A Programming Language Based on Classical Logic

William Lovas (with Karl Crary)

Motivation

"It is very, very easy to design bad programming languages."

(John Reynolds)

- Want to design *good* programming languages by building on *logical foundations*
- ▶ Today: explore one possibility, classical logic

Part 1: Proof theory boot camp

Logical foundations

Curry-Howard correspondence

Logic	Programming
Propositions	Types
Proofs	Programs
Proof-checking	Type-checking
Simplification	Evaluation

- Classical logic as a programming language?
 - excluded middle, proof by contradiction, ...

Propositions as types, proofs as programs

Propositions as types, proofs as programs

• **Q**: What is a proof of a proposition?

- Propositions as types, proofs as programs
- **Q**: What is a proof of a proposition?
- **Q:** What is a proposition?

- Propositions as types, proofs as programs
- **Q:** What is a proof of a proposition?
- **Q**: What is a proposition?
- A: Something that can be judged true.
 - e.g. "2 + 3 = 6", or "it is raining"

▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.

▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.

Conjunction ("and")

▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.

- Conjunction ("and")
- Disjunction ("or")

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Conjunction ("and")
- Disjunction ("or")
- ▶ Implication ("if ... then ...")

▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.

- Conjunction ("and")
- Disjunction ("or")
- ▶ Implication ("if ... then ...")
- ▶ *A*, *B*, and *C*: whatever you like...

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Conjunction ("and")
- Disjunction ("or")
- ▶ Implication ("if ... then ...")
- ▶ *A*, *B*, and *C*: whatever you like...
- Symbolically: $A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose *A* and either *B* or *C*:

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose *A* and either *B* or *C*:
 - have B or C (since [...] and (B or C))

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose *A* and either *B* or *C*:
 - have B or C (since [...] and (B or C))
 - suppose *B*:

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose *A* and either *B* or *C*:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - have A (since A and [...])

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *C*:
 - have A (since A and [...])
 - have C (by assumption)
 - thus A and C (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
 - suppose *C*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
 - suppose *C*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
 - thus either *A* and *B*, or *A* and *C*

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - Suppose A and either B or C:
 - have B or C (since [...] and (B or C))
 - suppose *B*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
 - suppose *C*:
 - ...
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
 - thus either *A* and *B*, or *A* and *C*
 - thus, if *A* and either *B* or *C*, then either *A* and *B*, or *A* and *C*

Proof:

```
• have B or C (since [...] and (B \text{ or } C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if *A* and either *B* or *C*, then either *A* and *B*, or *A* and *C*

Proof:

```
• have B or C (since [...] and (B \text{ or } C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
have B or C (since [...] and (B or C))
suppose B:
have A (since A and [...])
have B (by assumption)
the A and B (since we have both)
thus either A and B, or A and C (in particular, the first)
suppose C:
```

- •
- thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if *A* and either *B* or *C*, then either *A* and *B*, or *A* and *C*

Proof:

Suppose A and either B or C

(since [...] a

• suppose *B*:

• have B or C

rave A

that A and B

since A and [...]

(by assumption)

(since we have both)

• thus either *A* and *B*, or *A* and *C*

(in particular, the first)

A true B true

 $A \wedge B$ true

• suppose *C*:

- thus either *A* and *B*, or *A* and *C*
- (in particular, the second)
- thus either A and B, or A and C
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
• have B or C (since [...] and (B \text{ or } C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
• have B or C (since [...] and (B \text{ or } C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
• have B or C (since [...] and (B or C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
    Suppose A and either B or C:

 • have B or C
                          (since [...] and (B or C))
 • suppose B:
    • have A
                           (since A and [...])
    • have B
                             xassumption)
    • thus A and B
                           (since we have both)
    • thus either A and B, or A and C
                                              (in particular, the first)
 • suppose (
                     A \wedge B true
                                                   A \wedge B true
    •
                                     -\wedge-\mathbf{E}_1
                                                                   \wedge-E_2

    thus eith

                        A true
                                                      B true

    thus either
```

• thus, if A and either B or C, then either A and B, or A and C

Formalizing Proof, take 1

- ▶ Judgement: *A true*. ("*A* is provable.")
- Inference rules: grouped into "Introductions":

$$\frac{A true}{A \wedge B true} \wedge \mathbf{I}$$

... and "Eliminations":

$$\frac{A \wedge B \text{ true}}{A \text{ true}} \wedge -\mathbf{E_1} \qquad \frac{A \wedge B \text{ true}}{B \text{ true}} \wedge -\mathbf{E_2}$$

Proof:

```
• have B or C (since [...] and (B \text{ or } C))
```

- suppose *B*:
 - have A (since A and [...])
 - have *B* (by assumption)
 - thus A and B (since we have both)
 - thus either *A* and *B*, or *A* and *C* (in particular, the first)
- suppose *C*:
 - •
 - thus either *A* and *B*, or *A* and *C* (in particular, the second)
- thus either *A* and *B*, or *A* and *C*
- thus, if A and either B or C, then either A and B, or A and C

Proof:

```
• Suppose A and either B or C:
 • have B or C
                         (since [...] and (B \text{ or } C))
 • suppose B:
   • have A
                         (since A and [...])
   • have B
                        (by assumption)
   • thus A and B
                        (since we have both)
   • thus either A and B, or A and C
                                          (in particular, the first)
 • suppose C:
   • thus either A and B, or A and C
                                           (in particular, the second)
 • thus either A and B, or A and C
```

• thus, if A and either B or C, then either A and B, or A and C

Proof:

Suppose A and either B or C:
have B or C (since [...] and (B or C))

• suppose *B*:

• have A (since A and [...])

• have *B* (by assumption)

• thus A and B (since we have both)

• thus either *A* and *B*, or *A* and *C* (in particular, the first)

• suppose *C*:

•

• thus either A and B, or A and C (in particular, the second)

• thus either A and B, or A and C

• thus, if *A* and either *B* or *C*, then either *A* and *B*, or *A* and *C*

Proof:

Suppose A and either B or C:

```
have B or C
suppose B:
have A
have B
thus A and B
thus either A and B, or A and C
thus either A and B, or A and C
thus either A and B, or A and C
thus either A and B, or A and C
thus either A and B, or A and C
thus either A and B, or A and C
thus either A and B, or A and C
```

• thus, if A and either B or C, then either A and B, or A and C

Proof:

Suppose A and either B or C:

```
• have B or C
                      (since [...] and
```

- suppose *B*:
 - have *A*
 - have B
 - thus A and
 - thus either *A* and *B*, or *A* and *C*

 - (in particular, the first)

(since A and [...

(by assuration)

we have both)

- suppose C:

 - thus either *A* and *B*, or *A* and *C*
- thus either A and B, or A and C
- thus, if A and either B or C, then either A and B, or A and C

(in particular, the second)

Formalizing Proof, take 2

- ▶ Judgement: $\Gamma \vdash A \ true$. ("A is provable assuming Γ ")
- $ightharpoonup \Gamma$ is a list of assumptions: A_1 true, ..., A_n true
- Implication: one introduction rule:

$$\frac{\Gamma, A true \vdash B true}{\Gamma \vdash A \Rightarrow B true} \Rightarrow I$$

Formalizing Proof, take 2

- ▶ Judgement: $\Gamma \vdash A \ true$. ("A is provable assuming Γ ")
- $ightharpoonup \Gamma$ is a list of assumptions: A_1 true, ..., A_n true
- Implication: one introduction rule:

$$\frac{\Gamma, A true \vdash B true}{\Gamma \vdash A \Rightarrow B true} \Rightarrow I$$

... and one elimination rule:

$$\frac{\Gamma \vdash A \Rightarrow B \ true}{\Gamma \vdash B \ true} \xrightarrow{\Gamma \vdash A \ true} \Rightarrow -\mathbf{E}$$

Hypothesis rule:

 Γ , A true \vdash A true

Hypothesis rule:

$$\Gamma$$
, A true \vdash A true

▶ Substitution Principle: if Γ , A true \vdash B true and

Hypothesis rule:

$$\Gamma$$
, A true \vdash A true

► Substitution Principle: if Γ , A true \vdash B true and

Hypothesis rule:

$$\Gamma$$
, A true \vdash A true

► Substitution Principle: if Γ , A true \vdash B true and

Hypothesis rule:

$$\Gamma$$
, A true \vdash A true

▶ Substitution Principle: if Γ , A true \vdash B true and

Formalizing Proof, take 3

Disjunction: two introduction rules:

$$\frac{\Gamma \vdash A \ true}{\Gamma \vdash A \lor B \ true} \lor -\mathbf{I_1} \qquad \frac{\Gamma \vdash B \ true}{\Gamma \vdash A \lor B \ true} \lor -\mathbf{I_2}$$

Formalizing Proof, take 3

Disjunction: two introduction rules:

$$\frac{\Gamma \vdash A \ true}{\Gamma \vdash A \lor B \ true} \lor -\mathbf{I_1} \qquad \frac{\Gamma \vdash B \ true}{\Gamma \vdash A \lor B \ true} \lor -\mathbf{I_2}$$

... and one elimination rule:

$$\frac{\Gamma \vdash A \lor B \ true \quad \Gamma, A \ true \vdash C \ true \quad \Gamma, B \ true \vdash C \ true}{\Gamma \vdash C \ true} \lor -E$$

▶ Easy to make detours. Consider proving $A \Rightarrow A$:

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:
 - Hmm... tricky...

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:
 - Hmm... tricky...
 - Well, we also have *B true*...

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:
 - Hmm... tricky...
 - Well, we also have *B true*...
 - A-ha! By \wedge -**I**, we have $A \wedge B$ *true*.

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:
 - Hmm... tricky...
 - Well, we also have *B true*…
 - A-ha! By \wedge -**I**, we have $A \wedge B$ *true*.
 - And then by \land **-E**₁, we have *A true*.

- ▶ Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose *A true*:
 - Hmm... tricky...
 - Well, we also have *B true*...
 - A-ha! By \wedge -I, we have $A \wedge B$ true.
 - And then by \land **-E**₁, we have *A true*.
 - *phew*

Eliminate "redundant" steps

Eliminate "redundant" steps

Using Substitution Principle:

Using Substitution Principle:

$$\frac{\Gamma \vdash A \ true \quad \Gamma \vdash B \ true}{\Gamma \vdash A \land B \ true} \land \mathbf{-I}$$

$$\frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash A \ true} \land -E_1 \qquad \frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash B \ true} \land -E_2$$

$$\frac{\Gamma \vdash e_1 : A \ true \qquad \Gamma \vdash e_2 : B \ true}{\Gamma \vdash (e_1, e_2) : A \land B \ true} \land -\mathbf{I}$$

$$\frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash A \ true} \land -E_1 \qquad \frac{\Gamma \vdash A \land B \ true}{\Gamma \vdash B \ true} \land -E_2$$

$$\frac{\Gamma \vdash e_1 : A \ true \qquad \Gamma \vdash e_2 : B \ true}{\Gamma \vdash (e_1, e_2) : A \land B \ true} \land \mathbf{-I}$$

$$\frac{\Gamma \vdash e : A \land B \textit{ true}}{\Gamma \vdash \#1 \; e : A \textit{ true}} \land \textbf{-E}_1 \qquad \frac{\Gamma \vdash e : A \land B \textit{ true}}{\Gamma \vdash \#2 \; e : B \textit{ true}} \land \textbf{-E}_2$$

Conjunction: pairing!

$$\frac{\Gamma \vdash e_1 : A \ true \qquad \Gamma \vdash e_2 : B \ true}{\Gamma \vdash (e_1, e_2) : A \land B \ true} \land \mathbf{I}$$

$$\frac{\Gamma \vdash e : A \land B \textit{ true}}{\Gamma \vdash \#1 e : A \textit{ true}} \land -E_1 \qquad \frac{\Gamma \vdash e : A \land B \textit{ true}}{\Gamma \vdash \#2 e : B \textit{ true}} \land -E_2$$

$$\frac{\Gamma, x : A \ true \vdash e : B \ true}{\Gamma \vdash \lambda x. \ e : A \Rightarrow B \ true} \Rightarrow -I$$

$$\frac{\Gamma \vdash e_1 : A \Rightarrow B \ true \qquad \Gamma \vdash e_2 : A \ true}{\Gamma \vdash e_1 \ e_2 : B \ true} \Rightarrow -\mathbf{E}$$

- Implication: functions!
- Note: assumptions now labelled)

$$\frac{\Gamma, x : A \ true \vdash e : B \ true}{\Gamma \vdash \lambda x. \ e : A \Rightarrow B \ true} \Rightarrow -I$$

$$\frac{\Gamma \vdash e_1 : A \Rightarrow B \ true \qquad \Gamma \vdash e_2 : A \ true}{\Gamma \vdash e_1 \ e_2 : B \ true} \Rightarrow -\mathbf{E}$$

Disjunction: datatypes and pattern matching!

Disjunction: datatypes and pattern matching!

Disjunction: datatypes and pattern matching!

(rules elided)

Simplification: evaluation!

#1 (e₁, e₂)
$$\Rightarrow$$
 e₁
#2 (e₁, e₂) \Rightarrow e₂
(λx . e₁) e₂ \Rightarrow [e₂/ x] e₁

- Basic programming language: the simply-type lambda calculus.
 - data structures, functions

Example Proof, revisited

▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:

```
• fn x : A \land (B \lor C) \Rightarrow

case #2 x of inl y \Rightarrow inl (#1 x, y)

| inr z \Rightarrow inr (#1 x, z)
```

- ▶ **Proposition:** If *A* and either *B* or *C*, then either *A* and *B*, or else *A* and *C*.
- Proof:
 - **fn** $x : A \land (B \lor C) \Rightarrow$ **case** #2 x **of** inl $y \Rightarrow$ inl (#1 x, y) | inr $z \Rightarrow$ inr (#1 x, z)
- Computational content of proof: a simple inputshuffling program

Classical Logic

- What I've shown you: intuitionistic logic
- Classical logic: proof-by-contradiction

$$\frac{\Gamma, A \textit{ false} \vdash \textit{contra}}{\Gamma \vdash A \textit{ true}} \qquad \frac{\Gamma \vdash C \textit{ true}}{\Gamma \vdash \textit{contra}} \qquad \frac{\Gamma \vdash C \textit{ true}}{\Gamma \vdash \textit{contra}}$$

- ▶ What is *contra*?
- ▶ What is *false*?
- Computational interpretation?

Continuations

Continuations

- Intuition: separate a program into what's happening now and what happens next...
 - what's happening now: expression currently being evaluated
 - what happens next: the *continuation*: the rest of the program

Current continuation

- letcc *u* in e": bind current continuation to *u*, run e
- "throw e to u": restore continuation u with expr. e
 - like a **goto** with an argument


```
fun product nums =
  letcc u in
  let fun prod [] = 1
        | prod (0::__) = throw 0 to u
        | prod(x::xs) = x * prod xs
  in
     prod nums
  end
```

What are continuations?

- Like a "partial program": given a value of the right type, it becomes a complete program.
- ▶ "A cont": type of a continuation expecting an A

What are continuations?

- Like a "partial program": given a value of the right type, it becomes a complete program.
- "A cont": type of a continuation expecting an A
- in "early exit" example:
 u: int cont, since
 "product" should
 return an int

```
fun product nums =
  letcc u in
  let fun prod ...
  in
    prod nums
  end
```

Given an *A* cont, pass it an *A*

- Given an *A* cont, pass it an *A*
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \wedge B$
 - project the first component : *A*
 - pass it to original continuation

- Given an *A* cont, pass it an *A*
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \wedge B$
 - project the first component : *A*
 - pass it to original continuation

$$A \text{ cont} \Rightarrow A \land B \text{ cont}$$

$$B \operatorname{cont} \Rightarrow A \wedge B \operatorname{cont}$$

- Given an A cont, pass it an A
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \wedge B$
 - project the first component : *A*
 - pass it to original continuation

$$A \text{ cont} \Rightarrow A \land B \text{ cont}$$

$$B \operatorname{cont} \Rightarrow A \wedge B \operatorname{cont}$$

- Given an A cont and a B cont, make an $A \lor B$ cont
 - accept a sum : $A \lor B$
 - case analyze it to get either an A or a B
 - if A, pass to the A cont; if B, pass to the B cont

- Given an *A* cont, pass it an *A*
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \wedge B$
 - project the first component : *A*
 - pass it to original continuation

$$A \text{ cont} \Rightarrow A \land B \text{ cont}$$

$$B \mathbf{cont} \Rightarrow A \wedge B \mathbf{cont}$$

- Given an A cont and a B cont, make an $A \lor B$ cont
 - accept a sum : $A \lor B$

 $A \text{ cont}, B \text{ cont} \Rightarrow A \vee B \text{ cont}$

- case analyze it to get either an *A* or a *B*
- if A, pass to the A cont; if B, pass to the B cont

- Given an A cont, pass it an A
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \wedge B$
 - project the first component : *A*
 - pass it to original continuation

$$A \ false \vdash A \land B \ false$$

$$B \ false \vdash A \land B \ false$$

- Given an A cont and a B cont, make an $A \lor B$ cont
 - accept a sum : $A \lor B$

A false, *B false*
$$\vdash$$
 A \lor *B false*

- case analyze it to get either an *A* or a *B*
- if A, pass to the A cont; if B, pass to the B cont

Continuations are refutations!

$$\frac{\Gamma \vdash k : A \text{ false}}{\Gamma \vdash (\#1; k) : A \land B \text{ false}} \land \mathbf{F_1}$$

$$\frac{\Gamma \vdash k : B \text{ false}}{\Gamma \vdash (\#2; k) : A \land B \text{ false}} \land \mathbf{F_2}$$

$$\frac{\Gamma \vdash k_1 : A \textit{ false}}{\Gamma \vdash [k_1, k_2] : A \lor B \textit{ false}} \lor \textbf{F}$$

Classical Curry-Howard

Expressions: e: A true

Continuations: k: A false

Classical Curry-Howard

- Expressions: e: A true
- Continuations: k: A false
- ▶ Programs: $k \triangleleft e$

```
\Gamma \vdash \mathbf{e} : C \ true \quad \Gamma \vdash \mathbf{k} : C \ false
\Gamma \vdash \mathbf{k} \triangleleft \mathbf{e} : contra
```

Classical Curry-Howard

▶ Evaluate programs k < e:

Proof-by-contradiction redux

$$\frac{\Gamma, A false \vdash contra}{\Gamma \vdash A true}$$

Proof-by-contradiction redux

 Γ , $u : A false \vdash k \triangleleft e : contra$

 $\Gamma \vdash \mathbf{letcc} \ u \ \mathbf{in} \ \mathbf{k} \triangleleft \mathbf{e} : \mathbf{A} \ true$

Proof-by-contradiction redux

```
\Gamma, u : A false \vdash k \triangleleft e : contra
\Gamma \vdash \mathbf{letcc} \ u \ \mathbf{in} \ k \triangleleft e : A true
```

$$k' \triangleleft letcc u in k \triangleleft e$$
 $[k'/u] (k \triangleleft e)$

Classical proof terms

```
A true
\Boxe ::= x | letcc u:A false in c)
                                               A \wedge B, \top
       |(e_1, e_2)|()
        inl(e) | inr(e)
                                               A \vee B
        λx:A. e
                                               A \Rightarrow B
         not(k)
                                               \neg A
                                               A false
\squarek ::= u \mid let x:A true in c
                                               A \wedge B
        #1; k | #2; k
        [k_1, k_2]
                                               A \vee B, \perp
         e; k
                                               A \Rightarrow B
         not(e)
                                               \neg A
```

Normalization

- ▶ **Theorem:** Every contradiction has a normal form.
 - "normal": cannot reduce any further
- **Proof:** By nested induction on the *type* at which a contradiction occurs and the *terms* undergoing evaluation.

Normalization

- ▶ **Theorem:** Every contradiction has a normal form.
 - "normal": cannot reduce any further
- **Proof:** By nested induction on the *type* at which a contradiction occurs and the *terms* undergoing evaluation.
- Corollary: Classical logic is consistent, since there are no closed, normal contradictions

Prior work

- Standing on many giants' shoulders:
 - Andrzej Filinski
 - Michel Parigot
 - Timothy Griffin
 - Chetan Murthy
 - Pierre-Louis Curien and Hugo Herbelin
 - Aleksandar Nanevski
 - Philip Wadler
- But one of the first -- and simplest -- proofs of normalization.

Conclusion

- Dbserved that *continuations* embody *refutations* of propositions
- Constructed a programming language with continuations, based on proof-by-contradiction
- Proved the language *terminating*, establishing the *consistency* of classical logic

(John Reynolds approves)

To truth through proof

- \triangleright **Q**: What is a proof of a proposition *A*?
- lacksquare A: Depends on A...
- ▶ How about $A \wedge B$?
- A proof of $A \wedge B$ is a proof of A and a proof of B.

$$\frac{A true}{A \wedge B true}$$

To truth through proof

- **Q**: What can we *do* with a proof?
- A: From a proof of $A \wedge B$, we can get a proof of A. (Also, a proof of B.)

Reasoning from hypotheses

▶ Refine judgement: A true becomes $\Gamma \vdash A$ true, with Γ an unordered list of hypotheses $A_1, ..., A_n$

Hypothesis rule:

 Γ , A true \vdash A true

Substitution Principle: if Γ , *A true* \vdash *B true* and Γ \vdash *A true*, then Γ \vdash *B true*

Intros and Elims

Introduction

$$\Gamma \vdash A \text{ true} \quad \Gamma \vdash B \text{ true}$$

$$\Gamma \vdash A \land B \text{ true}$$

▶ Elimination

Proof simplification

Eliminate "redundant" steps

$$\begin{array}{c|cccc}
\Gamma \vdash A \ true & \Gamma \vdash B \ true \\
\hline
\Gamma \vdash A \land B \ true \\
\hline
\Gamma \vdash A \ true
\end{array}$$

Implication

- Q: What is a proof of $A \Rightarrow B$?
- ▶ *A*: A proof of *B*, conditioned on a proof of *A*.
- ▶ **Q**: What can you do with a proof of $A \Rightarrow B$?
- A: Given a proof of A, make a proof of B.

Implication rules

A little more interesting...

$$\Gamma$$
, A true \vdash B true
$$\Gamma \vdash A \Rightarrow B \text{ true}$$

$$\Gamma \vdash A \Rightarrow B \ true \ \Gamma \vdash A \ true$$

$$\Gamma \vdash B \ true$$

Implication simplification

Using Substitution Principle:

$$\Gamma \vdash A \Rightarrow B$$

Proof terms

Compact representation of derivations

$$\Gamma \vdash M : A \ true \quad \Gamma \vdash N : B \ true$$

$$\Gamma \vdash (M, N) : A \land B \ true$$

Proof terms

Hypothesis get labels: now Γ is $x_1: A_1, ..., x_n: A_n$

Hypothesis rule:

 Γ , $x : A true \vdash x : A true$

Substitution Principle: if Γ , x : A true \vdash M : B true and Γ \vdash N : A true, then Γ \vdash [N/x] M : B true

Proof terms

Abstraction and application

$$\Gamma, x : A \ true \vdash M : B \ true$$

$$\Gamma \vdash \lambda \sim \Delta \quad \lambda \Lambda \cdot \Delta \rightarrow R \ true$$

$$\Gamma \vdash M : A \Rightarrow B \ true \ \Gamma \vdash N : A \ true$$

$$\Gamma \vdash M \ N : B \ true$$

Proof term simplification

 \triangleright Reduction on trees \Rightarrow reduction on terms

$$\pi_1 (M, N) ===> M$$
 $\pi_2 (M, N) ===> N$
 $(\lambda x:A. M) N ===> [N/x] M$

This is a programming language!

Classical proof terms

```
\boxtimes e ::= x | letcc(u÷A. c)
| (e<sub>1</sub>, e<sub>2</sub>) | ()
| inl(e) | inr(e)
| \lambdax:A. e
| not(k)
```

```
\frac{A \text{ true}}{A \land B}, \top
A \lor B
A \Rightarrow B
\neg A
```

$$\frac{A \text{ false}}{A \land B}$$

$$A \lor B, \bot$$

$$A \Rightarrow B$$

$$\neg A$$