A Programming Language Based on Classical Logic

William Lovas
(with Karl Crary)
Motivation

“It is very, very easy to design bad programming languages.”

(John Reynolds)

- Want to design good programming languages by building on logical foundations
- Today: explore one possibility, classical logic
Part 1: Proof theory boot camp
Logical foundations

- Curry-Howard correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositions</td>
<td>Types</td>
</tr>
<tr>
<td>Proofs</td>
<td>Programs</td>
</tr>
<tr>
<td>Proof-checking</td>
<td>Type-checking</td>
</tr>
<tr>
<td>Simplification</td>
<td>Evaluation</td>
</tr>
</tbody>
</table>

Classical logic as a programming language?
- excluded middle, proof by contradiction, …
Curry-Howard correspondence

- Propositions as types, proofs as programs
Curry-Howard correspondence

- Propositions as types, proofs as programs

- **Q:** What is a proof of a proposition?
Curry-Howard correspondence

- Propositions as types, proofs as programs
- Q: What is a proof of a proposition?
- Q: What is a proposition?
Curry-Howard correspondence

- Propositions as types, proofs as programs

- **Q:** What is a proof of a proposition?
- **Q:** What is a proposition?
- **A:** Something that can be judged true.
 - e.g. “2 + 3 = 6”, or “it is raining”
Example

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

Example

- **Proposition:** If $A \text{ and }$ either B or C, then either $A \text{ and } B$, or else $A \text{ and } C$.

- **Conjunction** ("and")
Example

- Proposition: If A and either B or C, then either A and B, or else A and C.

- Conjunction ("and")
- Disjunction ("or")
Example

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- Conjunction (“and”)
- Disjunction (“or”)
- Implication (“if … then …”)
Example

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- Conjunction ("and")
- Disjunction ("or")
- Implication ("if ... then ...")
- A, B, and C: whatever you like...
Proposition: If A and either B or C, then either A and B, or else A and C.

- Conjunction (“and”)
- Disjunction (“or”)
- Implication (“if ... then ...”)
- $A, B, \text{ and } C$: whatever you like...

Symbolically: $A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.
- **Proof:**
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$)
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C))$
 - suppose B:
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$)
 - suppose B:
 - have A (since A and [...]
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**

 - Suppose A and either B or C:
 - have B or C (since [...]) and (B or C)
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
Example Proof

Proposition: If A and either B or C, then either A and B, or else A and C.

Proof:

- Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$)
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C))$
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**

 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$)
 - suppose C:
 - have A (since A and [...]}
 - have C (by assumption)
 - thus A and C (since we have both)
 - thus either A and B, or A and C (in particular, the second)
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B \text{ or } C)$)
 - suppose B:
 - ...
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
Example Proof

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**

 - Suppose A and either B or C:
 - have B or C (since [...] and $(B \text{ or } C)$)
 - suppose B:
 - ...
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C
Example Proof

Proposition: If A and either B or C, then either A and B, or else A and C.

Proof:

- Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$)
 - suppose B:
 - ...
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
- thus, if A and either B or C, then either A and B, or A and C
Proof:

Suppose A and either B or C:
- have B or C (since $[...]$ and $(B$ or $C)$)
- suppose B:
 - have A (since A and $[...]$)
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
- suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C

thus, if A and either B or C, then either A and B, or A and C
A closer look…

- **Proof:**
 - Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C
 - thus, if A and either B or C, then either A and B, or A and C
Proof:

Suppose A and either B or C:

- have B or C (since [...] and (B or C))
- suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
- suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
- thus either A and B, or A and C

thus, if A and either B or C, then either A and B, or A and C
A closer look...

Proof:

- Suppose A and either B or C:
 - have B or C (since [...] and $(B \lor C)$)
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C
- thus, if A and either B or C, then either A and B, or A and C
A closer look...

Proof:

- Suppose \(A \) and either \(B \) or \(C \):
 - have \(B \) or \(C \) (since [...] and (\(B \) or \(C \)));
 - suppose \(B \):
 - have \(A \) (since \(A \) and [...])
 - have \(B \) (by assumption)
 - thus \(A \) and \(B \) (since we have both)
 - thus either \(A \) and \(B \), or \(A \) and \(C \) (in particular, the first)
 - suppose \(C \):
 - ...
 - thus either \(A \) and \(B \), or \(A \) and \(C \) (in particular, the second)
 - thus either \(A \) and \(B \), or \(A \) and \(C \)
- thus, if \(A \) and either \(B \) or \(C \), then either \(A \) and \(B \), or \(A \) and \(C \)
Proof:

- Suppose \(A \) and either \(B \) or \(C \):
 - have \(B \) or \(C \) (since […] and (\(B \) or \(C \))
 - suppose \(B \):
 - have \(A \) (since \(A \) and […]
 - have \(B \) (by assumption)
 - thus \(A \) and \(B \) (since we have both)
 - thus either \(A \) and \(B \), or \(A \) and \(C \) (in particular, the first)
 - suppose \(C \):
 - …
 - thus either \(A \) and \(B \), or \(A \) and \(C \) (in particular, the second)
 - thus either \(A \) and \(B \), or \(A \) and \(C \)
- thus, if \(A \) and either \(B \) or \(C \), then either \(A \) and \(B \), or \(A \) and \(C \)
Proof:

- Suppose A and either B or C:
 - have B or C (since $[...]$ and $(B$ or $C)$)
 - suppose B:
 - have A (since A and $[...]$)
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
- thus, if A and either B or C, then either A and B, or A and C
Proof:

Suppose A and either B or C:
- have B or C (since $[...]$ and $(B \lor C)$)
- suppose B:
 - have A (since A and $[...]$)
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
- suppose C:
 - \ldots
 - thus either A and B, or A and C
- thus, if A and either B or C, then either A and B, or A and C
Formalizing Proof, take 1

- Judgement: $A \text{ true}$. ("A is provable.")
- Inference rules: grouped into “Introductions”:

\[
\frac{A \text{ true} \quad B \text{ true}}{A \land B \text{ true}} \quad \wedge\text{-I}
\]

- … and “Eliminations”:

\[
\frac{A \land B \text{ true}}{A \text{ true}} \quad \wedge\text{-E}_1 \quad \frac{A \land B \text{ true}}{B \text{ true}} \quad \wedge\text{-E}_2
\]
A closer look…

Proof:

- Suppose A and either B or C:
 - have B or C (since $[...]$ and $(B$ or $C)$)
 - suppose B:
 - have A (since A and $[...]$)
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
- thus, if A and either B or C, then either A and B, or A and C
A closer look...

Proof:

- Suppose **A and either B or C:**
 - have B or C
 - (since [...] and (B or C))
 - suppose B:
 - have A
 - (since A and [...])
 - have B
 - (by assumption)
 - thus A and B
 - (since we have both)
 - thus either A and B, or A and C
 - (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C
 - (in particular, the second)
 - thus either **A and B, or A and C**
 - thus, if A and either B or C, then either A and B, or A and C
A closer look…

Proof:

- Suppose A and either B or C:
 - have B or C (since [...] and $(B$ or $C)$
 - suppose B:
 - have A (since A and [...])
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
 - suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C

- thus, if A and either B or C, then either A and B, or A and C
A closer look...

Proof:

Suppose A and either B or C:

- have B or C (since $[...]$ and $(B$ or $C)$)
- suppose B:
 - have A (since A and $[...]$)
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
- suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
 - thus either A and B, or A and C

thus, if A and either B or C, then either A and B, or A and C
Proof:

Suppose A and either B or C:

- have B or C (since [...] and [...]
- suppose B:
 - have A (since A and [...] and [...]
 - have B (by assumption)
 - thus A and B (since we have both)
 - thus either A and B, or A and C (in particular, the first)
- suppose C:
 - ...
 - thus either A and B, or A and C (in particular, the second)
- thus either A and B, or A and C

thus, if A and either B or C, then either A and B, or A and C
Formalizing Proof, take 2

- Judgement: $\Gamma \vdash A \text{ true}$. ("$A$ is provable assuming Γ")
- Γ is a list of assumptions: $A_1 \text{ true}, \ldots, A_n \text{ true}$
- Implication: one introduction rule:

$$
\frac{\Gamma, A \text{ true} \vdash B \text{ true}}{\Gamma \vdash A \Rightarrow B \text{ true}} \Rightarrow \text{-I}
$$
Formalizing Proof, take 2

- Judgement: $\Gamma \vdash A \text{ true.}$ ("A is provable assuming Γ")
- Γ is a list of assumptions: $A_1 \text{ true, } \ldots, A_n \text{ true}$
- Implication: one introduction rule:

$$
\frac{\Gamma, A \text{ true} \vdash B \text{ true}}{\Gamma \vdash A \Rightarrow B \text{ true}} \Rightarrow \text{-I}
$$

- … and one elimination rule:

$$
\frac{\Gamma \vdash A \Rightarrow B \text{ true} \quad \Gamma \vdash A \text{ true}}{\Gamma \vdash B \text{ true}} \Rightarrow \text{-E}
$$
Reasoning from assumptions

- Hypothesis rule:

\[\Gamma, A \text{ true} \vdash A \text{ true} \]
Reasoning from assumptions

- Hypothesis rule:
 \[\Gamma, A \text{ true} \vdash A \text{ true} \]

- Substitution Principle: if \(\Gamma, A \text{ true} \vdash B \text{ true} \) and \(\Gamma \vdash A \text{ true} \), then \(\Gamma \vdash B \text{ true} \)
Reasoning from assumptions

- Hypothesis rule:

\[\Gamma, A \text{ true} \vdash A \text{ true} \]

- Substitution Principle: if \(\Gamma, A \text{ true} \vdash B \text{ true} \) and \(\Gamma \vdash A \text{ true} \), then \(\Gamma \vdash B \text{ true} \)
Reasoning from assumptions

- Hypothesis rule:

\[\Gamma, A \text{ true} \vdash A \text{ true} \]

- Substitution Principle: if \(\Gamma, A \text{ true} \vdash B \text{ true} \) and \(\Gamma \vdash A \text{ true} \), then \(\Gamma \vdash B \text{ true} \)
Reasoning from assumptions

- Hypothesis rule:
 \[\Gamma, A \text{ true} \vdash A \text{ true} \]

- Substitution Principle: if \(\Gamma, A \text{ true} \vdash B \text{ true} \) and \(\Gamma \vdash A \text{ true} \), then \(\Gamma \vdash B \text{ true} \)
Disjunction: two introduction rules:

\[
\frac{\Gamma \vdash A \text{ true}}{\Gamma \vdash A \lor B \text{ true}} \quad \lor\text{-I}_1 \\
\frac{\Gamma \vdash B \text{ true}}{\Gamma \vdash A \lor B \text{ true}} \quad \lor\text{-I}_2
\]
Formalizing Proof, take 3

Disjunction: two introduction rules:

\[
\begin{align*}
\text{\Gamma \vdash A \text{ true}} & \quad \therefore \text{\Gamma \vdash A \lor B \text{ true}} \\
\text{\Gamma \vdash B \text{ true}} & \quad \therefore \text{\Gamma \vdash A \lor B \text{ true}}
\end{align*}
\]

\[-I_1 \quad \text{\Gamma, A true} \vdash \text{true} \quad \therefore \text{\Gamma, A \lor \text{true} \vdash \text{true}} \quad \therefore \text{\Gamma, B \lor \text{true} \vdash \text{true}} \quad \therefore \text{\Gamma, A \lor B \lor \text{true} \vdash \text{true}}
\]

\[-I_2 \quad \text{\Gamma, B true} \vdash \text{true} \quad \therefore \text{\Gamma, A \lor B \lor \text{true} \vdash \text{true}}
\]

... and one elimination rule:

\[
\begin{align*}
\text{\Gamma \vdash A \lor B \text{ true}} & \quad \text{\Gamma, A true} \vdash \text{C true} & \quad \text{\Gamma, B true} \vdash \text{C true} \\
\therefore \text{\Gamma \vdash C \text{ true}} & \quad \therefore \text{\Gamma \vdash C \text{ true}} & \quad \therefore \text{\Gamma \vdash C \text{ true}}
\end{align*}
\]

\[-E \quad \text{\Gamma \vdash C \text{ true}}
\]
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:

Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:
- Suppose A true:
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:
 - Suppose A true:
 - Hmm… tricky…
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:

- Suppose A true:
 - Hmm... tricky...
 - Well, we also have B true...
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:

- Suppose A true:
 - Hmm… tricky…
 - Well, we also have B true…
 - A-ha! By \land-I, we have $A \land B$ true.
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:

- Suppose A true:
 - Hmm… tricky…
 - Well, we also have B true…
 - A-ha! By \land-I, we have $A \land B$ true.
 - And then by \land-E$_1$, we have A true.
Proof simplification

- Easy to make detours. Consider proving $A \Rightarrow A$:

- Suppose A true:
 - Hmm… tricky…
 - Well, we also have B true…
 - A-ha! By \land-I, we have $A \land B$ true.
 - And then by \land-E₁, we have A true.
 - *phew*
Proof simplification

- Eliminate “redundant” steps

\[\vdash A \text{ true} \quad \Gamma \vdash B \text{ true} \]
\[\Gamma \vdash A \land B \text{ true} \]
\[\Gamma \vdash A \text{ true} \]
Proof simplification

- Eliminate “redundant” steps

\[
\frac{
D \\
\Gamma \vdash A \text{ true} \quad \Gamma \vdash B \text{ true}
}{
\Gamma \vdash A \land B \text{ true}
}
\]

\[
\frac{
\Gamma \vdash A \text{ true}
}{
\Gamma \vdash A \text{ true}
}
\]
Proof simplification

Using Substitution Principle:

\[
\begin{align*}
\text{If} & : \\
\Gamma, A \text{true} \vdash B \text{true} & \\
\hline
\Gamma \vdash A \Rightarrow B \text{true} & \quad \Gamma \vdash A \text{true} \\
\hline
\Gamma \vdash B \text{true}
\end{align*}
\]
Proof simplification

- Using Substitution Principle:

\[\frac{\Gamma, A \ true \vdash B \ true}{\Gamma \vdash A \Rightarrow B \ true} \]

\[\frac{\Gamma \vdash A \ true}{\Gamma \vdash B \ true} \]
Proof terms

\[
\Gamma \vdash A \text{ true} \quad \Gamma \vdash B \text{ true}
\]
\[\frac{}{\Gamma \vdash A \land B \text{ true}} \quad \land\text{-I}
\]

\[
\Gamma \vdash A \land B \text{ true}
\]
\[\frac{}{\Gamma \vdash A \text{ true}} \quad \land\text{-E}_1
\]
\[\frac{}{\Gamma \vdash B \text{ true}} \quad \land\text{-E}_2
\]
Proof terms

\[
\frac{\Gamma \vdash e_1 : A \; true \quad \Gamma \vdash e_2 : B \; true}{\Gamma \vdash (e_1, e_2) : A \land B \; true} \quad ^\bot \text{-I}
\]

\[
\frac{\Gamma \vdash A \land B \; true}{\Gamma \vdash A \; true} \quad ^\bot \text{-E}_1
\]

\[
\frac{\Gamma \vdash A \land B \; true}{\Gamma \vdash B \; true} \quad ^\bot \text{-E}_2
\]
Proof terms

\[\Gamma \vdash e_1 : A \text{ true} \quad \Gamma \vdash e_2 : B \text{ true} \]
\[\Gamma \vdash (e_1, e_2) : A \land B \text{ true} \quad \land \text{-I} \]

\[\Gamma \vdash e : A \land B \text{ true} \]
\[\Gamma \vdash \#1 e : A \text{ true} \quad \land \text{-E}_1 \]
\[\Gamma \vdash \#2 e : B \text{ true} \quad \land \text{-E}_2 \]
Proof terms

- Conjunction: pairing!

\[\Gamma \vdash e_1 : A \text{ true} \quad \Gamma \vdash e_2 : B \text{ true} \]
\[\Gamma \vdash (e_1, e_2) : A \land B \text{ true} \]

\[\frac{\Gamma \vdash e : A \land B \text{ true}}{\Gamma \vdash \#1 e : A \text{ true}} \quad \quad \frac{\Gamma \vdash e : A \land B \text{ true}}{\Gamma \vdash \#2 e : B \text{ true}} \]
Proof terms

\[
\begin{align*}
\Gamma, x : A \ true &\vdash e : B \ true \\
\Gamma &\vdash \lambda x. \ e : A \Rightarrow B \ true
\end{align*}
\Rightarrow -I
\]

\[
\begin{align*}
\Gamma &\vdash e_1 : A \Rightarrow B \ true \quad \Gamma &\vdash e_2 : A \ true \\
\Gamma &\vdash e_1 \ e_2 : B \ true
\end{align*}
\Rightarrow -E
\]
Proof terms

- Implication: functions!
- (Note: assumptions now labelled)

\[\begin{align*}
\Gamma, x : A \text{ true} & \vdash e : B \text{ true} \\
\Gamma & \vdash \lambda x . e : A \Rightarrow B \text{ true} \\
\Gamma & \vdash e_1 e_2 : B \text{ true}
\end{align*} \]

\[\Rightarrow \text{-I} \]

\[\Rightarrow \text{-E} \]
Proof terms
Proof terms

- Disjunction: datatypes and pattern matching!
Proof terms

- Disjunction: datatypes and pattern matching!
Proof terms

- Disjunction: datatypes and pattern matching!
- (rules elided)
Proof terms

- Simplification: evaluation!

\[\#1 (e_1, e_2) \rightarrow e_1 \]
\[\#2 (e_1, e_2) \rightarrow e_2 \]
\[(\lambda x. e_1) e_2 \rightarrow [e_2/x] e_1 \]

- Basic programming language: the simply-type lambda calculus.
 - data structures, functions
Example Proof, revisited
Example Proof, revisited

- Proposition: If A and either B or C, then either A and B, or else A and C.
Example Proof, revisited

- **Proposition:** If A and either B or C, then either A and B, or else A and C.
- **Proof:**
Example Proof, revisited

- **Proposition:** If A and either B or C, then either A and B, or else A and C.

- **Proof:**

 $\text{fn } x : A \land (B \lor C) \Rightarrow$

 $\text{case } #2 \ x \ of \ \text{inl } y \Rightarrow \text{inl } (#1 \ x, y)$

 $\mid \text{inr } z \Rightarrow \text{inr } (#1 \ x, z)$
Example Proof, revisited

Proposition: If A and either B or C, then either A and B, or else A and C.

Proof:

\[\text{fn } x : A \land (B \lor C) \Rightarrow \]

\[\text{case } #2 x \text{ of } \text{inl } y \Rightarrow \text{inl } (#1 x, y) \]

\[\mid \text{inr } z \Rightarrow \text{inr } (#1 x, z) \]

Computational content of proof: a simple input-shuffling program
Classical Logic

- What I’ve shown you: intuitionistic logic
- Classical logic: proof-by-contradiction

\[
\begin{align*}
\Gamma, A & \text{false} \vdash \text{contra} \\
\Gamma & \vdash A \text{true} \\
\Gamma & \vdash C \text{true} \\
\Gamma & \vdash C \text{false} \\
\Gamma & \vdash \text{contra}
\end{align*}
\]

- What is \textit{contra}?
- What is \textit{false}?
- Computational interpretation?
Continuations
Continuations

- Intuition: separate a program into what’s happening now and what happens next...
 - what’s happening now: expression currently being evaluated
 - what happens next: the continuation: the rest of the program
Current continuation

"letcc u in e": bind current continuation to u, run e

"throw e to u": restore continuation u with expr. e
 ◦ like a goto with an argument
Example: early exit

- letcc example: early exit
Example: early exit

- letcc example: early exit

```haskell
fun product [] = 1
  | product (x::xs) = x * product xs
```
Example: early exit

- letcc example: early exit

```haskell
fun product [] = 1
    | product (0::_) = 0
    | product (x::xs) = x * product xs
```
Example: early exit

- `letcc` example: early exit

```haskell
fun product nums =  
    letcc u in  
        let fun prod [] = 1  
            | prod (0::_) = throw 0 to u  
            | prod (x::xs) = x * prod xs  
        in  
            prod nums  
    end
```
What *are* continuations?

- Like a "partial program": given a value of the right type, it becomes a complete program.
- "A cont": type of a continuation expecting an A
What *are* continuations?

- Like a “partial program”: given a value of the right type, it becomes a complete program.
- “A cont”: type of a continuation expecting an A

in “early exit” example: $u : \text{int cont}$, since “product” should return an int

```
fun product nums =
  letcc u in
  let fun prod ...
  in
  prod nums
  end
```
What can we *do* with them?

- Given an *A cont*, pass it an *A*
What can we *do* with them?

- Given an A cont, pass it an A
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \land B$
 - project the first component : A
 - pass it to original continuation
What can we *do* with them?

- Given an $A \text{ cont}$, pass it an A
- Given an $A \text{ cont}$, construct an $A \land B \text{ cont}$
 - accept a pair : $A \land B$
 - project the first component : A
 - pass it to original continuation

\[
A \text{ cont} \Rightarrow A \land B \text{ cont}
\]
\[
B \text{ cont} \Rightarrow A \land B \text{ cont}
\]
What can we do with them?

- Given an \(A \) cont, pass it an \(A \)
- Given an \(A \) cont, construct an \(A \land B \) cont
 - accept a pair : \(A \land B \)
 - project the first component : \(A \)
 - pass it to original continuation
- Given an \(A \) cont and a \(B \) cont, make an \(A \lor B \) cont
 - accept a sum : \(A \lor B \)
 - case analyze it to get either an \(A \) or a \(B \)
 - if \(A \), pass to the \(A \) cont; if \(B \), pass to the \(B \) cont
What can we do with them?

- Given an A cont, pass it an A
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \land B$
 - project the first component : A
 - pass it to original continuation
- Given an A cont and a B cont, make an $A \lor B$ cont
 - accept a sum : $A \lor B$
 - case analyze it to get either an A or a B
 - if A, pass to the A cont; if B, pass to the B cont
What can we do with them?

- Given an A cont, pass it an A
- Given an A cont, construct an $A \land B$ cont
 - accept a pair : $A \land B$
 - project the first component : A
 - pass it to original continuation
- Given an A cont and a B cont, make an $A \lor B$ cont
 - accept a sum : $A \lor B$
 - case analyze it to get either an A or a B
 - if A, pass to the A cont; if B, pass to the B cont
Continuations are refutations!

\[
\begin{align*}
\Gamma \vdash k : A & \text{false} \\
\hline
\Gamma \vdash (#1; k) : A \land B & \text{false} & \land\text{-F}_1 \\
\Gamma \vdash k : B & \text{false} \\
\hline
\Gamma \vdash (#2; k) : A \land B & \text{false} & \land\text{-F}_2 \\
\Gamma \vdash k_1 : A & \text{false} & \Gamma \vdash k_2 : B & \text{false} \\
\hline
\Gamma \vdash [k_1, k_2] : A \lor B & \text{false} & \lor\text{-F}
\end{align*}
\]
Classical Curry-Howard

- Expressions: \(e : A \ true \)
- Continuations: \(k : A \ false \)
Classical Curry-Howard

- Expressions: \(e : A \ true \)
- Continuations: \(k : A \ false \)
- Programs: \(k \leftarrow e \)

\[\Gamma \vdash e : C \ true \quad \Gamma \vdash k : C \ false \]
\[\Gamma \vdash k \leftarrow e : contra \]
Classical Curry-Howard

- Evaluate programs \(k \triangleleft e \):

 1. \#1; \(k \triangleleft (e_1, e_2) \) \(\Rightarrow \) \(k \triangleleft e_1 \)
 2. \#2; \(k \triangleleft (e_1, e_2) \) \(\Rightarrow \) \(k \triangleleft e_2 \)
 3. \[k_1, k_2]\triangleleft \text{inl } e \Rightarrow k_1 \triangleleft e
 4. \[k_1, k_2]\triangleleft \text{inr } e \Rightarrow k_2 \triangleleft e
Proof-by-contradiction redux

\[\Gamma, A \text{false} \vdash \text{contra} \]
\[\Gamma \vdash A \text{true} \]
Proof-by-contradiction redux

\[
\Gamma, u : A \quad false \vdash k \triangleleft e : contra
\]

\[
\Gamma \vdash \text{letcc } u \text{ in } k \triangleleft e : A \; true
\]
Proof-by-contradiction redux

\[
\begin{align*}
\Gamma, u : A & \vdash k \triangleleft e : contra \\
\Gamma & \vdash \text{letcc } u \text{ in } k \triangleleft e : A \ true
\end{align*}
\]

\[
\begin{align*}
k' \triangleleft \text{letcc } u \text{ in } k \triangleleft e & \quad \rightarrow \quad [k'/u] (k \triangleleft e)
\end{align*}
\]
Classical proof terms

\[e ::= x \mid \text{letcc } u:A \text{ false in } c \) \\
| (e_1, e_2) \mid () \\
| \text{inl}(e) \mid \text{inr}(e) \\
| \lambda x:A. e \\
| \text{not}(k) \]

\[k ::= u \mid \text{let } x:A \text{ true in } c \]
| #1; k \mid #2; k \\
| [k_1, k_2] \mid [] \\
| e; k \\
| \text{not}(e) \]

\[A \text{ true} \]
| A \land B, \top \\
| A \lor B \\
| A \Rightarrow B \\
| \neg A \\

\[A \text{ false} \]
| A \land B \\
| A \lor B, \bot \\
| A \Rightarrow B \\
| \neg A \]
Normalization

- **Theorem:** Every contradiction has a normal form.
 - “normal”: cannot reduce any further

- **Proof:** By nested induction on the type at which a contradiction occurs and the terms undergoing evaluation.
Normalization

- **Theorem**: Every contradiction has a normal form.
 - “normal”: cannot reduce any further

- **Proof**: By nested induction on the *type* at which a contradiction occurs and the *terms* undergoing evaluation.

- **Corollary**: Classical logic is consistent, since there are no closed, normal contradictions
Prior work

- Standing on many giants’ shoulders:
 - Andrzej Filinski
 - Michel Parigot
 - Timothy Griffin
 - Chetan Murthy
 - Pierre-Louis Curien and Hugo Herbelin
 - Aleksandar Nanevski
 - Philip Wadler

- But one of the first -- and simplest -- proofs of normalization.
Conclusion

- Observed that continuations embody refutations of propositions
- Constructed a programming language with continuations, based on proof-by-contradiction
- Proved the language terminating, establishing the consistency of classical logic

(John Reynolds approves)
Q: What is a proof of a proposition A?
A: Depends on A…

How about $A \land B$?

A proof of $A \land B$ is a proof of A and a proof of B.

\[
\frac{A \text{ true} \quad B \text{ true}}{A \land B \text{ true}}
\]
Q: What can we do with a proof?
A: From a proof of $A \land B$, we can get a proof of A.
(Also, a proof of B.)
Reasoning from hypotheses

- Refine judgement: $A \text{ true}$ becomes $\Gamma \vdash A \text{ true}$, with Γ an unordered list of hypotheses A_1, \ldots, A_n

- Hypothesis rule:

 $\Gamma, A \text{ true} \vdash A \text{ true}$

- Substitution Principle: if $\Gamma, A \text{ true} \vdash B \text{ true}$ and $\Gamma \vdash A \text{ true}$, then $\Gamma \vdash B \text{ true}$
Intros and Elims

- Introduction

\[\Gamma \vdash A \text{ true} \quad \Gamma \vdash B \text{ true} \]
\[\Gamma \vdash A \land B \text{ true} \]

- Elimination

\[\Gamma \vdash A \land B \text{ true} \]
\[\Gamma \vdash A \text{ true} \]

\[\Gamma \vdash A \land B \text{ true} \]
\[\Gamma \vdash B \text{ true} \]
Proof simplification

- Eliminate “redundant” steps

\[
\frac{\Gamma \vdash A \ true \quad \Gamma \vdash B \ true}{\Gamma \vdash A \land B \ true} \quad \frac{\Gamma \vdash A \ true}{\Gamma \vdash A \ true}
\]
Implication

- Q: What is a proof of $A \rightarrow B$?
 - A: A proof of B, conditioned on a proof of A.

- Q: What can you do with a proof of $A \rightarrow B$?
 - A: Given a proof of A, make a proof of B.
Implication rules

- A little more interesting…

\[\Gamma, A \text{ true} \vdash B \text{ true} \]

\[\Gamma \vdash A \Rightarrow B \text{ true} \]

\[\Gamma \vdash A \Rightarrow B \text{ true} \quad \Gamma \vdash A \text{ true} \]

\[\Gamma \vdash B \text{ true} \]
Using Substitution Principle:

\[
\begin{align*}
\Gamma, A \text{ true } & \vdash B \text{ true } \\
\Gamma & \vdash A \Rightarrow B \text{ true } & \Gamma & \vdash A \text{ true } \\
\Gamma & \vdash B \text{ true } & \Gamma & \vdash A \text{ true } \\
\Gamma & \vdash A \Rightarrow B
\end{align*}
\]
Proof terms

- Compact representation of derivations

\[
\Gamma \vdash M : A \text{ true} \quad \Gamma \vdash N : B \text{ true}
\]

\[
\Gamma \vdash (M, N) : A \land B \text{ true}
\]

\[
\Gamma \vdash M : A \land B \text{ true}
\]

\[
\Gamma \vdash \pi_1 M : A \text{ true}
\]

\[
\Gamma \vdash M : A \land B \text{ true}
\]

\[
\Gamma \vdash \pi_2 M : B \text{ true}
\]
Proof terms

- Hypothesis get labels: now Γ is $x_1: A_1, \ldots, x_n: A_n$

- Hypothesis rule:

 $\Gamma, x: A \text{ true} \vdash x: A \text{ true}$

- Substitution Principle: if $\Gamma, x: A \text{ true} \vdash M : B \text{ true}$ and $\Gamma \vdash N : A \text{ true}$, then $\Gamma \vdash [N/x] M : B \text{ true}$
Proof terms

- Abstraction and application

\[
\Gamma, x : A \text{ true} \vdash M : B \text{ true} \\
\hline
\Gamma \vdash \lambda x : A \ M \cdot A \rightarrow B \text{ true} \\
\hline
\Gamma \vdash M : A \rightarrow B \text{ true} \quad \Gamma \vdash N : A \text{ true} \\
\hline
\Gamma \vdash MN : B \text{ true}
\]
Proof term simplification

- Reduction on trees \Rightarrow reduction on terms

$$\pi_1 (M, N) \Rightarrow M$$

$$\pi_2 (M, N) \Rightarrow N$$

$$(\lambda x : A. M) N \Rightarrow [N/x] M$$

- This is a *programming language!*
Classical proof terms

\[e ::= x \mid \text{letcc}(u \div A. \ c) \mid (e_1, e_2) \mid () \mid \text{inl}(e) \mid \text{inr}(e) \mid \lambda x : A. \ e \mid \text{not}(k) \]

\[k ::= u \mid \text{let}(x : A. \ c) \mid k \circ \pi_1 \mid k \circ \pi_2 \mid [k_1, k_2] \mid [] \mid e; k \mid \text{not}(e) \]

\text{true}:
- \(A \land B, \top \)
- \(A \lor B \)
- \(A \Rightarrow B \)
- \(\neg A \)

\text{false}:
- \(A \land B \)
- \(A \lor B, \bot \)
- \(A \Rightarrow B \)
- \(\neg A \)