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Motivation

“It is very, very
easy to design bad
programming
languages.”

(John Reynolds)

» Want to design good programming languages by
building on logical foundations

» Today: explore one possibility, classical logic

~——
~——
—
—




Part 1: Proof theory boot camp




Logical foundations

» Curry-Howard correspondence

Logic Programming
Propositions lypes
Proofs Programs
Proof-checking Type-checking
Simplification Evaluation

» Classical logic as a programming language?

- excluded middle, proof by contradiction, ...
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» Propositions as types, proofs as programs
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Curry-Howard correspondence

» Propositions as types, proofs as programs

» Q: What is a proof of a proposition?

» Q: What is a proposition?
» A: Something that can be judged true.

ce.g.“2+3=06",or “it is raining”
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A and B, or else A and C.
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Example

» Proposition: If A and either B or C, then either
A and B, or else A and C.

» Conjunction (“and”)
» Disjunction (“or”)
» Implication (“if ... then ...”)

» A, B, and C: whatever you like...
» Symbolically: AA(BVC) = (AAB)V(AACQ)
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A closer look...

» Proof:
> Suppose A and either B or C:

* have B or C (since [...] and (B or C))
* suppose B:
- have A [...])
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> have B ssumption)
* thus A and B (sfr=e we have both)

* thus either A and B, or A and C (in particular, the first)
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A NAB true E A NAB true N
. — 1 - 2
* thus eith A trye B frue
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Formalizing Proof, take 1

» Judgement: A true. (A is provable.”)
» Inference rules: grouped into “Introductions™:

A true B true

g |
A A B true
» ... and “Eliminations”:
A N DB true A A DB true
N-E1 N-E»>
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A closer look...

» Proot:
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A closer look...

» Proof:
- Suppose A and either B or C:
- have B or C since [...]and| I, A true+ B true o]
* suppose B: ['- A= Btrue
* have A (since A and |...
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Formalizing Proof, take 2

» Judgement: I' - A true. (“A is provable assuming I'”)
» I is a list of assumptions: A; true, ..., Ay, true

» Implication: one introduction rule:

I, A true+ B true
I'-A= B true

=-1
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Formalizing Proof, take 2

» Judgement: I' - A true. (“A is provable assuming I'”)
» I is a list of assumptions: A; true, ..., Ay, true

» Implication: one introduction rule:

I, A true+ B true
I'-A= B true

=-1

» ... and one elimination rule:

I'- A= B true I' = A true
'~ B true

=-F

12
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» Hypothesis rule:

I', A true+ A true
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Formalizing Proof, take 3

» Disjunction: two introduction rules:

I' = A true I' - B true
V-I1 V-I»
I'-AvVDBtrue I'= AV B true

14




Formalizing Proof, take 3

» Disjunction: two introduction rules:

I' - A true I' - B true
V-I1 V-I»
I'-AvVDBtrue I'= AV B true

» ... and one elimination rule:

I'-AVBtrue T,Atruer~ Ctrue 1, B truer C true
I' - C true

V-E

14
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Proof simplification

» Easy to make detours. Consider proving A = A:

» Suppose A true:

- Hmm... tricky...
- Well, we also have B true...
- A-ha! By A-I, we have A A B true.

- And then by A-E;, we have A true.

> *phew*

15
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Proof simplification

» Eliminate “redundant” steps

D T
I'Atrue 1+ Btrue
I'—=AAB true

I' = A true

16




Proof simplification

» Eliminate “redundant” steps

D i3
I'-Atrue 1 + Btrue D
I' - AABtrue > I' - A true
'~ A true
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Proof simplification

» Using Substitution Principle:

D
I, A true+ B true F
I'-A = B true '~ A true
'~ B true




Proof simplification

» Using Substitution Principle:

H T
I', Atrue+ B true F I'= A true

I'- A= Btrue '~ A true )
I' — B true '+~ b true
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Proof terms

I'-Atrue 1 ~ B true
I'—-AADBtrue

N-1

I' - AAB true I' - AAB true
N-E1 N-E»>
I' - A true I' - B true

18
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Proof terms

I'~e1:Atrue 1 +~e>:Btrue
['+(e1,e): AABtrue
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I'~e1:Atrue 1 +~e>:Btrue
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N-1
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N-E1 N-E»
I'—#1e: A true I' - #2 e : B true

18

18



Proof terms

» Conjunction: pairing!

I'~e1:Atrue 1 +~e>:Btrue
['+(e1,e): AABtrue

N-1

I'—e:AANBtrue I'—e:AADBtrue
N-E1 N-E»
I'—#1e: A true I' - #2 e : B true

18
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Proof terms

I',x:Atruer+e: B true
' Ax.e: A= B true

= -1

I'~e1:A=Btrue 1 +~e>:Atrue

=-E
I'—ej1er: B true

19
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Proof terms

» Implication: functions!
» (Note: assumptions now labelled)

I',x:Atruer+e: B true
' Ax.e: A= B true

= -1

I'~e1:A=Btrue 1 +~e>:Atrue

I'—ej1er: B true

19
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Proof terms

» Disjunction: datatypes and pattern matching!
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Proof terms

» Disjunction: datatypes and pattern matching!

» (rules elided)
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Proof terms

» Simplification: evaluation!

#1 (e1, 62) :> €1
#2 (e1, €2) | > )
(Ax. e1) e> > [e>/ x] ex

» Basic programming language: the simply-type
lambda calculus.

> data structures, functions

21
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Example Proof, revisited

» Proposition: If A and either B or C, then either
A and B, or else A and C.

» Prootf:
fnx: AANBVC(C)=

case #2 x of inl y = inl (#1 x, y)

1
—

| inr z = inr (#1

22




Example Proof, revisited

» Proposition: If A and either B or C, then either
A and B, or else A and C.

» Proof:
fnx: ANBVCQO =

case #2 x of inl y = inl (#1 x, y)

| inr z = inr (#1 x, z)

» Computational content of proof: a simple input-
shuffling program

22




Classical Logic

» What I've shown you: intuitionistic logic
» Classical logic: proof-by-contradiction

I', A false ~ contra I'-Ctrue I +Cfalse

I' = A true I' —~ contra

» What is contra?

» What is false?
» Computational interpretation?

23
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Continuations




Continuations

» Intuition: separate a program into what’s happening
now and what happens next. ..

- what's happening now: expression currently being evaluated
- what happens next: the continuation: the rest of the program

continuation — ‘ \ <«—— current expression

25
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Current continuation

» “letcc u in e”: bind current continuation to u, run e

» “throw e to u”: restore continuation u with expr. e

- like a goto with an argument

continuation —

‘ \ <«—— current expression

26

26



Example: early exit

» letcc example: early exit
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Example: early exit

» letcc example: early exit

fun product [] =1
| product (x::xs) = x * product xs

-

J
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Example: early exit

» letcc example: early exit

fun product [| =1
product (0::_)

0

product (x::xs) = x * product xs

J
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Example: early exit

» letcc example: early exit

fun product nums =

letcc u in
let fun prod [| =1
prod (0::_) = throw 0O to u
prod (x::xs) = x * prod xs
in
prod nums

end

27




What are continuations?

» Like a “partial program”: given a value of the right
type, it becomes a complete program.

»“A cont”: type of a continuation expecting an A
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What are continuations?

» Like a “partial program”: given a value of the right

type, it becomes a complete program.

»“A cont”: type of a continuation expecting an A

»in “early exit” example:
u : int cont, since
“product” should
return an int

fun product nums =
letcc u in
let fun prod ...
in

prod nums
end

28
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What can we do with them?

» Gilven an A cont, pass it an A

» Given an A cont, construct an A A B cont

cacceptapair: AAB A cont = A A B cont

> project the first component : A

- pass it to original continuation B cont = A A B cont

» Given an A cont and a B cont, make an A V B cont

cacceptasum: AV DB

- case analyze it to get either an A or a B
- if A, pass to the A cont; if B, pass to the B cont
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A cont = A A B cont

B cont = A A B cont

» Given an A cont and a B cont, make an A V B cont

cacceptasum: AV DB

A cont, B cont = A V B cont
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What can we do with them?

» Gilven an A cont, pass it an A

» Given an A cont, construct an A A B cont

cacceptapair: AAB

> project the first component : A
> pass it to original continuation

A false = A A B false

B false - A A B false

» Given an A cont and a B cont, make an A V B cont

cacceptasum: AV DB

A false, B false — A V B false

- case analyze it to get either an A or a B

- if A, pass to the A cont; if B, pass to the B cont

29
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Continuations are refutations!

['-k:Afalse
N-F1
['-(#1; k) : AA B false
['-k:B false
N-F2

' (#2, k) : AAB false

I'-ki:Afalse I +ko:Bfalse

V-F
[' - [kq, ko] : AV B false

30




Classical Curry-Howard

» Expressions: e : A true
» Continuations: k: A false




Classical Curry-Howard

» Expressions: e : A true
» Continuations: k: A false
» Programes: k<e

['—e:Ctrue T +Kk:Cfalse

I'-k«e:contra

31




Classical Curry-Howard

» Evaluate programs k < e:

#1: k < (e1, e) | > k < e
#2: k < (e1, e) | > k < e
[k, ko] @inl e | > kiqe
ki, ko] < inr e > ko < e

~—
.
—
—
~—

32




Proof-by-contradiction redux

I', A false — contra
'~ Atrue




Proof-by-contradiction redux

[, u:Afalse -k <e: contra

I'—letccuink < e: A true

33




Proof-by-contradiction redux

[, u:Afalse -k <e: contra

I'—letccuink < e: A true

k" <letccuink<e > [k /u] (k < e)

~—
.
—
—
~—
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Classical proof terms

Jex=x | letcc u:A false in c) A true
(e, €) | () AANB, T
inl(e) | inr(e) Av B
AXCA. e A = B
not(k)
-A
k:i=u | let x:A truein c A false
Lk | #2;k ANDB
[y, ko] | ] AV DB, 1
e k A= B
not(e) _A

34




Normalization

» Theorem: Every contradiction has a normal form.

- “normal”: cannot reduce any further

» Proof: By nested induction on the type at which a
contradiction occurs and the terms undergoing
evaluation.

35
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Normalization

» Theorem: Every contradiction has a normal form.

- “normal”: cannot reduce any further

» Proof: By nested induction on the type at which a
contradiction occurs and the terms undergoing
evaluation.

» Corollary: Classical logic is consistent, since there
are no closed, normal contradictions

35

35



Prior work

» Standing on many giants’ shoulders:

- Andrzej Filinski

> Michel Parigot

- Timothy Griffin

- Chetan Murthy

> Pierre-Louis Curien and Hugo Herbelin

> Aleksandar Nanevski
> Philip Wadler

» But one of the first -- and simplest -- proofs of
normalization.

36
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Conclusion

» Observed that continuations em-
body refutations of propositions

» Constructed a programming
language with continuations,
based on proof-by-contradiction

» Proved the language terminating,
establishing the consistency of
classical logic

\ (] ohn Reynolds approves)

37
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To truth through proof

» Q: What is a proof of a proposition A?
» A: Depends on A...

» How about A A B?

» A proof of A A B is a proof of A and a proof of B.

A true B true
A A B true

38
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To truth through proof

» Q: What can we do with a proof?
» A: From a proof of A A B, we can get a proof of A.

(Also, a proof of B.)

A A B true A A B true
A true B true
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Reasoning from hypotheses

» Refine judgement: A true becomes [ - A true, withl
an unordered list of hypotheses A, ..., A,

» Hypothesis rule:

[, A true+ A true

» Substitution Principle: if I, A true+ B trueand I' -
A true, then [ ~ B true
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Intros and Elims

» Introduction

[ — Atrue [+~ B true
[ — AAB true

» Elimination

[ — AAB true [ — AAB true
[ — A true [ — B true
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Proof simplification

» Eliminate “redundant” steps

[ — Atrue I ~ B true
[~ AAB true j> [~ Atrue

[ — A true
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Implication

» Q: What is a proof of A = B?
» A: A proof of B, conditioned on a proof of A.

» Q: What can you do with a proof of A = B?

» A: Given a proof of A, make a proof of B.
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Implication rules

» A little more interesting. ..

I', A true+ B true

I'- A= B true

I'-A=Btrue I' - A true
I' = B true
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Implication simplification

» Using Substitution Principle:

[, A true — B true [ — A true
[ — A= B true [ — A true )

[+ B true [+ B true
I'-A=B
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Proof terms

» Compact representation of derivations

[ - M:Atrue '~ N:B true
[ - (M, N): A AB true

[ - M:A A B true [ — M :A A B true
[ —11, M: A true [ — 11, M: B true
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Proof terms

» Hypothesis get labels: now ['is x;: A4, ..., x,,: A

n

» Hypothesis rule:

[, x:A truevw x: A true

» Substitution Principle: if I, x : A true— M : B true
and [ - N : A true, then [ +~ [N/x] M : B true
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Proof terms

» Abstraction and application

[, x:A truew~ M : B true

F. \veA M. A A R f1410

[ -M:A=Btrue I - N:A true
[ — M N : B true
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Proof term simplification

» Reduction on trees = reduction on terms

1, (M, N) > M
T, (M, N) > N
(Ax:A. M) N > [N/x] M

» This is a programming language!
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Classical proof terms

Me = x |letcc(u+A. c) A true
(e, e,) | () AAB, T
inl(e) | inr(e) AV B
AX:A. e A=B
not(k) -A

Mk = u | let(x:A. c) A false
kom |kom AAB
ki, K] | (] AV B, 1L
not(e) -A

\\
~—_
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