1. ;

2. ;

3. for any term such

that .

Notice that the typing condition on is strictly weaker than

the condition .

Theorem 3.5 (Subject Reduction for ) If is a pure

program and , then is a pure program.

Proof: Follows from the fact that the restriction of the ML-

CBV strategy to terms of is a particular -reduction strat-

egy and from subject reduction for .

Similarly, since is strongly normalizing, ML-CBV eval-

uation on pure terms must terminate; by the decomposition

theorem, the terminus must be a ML-CBV value of type .

The subject reduction property cannot be extended to

full , for essentially the same reasons that type

soundness fails for the extension of ML with callcc [8,

n/val, n/red ⊏ tm.

lambda ≤ n/val.
Lambda ≤ n/val.
app :: lambda → ⊤ → n/red.
App :: Lambda → ⊤ → n/red.
control ≤ n/red.

n/evctx ⊏ evctx.

<> :: n/evctx.
capp1 :: n/evctx → ⊤ → n/evctx.
cApp :: n/evctx → ⊤ → n/evctx.



Case Study 2: CBV/CBN

55

simplify the direct semantics. The more usual definitions of

and as special constants can be recovered by

using the following definitions:

Note that due to the greater expressiveness of the type

system, it is not necessary to introduce a throw operator or a

special type of continuations as it is in ML [8].

The typing rules for appear in the appendix.

3 Operational Semantics for

In this section, we introduce the two main evaluation strate-

gies for , each with a call-by-value and a call-by-

name variant.

The “standard” strategies treat constructor abstractions as

values and constructor applications as significant compu-

tation steps. Standard strategies in this sense are used in

Quest [4] and LEAP [35], and are directly compatible with

extensions that make significant uses of types at run time

(for example, “dynamic” types [1, 4]). Since polymorphic

expressions are kept distinct from their instances, the anoma-

lies that arise in implicitly polymorphic languages in the

presence of references [45] and control operators [18] do not

occur.

The “ML-like” strategies are inspired by the operational

semantics of ML [29]. Evaluation proceeds beneath con-

structor abstractions, leading to a once-for-all-instances eval-

uation of polymorphic terms. Constructor application is re-

tained as a computation step, but its force is significantly at-

tenuated by the fact that type expressions may have free type

variables in them, precluding primitives that inductively an-

alyze their type arguments. The superficial efficiency im-

provement gained by evaluating beneath type abstractions

comes at considerable cost since it is incompatible with ex-

tensions such as mutable data structures and control opera-

tors [45, 18, 19].

3.1 Notation

The definitions of these strategies make use of Plotkin’s no-

tion of a syntactic value [36] and Felleisen’s notion of an

evaluation context [11], chosen suitably for each situation.

To specify a strategy using this method, we first give a gram-

mar which defines three syntactic categories: , a set of val-

ues, , a set of redices, and , a set of evaluation contexts.

As an example, the grammar used to specify a call-by-value

strategy for the simply-typed fragment of is as follows:

The expression is called a “hole”; an evaluation context

has exactly one occurrence of a hole. If is an evaluation

context, we write for the result of “filling the hole” in

with , possibly incurring capture of free variables in .

A program is a closed term of type . Unless we

say otherwise, programs and terms are drawn from the full

language and typed using . Pure

programs and terms can be considered to be drawn from and

typed using .

We will arrange things so that a program can only be

represented in at most one way as where is an eval-

uation context and is a redex. If can be so represented,

then is said to be the program context of , while is

said to be the current redex of . If can not be so repre-

sented, it is considered to be in normal form for the strategy.

In order to complete the specification of a strategy, we must

specify how to reduce (by one step) each possible kind of re-

dex given its surrounding context. For the example strategy,

the reduction rules are as follows:

It should be noted that in all the strategies we consider, val-

ues are in normal form for that strategy. We say that a pro-

gram evaluates to a value iff , i.e., iff is the

terminus of a maximal one-step evaluation sequence starting

at .

3.2 Standard Strategies

We consider two “standard” evaluation strategies, call-by-

value and call-by-name. In both cases constructor abstrac-

tions are values, and constructors applications are significant

computation steps. The two variants differ from one another

in the treatment of ordinary applications.

3.2.1 Call-By-Value (CBV) Strategy

The standard call-by-value strategy is defined as follows:

Theorem 3.1 (Decomposition) If is a closed, well-typed

term of type , then either is a CBV value, or else there

exists a unique CBV evaluation context , a unique CBV

redex , and a type expression such that

v/val, v/red, v/lambda ⊏ tm.

lam :: ⊤ → (v/val → ⊤) → v/lambda.
v/lambda ≤ v/val.
Lambda ≤ v/val.
app :: v/lambda → v/val → v/red.
App :: Lambda → ⊤ → v/red.
control ≤ v/red.

v/evctx ⊏ evctx.

<> :: v/evctx.
capp1 :: v/evctx → ⊤ → v/evctx.
capp2 :: v/val → v/evctx → v/evctx.
cApp :: v/evctx → ⊤ → v/evctx.
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Sound and Complete Elimination of Singleton Kinds · 7

assignment but not the first.2 The classifying kind can then be made even further
remote by making β a function’s formal argument instead of a free variable, and so
on.

2.2 A Singleton-Free System

To formalize our results, we also require a singleton-free target language into which
to translate expressions from the singleton calculus. We will define the singleton-
free system in terms of its differences from the singleton calculus.

We will say that a constructor c (not necessarily well-formed) syntactically be-
longs to the singleton-free calculus provided that c contains no singleton kinds.
Note that as a consequence of containing no singleton kinds, all product and sum
kinds may be written in non-dependent form. Also, all kinds in the singleton-free
calculus are well-formed.

The inference rules for the singleton-free system are obtained by removing from
the singleton calculus all the rules dealing with subkinding (Rules 9–13, 28 and
45) and all the rules dealing with singleton kinds (Rules 6, 15, 25, 34 and 35).
Note that derivable judgements in the singleton-free system must be built using
only expressions syntactically belonging to the singleton-free calculus. When a
judgement is derivable in the singleton-free system, we will note this fact by marking
the turnstile !sf .

3. ELIMINATION OF SINGLETON KINDS

The critical rule in the static semantics of the singleton calculus is the singleton
elimination rule (Rule 34). The main aim of the singleton kind elimination process
is to rewrite constructors so that any equivalences that hold for those constructors
may be derived without using that rule. If this aim is achieved, any singleton kinds
remaining within the constructors are not used (in any essential way) and can
simply be erased, resulting in valid constructors and derivations in the singleton-
free system.

This erasure process is made precise in Figure 4, which defines a mapping (−)◦

from singleton calculus kinds to singleton-free kinds that replaces all singleton kinds
by T . The erasure mapping is lifted to constructors and assignments in the obvious
manner. If Γ ! c1 = c2 : K is derivable without using singleton elimination, then
Γ◦ !sf c1

◦ = c2
◦ : K◦ is derivable in the singleton-free system. A slightly stronger

version of this fact is formalized as Lemma 25 in Section 4.4.
Thus, our goal is to rewrite constructors in such a manner that the singleton

elimination rule is not necessary. As mentioned in the introduction, this rewriting

2As an aside, in many module-oriented accounts [Harper and Lillibridge 1994; Lillibridge 1997;
Leroy 1994; 1995] it is impossible to discover that the module analogues of these types are equal
because comparisons can be made only on expressions in named form. Naming the expressions
λα:T.α and λα:T.int obscures the possible connection between them, which depends essentially
on their actual code. (In the first-class account of Harper and Lillibridge [Harper and Lillibridge
1994; Lillibridge 1997] this is essential because the equality may not hold—in addition to being
impossible to discover—since a functor can inspect the store before deciding what type to return.)
This is an example of when the singleton kind account can propagate more type information than
those module-oriented accounts. However, it is possible to give a module-oriented account that
does propagate as much type information as the singleton kind account [Dreyer et al. 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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assignment but not the first.2 The classifying kind can then be made even further
remote by making β a function’s formal argument instead of a free variable, and so
on.

2.2 A Singleton-Free System

To formalize our results, we also require a singleton-free target language into which
to translate expressions from the singleton calculus. We will define the singleton-
free system in terms of its differences from the singleton calculus.

We will say that a constructor c (not necessarily well-formed) syntactically be-
longs to the singleton-free calculus provided that c contains no singleton kinds.
Note that as a consequence of containing no singleton kinds, all product and sum
kinds may be written in non-dependent form. Also, all kinds in the singleton-free
calculus are well-formed.

The inference rules for the singleton-free system are obtained by removing from
the singleton calculus all the rules dealing with subkinding (Rules 9–13, 28 and
45) and all the rules dealing with singleton kinds (Rules 6, 15, 25, 34 and 35).
Note that derivable judgements in the singleton-free system must be built using
only expressions syntactically belonging to the singleton-free calculus. When a
judgement is derivable in the singleton-free system, we will note this fact by marking
the turnstile !sf .

3. ELIMINATION OF SINGLETON KINDS

The critical rule in the static semantics of the singleton calculus is the singleton
elimination rule (Rule 34). The main aim of the singleton kind elimination process
is to rewrite constructors so that any equivalences that hold for those constructors
may be derived without using that rule. If this aim is achieved, any singleton kinds
remaining within the constructors are not used (in any essential way) and can
simply be erased, resulting in valid constructors and derivations in the singleton-
free system.

This erasure process is made precise in Figure 4, which defines a mapping (−)◦

from singleton calculus kinds to singleton-free kinds that replaces all singleton kinds
by T . The erasure mapping is lifted to constructors and assignments in the obvious
manner. If Γ ! c1 = c2 : K is derivable without using singleton elimination, then
Γ◦ !sf c1

◦ = c2
◦ : K◦ is derivable in the singleton-free system. A slightly stronger

version of this fact is formalized as Lemma 25 in Section 4.4.
Thus, our goal is to rewrite constructors in such a manner that the singleton

elimination rule is not necessary. As mentioned in the introduction, this rewriting

2As an aside, in many module-oriented accounts [Harper and Lillibridge 1994; Lillibridge 1997;
Leroy 1994; 1995] it is impossible to discover that the module analogues of these types are equal
because comparisons can be made only on expressions in named form. Naming the expressions
λα:T.α and λα:T.int obscures the possible connection between them, which depends essentially
on their actual code. (In the first-class account of Harper and Lillibridge [Harper and Lillibridge
1994; Lillibridge 1997] this is essential because the equality may not hold—in addition to being
impossible to discover—since a functor can inspect the store before deciding what type to return.)
This is an example of when the singleton kind account can propagate more type information than
those module-oriented accounts. However, it is possible to give a module-oriented account that
does propagate as much type information as the singleton kind account [Dreyer et al. 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

(Crary, Sound and Complete Elimination of 
Singleton Kinds, ACM TOCL 2007)
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4 · Karl Crary

kinds K ::= T | S(c) | Πα:K1.K2 | Σα:K1.K2

constructors c ::= α | b | λα:K.c | c1c2 | 〈c1, c2〉 | π1c | π2c
assignments Γ ::= ε | Γ,α:K

Fig. 1. Syntax

calculus and discuss some of its subtleties that make it complicated to work with.
In Section 3, I present the singleton elimination strategy and state its correctness
theorem. Section 4 is dedicated to the proof of the correctness theorem, and con-
cluding remarks appear in Section 5.

This paper assumes familiarity with type systems with higher-order type con-
structors and dependent types. The correctness proof draws from the work of
Stone and Harper [2000] showing decidability of type equivalence in the presence
of singleton kinds, but we will use their results almost entirely “off the shelf,” so
familiarity with their paper is not required.

2. A SINGLETON KIND CALCULUS

We begin by formalizing the singleton calculus that is the subject of this paper.
The syntax of the singleton calculus is given in Figure 1. It consists of a class
of type constructors (usually referred to as “constructors” for brevity) and a class
of kinds, which classify constructors. The class of constructors contains variables
(ranged over by α), a collection of base types (ranged over by b), and the usual
introduction and elimination forms for functions and pairs over constructors. We
could also add a collection of primitive type operators (such as list or ->) without
difficulty, but have not done so in the interest of simplicity.

The kind structure is the novelty of the singleton calculus. The base kinds in-
clude T , the kind of all types, and S(c), the kind of all types definitionally equal
to c. Thus, S(c) represents a singleton set, up to definitional equality. The con-
structor c in S(c) is permitted to be open, and consequently kinds may contain
free constructor variables, which makes it useful to have dependent kinds. The
kind Πα:K1.K2 contains functions from K1 to K2, where α refers to the function’s
argument and may appear free in K2. Analogously, the kind Σα:K1.K2 contains
pairs of constructors from K1 and K2, where α refers to the left-hand member and
may appear free in K2. As usual, when α does not appear free in K2, we write
Πα:K1.K2 as K1 → K2 and Σα:K1.K2 as K1 ×K2.

In addition, the syntax provides a class of assignments, which assign kinds to
free constructor variables, for use in the calculus’s static semantics. In a practical
application, the language would be extended with an additional class of terms, but
for our purposes (which deal with constructor equality) we need not be concerned
with terms, so they are omitted.

As usual, alpha-equivalent expressions (written E ≡ E′) are taken to be identical.
The capture-avoiding substitution of c for α in E (where E is a kind, constructor
or assignment) is written E{c/α}. We also will often desire to define substitutions
independent of a particular place of use, so when σ is a substitution, we denote
the application of σ to the expression E by E{σ}. Separately defined substitu-
tions will usually be written in the form {c1/α1} · · · {cn/αn}, denoting a sequential
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

kd : type.  tp : type.

t : kd.
sing : tp → kd.
pi : kd → (tp → kd) → kd.
sigma : kd → (tp → kd) → kd.



Case Study 3: singletons

58

4 · Karl Crary

kinds K ::= T | S(c) | Πα:K1.K2 | Σα:K1.K2

constructors c ::= α | b | λα:K.c | c1c2 | 〈c1, c2〉 | π1c | π2c
assignments Γ ::= ε | Γ,α:K

Fig. 1. Syntax

calculus and discuss some of its subtleties that make it complicated to work with.
In Section 3, I present the singleton elimination strategy and state its correctness
theorem. Section 4 is dedicated to the proof of the correctness theorem, and con-
cluding remarks appear in Section 5.

This paper assumes familiarity with type systems with higher-order type con-
structors and dependent types. The correctness proof draws from the work of
Stone and Harper [2000] showing decidability of type equivalence in the presence
of singleton kinds, but we will use their results almost entirely “off the shelf,” so
familiarity with their paper is not required.

2. A SINGLETON KIND CALCULUS

We begin by formalizing the singleton calculus that is the subject of this paper.
The syntax of the singleton calculus is given in Figure 1. It consists of a class
of type constructors (usually referred to as “constructors” for brevity) and a class
of kinds, which classify constructors. The class of constructors contains variables
(ranged over by α), a collection of base types (ranged over by b), and the usual
introduction and elimination forms for functions and pairs over constructors. We
could also add a collection of primitive type operators (such as list or ->) without
difficulty, but have not done so in the interest of simplicity.

The kind structure is the novelty of the singleton calculus. The base kinds in-
clude T , the kind of all types, and S(c), the kind of all types definitionally equal
to c. Thus, S(c) represents a singleton set, up to definitional equality. The con-
structor c in S(c) is permitted to be open, and consequently kinds may contain
free constructor variables, which makes it useful to have dependent kinds. The
kind Πα:K1.K2 contains functions from K1 to K2, where α refers to the function’s
argument and may appear free in K2. Analogously, the kind Σα:K1.K2 contains
pairs of constructors from K1 and K2, where α refers to the left-hand member and
may appear free in K2. As usual, when α does not appear free in K2, we write
Πα:K1.K2 as K1 → K2 and Σα:K1.K2 as K1 ×K2.

In addition, the syntax provides a class of assignments, which assign kinds to
free constructor variables, for use in the calculus’s static semantics. In a practical
application, the language would be extended with an additional class of terms, but
for our purposes (which deal with constructor equality) we need not be concerned
with terms, so they are omitted.

As usual, alpha-equivalent expressions (written E ≡ E′) are taken to be identical.
The capture-avoiding substitution of c for α in E (where E is a kind, constructor
or assignment) is written E{c/α}. We also will often desire to define substitutions
independent of a particular place of use, so when σ is a substitution, we denote
the application of σ to the expression E by E{σ}. Separately defined substitu-
tions will usually be written in the form {c1/α1} · · · {cn/αn}, denoting a sequential
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

sf/kd ⊏ kd.  sf/tp ⊏ tp.

t : sf/kd.
% no: sing : sf/tp → sf/kd.
pi : sf/kd → (sf/tp → sf/kd) → sf/kd.
sigma : sf/kd → (sf/tp → sf/kd) → sf/kd.
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A. INFERENCE RULES

Well-Formed Context Γ ! ok

ε ! ok
(1)

Γ ! K α "∈ Dom(Γ)

Γ, α:K ! ok
(2)

Context Equivalence ! Γ1 = Γ2

! ε = ε
(3)

! Γ1 = Γ2

Γ1 ! K1 = K2 α "∈ Dom(Γ1)

! Γ1, α:K1 = Γ2, α:K2
(4)

Well-Formed Kind Γ ! K

Γ ! ok

Γ ! T
(5)

Γ ! c : T

Γ ! S(c)
(6)

Γ, α:K′ ! K′′

Γ ! Πα:K′.K′′ (7)

Γ, α:K′ ! K′′

Γ ! Σα:K′.K′′ (8)

Subkinding Γ ! K ≤ K ′

Γ ! c : T

Γ ! S(c) ≤ T
(9)

Γ ! ok

Γ ! T ≤ T
(10)

Γ ! c1 = c2 : T

Γ ! S(c1) ≤ S(c2)
(11)

Γ ! Πα:K′
1.K

′′
1

Γ ! K′
2 ≤ K′

1 Γ, α:K′
2 ! K′′

1 ≤ K′′
2

Γ ! Πα:K′
1.K

′′
1 ≤ Πα:K′

2.K
′′
2

(12)

Γ ! Σα:K′
2.K

′′
2

Γ ! K′
1 ≤ K′

2 Γ, α:K′
1 ! K′′

1 ≤ K′′
2

Γ ! Σα:K′
1.K

′′
1 ≤ Σα:K′

2.K
′′
2

(13)

Kind Equivalence Γ ! K1 = K2

Γ ! ok

Γ ! T = T
(14)

Γ ! c1 = c2 : T

Γ ! S(c1) = S(c2)
(15)

Γ ! K′
2 = K′

1 Γ, α:K′
1 ! K′′

1 = K′′
2

Γ ! Πα:K′
1.K

′′
1 = Πα:K′

2.K
′′
2

(16)

Γ ! K′
1 = K′

2 Γ, α:K′
1 ! K′′

1 = K′′
2

Γ ! Σα:K′
1.K

′′
1 = Σα:K′

2.K
′′
2

(17)

Well-Formed Constructor
Γ ! c : K

Γ ! ok

Γ ! b : T
(18)

Γ ! ok

Γ ! α : Γ(α)
(19)

Γ, α:K′ ! c : K′′

Γ ! λα:K′.c : Πα:K′.K′′ (20)

Γ ! c : Πα:K′.K′′ Γ ! c′ : K′

Γ ! cc′ : K′′{c′/α}
(21)

Γ ! c : Σα:K′.K′′

Γ ! π1c : K′ (22)

Γ ! c : Σα:K′.K′′

Γ ! π2c : K′′{π1c/α}
(23)

Γ ! Σα:K′.K′′

Γ ! c1 : K′

Γ ! c2 : K′′{c1/α}
Γ ! 〈c1, c2〉 : Σα:K′.K′′ (24)
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keq : kd → kd → type.
eq : tp → tp → kd → type.
kof : tp → kd → type.

r14 : keq t t.

r15 : keq (sing C1) (sing C2)
      ← eq C1 C2 t.

r16 : keq (pi K1’ [a] K1’’ a)
                  (pi K2’ [a] K2’’ a)
      ← keq K2’ K1’
      ← ({a} kof a K1’
             → keq (K1’’ a) (K2’’ a)).
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A. INFERENCE RULES

Well-Formed Context Γ ! ok

ε ! ok
(1)

Γ ! K α "∈ Dom(Γ)

Γ, α:K ! ok
(2)

Context Equivalence ! Γ1 = Γ2

! ε = ε
(3)

! Γ1 = Γ2

Γ1 ! K1 = K2 α "∈ Dom(Γ1)

! Γ1, α:K1 = Γ2, α:K2
(4)

Well-Formed Kind Γ ! K

Γ ! ok

Γ ! T
(5)

Γ ! c : T

Γ ! S(c)
(6)

Γ, α:K′ ! K′′

Γ ! Πα:K′.K′′ (7)

Γ, α:K′ ! K′′

Γ ! Σα:K′.K′′ (8)

Subkinding Γ ! K ≤ K ′

Γ ! c : T

Γ ! S(c) ≤ T
(9)

Γ ! ok

Γ ! T ≤ T
(10)

Γ ! c1 = c2 : T

Γ ! S(c1) ≤ S(c2)
(11)

Γ ! Πα:K′
1.K

′′
1

Γ ! K′
2 ≤ K′

1 Γ, α:K′
2 ! K′′

1 ≤ K′′
2

Γ ! Πα:K′
1.K

′′
1 ≤ Πα:K′

2.K
′′
2

(12)

Γ ! Σα:K′
2.K

′′
2

Γ ! K′
1 ≤ K′

2 Γ, α:K′
1 ! K′′

1 ≤ K′′
2

Γ ! Σα:K′
1.K

′′
1 ≤ Σα:K′

2.K
′′
2

(13)

Kind Equivalence Γ ! K1 = K2

Γ ! ok

Γ ! T = T
(14)

Γ ! c1 = c2 : T

Γ ! S(c1) = S(c2)
(15)

Γ ! K′
2 = K′

1 Γ, α:K′
1 ! K′′

1 = K′′
2

Γ ! Πα:K′
1.K

′′
1 = Πα:K′

2.K
′′
2

(16)

Γ ! K′
1 = K′

2 Γ, α:K′
1 ! K′′

1 = K′′
2

Γ ! Σα:K′
1.K

′′
1 = Σα:K′

2.K
′′
2

(17)

Well-Formed Constructor
Γ ! c : K

Γ ! ok

Γ ! b : T
(18)

Γ ! ok

Γ ! α : Γ(α)
(19)

Γ, α:K′ ! c : K′′

Γ ! λα:K′.c : Πα:K′.K′′ (20)

Γ ! c : Πα:K′.K′′ Γ ! c′ : K′

Γ ! cc′ : K′′{c′/α}
(21)

Γ ! c : Σα:K′.K′′

Γ ! π1c : K′ (22)

Γ ! c : Σα:K′.K′′

Γ ! π2c : K′′{π1c/α}
(23)

Γ ! Σα:K′.K′′

Γ ! c1 : K′

Γ ! c2 : K′′{c1/α}
Γ ! 〈c1, c2〉 : Σα:K′.K′′ (24)
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sf/keq ⊏ keq :: sf/kd → sf/kd → sort.
sf/eq ⊏ eq :: sf/tp → sf/tp → sf/kd
                   → sort.
sf/kof : sf/tp → sf/kd → type.

r14 :: sf/keq t t.

% no r15

r16 :: sf/keq (pi K1’ [a] K1’’ a)
                         (pi K2’ [a] K2’’ a)
      ← sf/keq K2’ K1’
      ← ({a} sf/kof a K1’
                → sf/keq (K1’’ a) (K2’’ a)).



Contributions

Refinements are useful:

‣ many case studies

‣ subset interpretation

Refinements are practical:

‣ simple yet rich metatheory

‣ sort reconstruction
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       Summary

LFR: an expressive 
and practical logical 
framework

(I think Knuth would 
be intrigued!)
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LFR


