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Motivation

 Want to design good programming languages by 
building on logical foundations

 Today: explore one possibility, classical logic

2

“It is very, very 
easy to design bad 

programming 
languages.”

(John Reynolds)
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Part 1: Proof theory boot camp
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Logical foundations

 Curry-Howard correspondence

 Classical logic as a programming language?
◦ excluded middle, proof by contradiction, …
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Logic Programming
Propositions Types

Proofs Programs

Proof-checking Type-checking

Simplification Evaluation
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Curry-Howard correspondence

 Propositions as types, proofs as programs
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Curry-Howard correspondence

 Propositions as types, proofs as programs

 Q: What is a proof of a proposition?

 Q: What is a proposition?
 A: Something that can be judged true.
◦ e.g. “2 + 3 = 6”, or “it is raining”
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Example

 Proposition: If A and either B or C, then either
A and B, or else A and C.
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Example

 Proposition: If A and either B or C, then either
A and B, or else A and C.

 Conjunction (“and”)
 Disjunction (“or”)
 Implication (“if … then …”)

 A, B, and C: whatever you like…

 Symbolically: A ∧ (B ∨ C)  ⇒  (A ∧ B) ∨ (A ∧ C)
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Example Proof

 Proposition: If A and either B or C, then either
A and B, or else A and C.

 Proof:
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A closer look…

 Proof:
◦ Suppose A and either B or C:
 have B or C (since […] and (B or C))
 suppose B:
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A ∧ B true ∧-E1
A true

A ∧ B true ∧-E2
B true
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Formalizing Proof, take 1

 Judgement: A true.  (“A is provable.”)
 Inference rules: grouped into “Introductions”:

 … and “Eliminations”:
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A true B true ∧-I
A ∧ B true

A ∧ B true ∧-E1
A true

A ∧ B true ∧-E2
B true
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Γ, A true ⊢ B true ⇒ -I
Γ ⊢ A ⇒ B true
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Formalizing Proof, take 2

 Judgement: Γ ⊢ A true.  (“A is provable assuming Γ”)

Γ is a list of assumptions: A1 true, …, An true

 Implication: one introduction rule:
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Γ ⊢ A ⇒ B true
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 Hypothesis rule:
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Reasoning from assumptions

Γ, A true ⊢ A true
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 Hypothesis rule:

 Substitution Principle:  if Γ, A true ⊢ B true and 
Γ ⊢ A true, then Γ ⊢ B true
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Formalizing Proof, take 3

 Disjunction: two introduction rules:

14

Γ ⊢ A true ∨-I1Γ ⊢ A ∨ B true

Γ ⊢ B true ∨-I2Γ ⊢ A ∨ B true
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Formalizing Proof, take 3

 Disjunction: two introduction rules:

 … and one elimination rule:
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Γ ⊢ A ∨ B true Γ, A true ⊢ C true Γ, B true ⊢ C true
∨-E

Γ ⊢ C true

Γ ⊢ A true ∨-I1Γ ⊢ A ∨ B true

Γ ⊢ B true ∨-I2Γ ⊢ A ∨ B true
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Proof simplification

 Easy to make detours.  Consider proving A ⇒ A:
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Proof simplification

 Easy to make detours.  Consider proving A ⇒ A:

 Suppose A true:
◦Hmm… tricky…
◦Well, we also have B true…
◦A-ha!  By ∧-I, we have A ∧ B true.

◦And then by ∧-E1, we have A true.

◦ *phew*
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 Eliminate “redundant” steps

16

Proof simplification

D E
Γ ⊢ A true   Γ ⊢ B true

Γ ⊢ A ∧ B true

Γ ⊢ A true
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 Eliminate “redundant” steps
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Proof simplification

D E
Γ ⊢ A true   Γ ⊢ B true

Γ ⊢ A ∧ B true

Γ ⊢ A true

D
Γ ⊢ A true   

16



 Using Substitution Principle:

17

Proof simplification

Γ, A true ⊢ B true

Γ ⊢ A ⇒ B true Γ ⊢ A true

Γ ⊢ B true

D
E
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 Using Substitution Principle:
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Proof simplification

Γ, A true ⊢ B true

Γ ⊢ A ⇒ B true Γ ⊢ A true

Γ ⊢ B true

Γ ⊢ A true

:

Γ ⊢ B true

D
E

E
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Proof terms
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Γ ⊢ A true Γ ⊢ B true ∧-I
Γ ⊢ A ∧ B true
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Proof terms
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Proof terms
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Proof terms

 Conjunction: pairing!

18

Γ ⊢ e1 : A true Γ ⊢ e2 : B true ∧-I
Γ ⊢ (e1, e2) : A ∧ B true

Γ ⊢ e : A ∧ B true ∧-E1
Γ ⊢ #1 e : A true

Γ ⊢ e : A ∧ B true ∧-E2
Γ ⊢ #2 e : B true
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Proof terms

19

Γ ⊢ e1 : A ⇒ B true Γ ⊢ e2 : A true ⇒-E
Γ ⊢ e1 e2 : B true

Γ, x : A true ⊢ e : B true ⇒ -I
Γ ⊢ λx. e : A ⇒ B true
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Proof terms

 Implication: functions!
 (Note: assumptions now labelled)
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Γ ⊢ e1 : A ⇒ B true Γ ⊢ e2 : A true ⇒-E
Γ ⊢ e1 e2 : B true

Γ, x : A true ⊢ e : B true ⇒ -I
Γ ⊢ λx. e : A ⇒ B true
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 Disjunction: datatypes and pattern matching!
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Proof terms

 Disjunction: datatypes and pattern matching!

 (rules elided)
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Proof terms

 Simplification: evaluation!

 Basic programming language: the simply-type 
lambda calculus.
◦ data structures, functions

21

#1 (e1, e2) e1

#2 (e1, e2) e2

(λx. e1) e2 [e2/x] e1
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Example Proof, revisited
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Example Proof, revisited

 Proposition: If A and either B or C, then either
A and B, or else A and C.

 Proof:
◦ fn x : A ∧ (B ∨ C) ⇒

 case #2 x of inl y ⇒ inl (#1 x, y)

       | inr z ⇒ inr (#1 x, z)
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Example Proof, revisited

 Proposition: If A and either B or C, then either
A and B, or else A and C.

 Proof:
◦ fn x : A ∧ (B ∨ C) ⇒

 case #2 x of inl y ⇒ inl (#1 x, y)

       | inr z ⇒ inr (#1 x, z)

 Computational content of proof: a simple input-
shuffling program

22
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Classical Logic

 What I’ve shown you: intuitionistic logic
 Classical logic: proof-by-contradiction

 What is contra?
 What is false?
 Computational interpretation?

23

Γ, A false ⊢ contra

Γ ⊢ A true

Γ ⊢ C true Γ ⊢ C false

Γ ⊢ contra
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Continuations
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Continuations

 Intuition: separate a program into what’s happening 
now and what happens next…
◦what’s happening now: expression currently being evaluated
◦what happens next: the continuation: the rest of the program

25

continuation current expression
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Current continuation

 “letcc u in e”: bind current continuation to u, run e
 “throw e to u”: restore continuation u with expr. e
◦ like a goto with an argument

26

continuation current expression
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Example: early exit

 letcc example: early exit
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Example: early exit

 letcc example: early exit

27

fun product nums =
 letcc u in 
 let fun prod [] = 1
   | prod (0::_) = throw 0 to u
   | prod (x::xs) = x * prod xs
 in
  prod nums
 end
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What are continuations?

 Like a “partial program”: given a value of the right 
type, it becomes a complete program.

 “A cont”: type of a continuation expecting an A

28
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What are continuations?

 Like a “partial program”: given a value of the right 
type, it becomes a complete program.

 “A cont”: type of a continuation expecting an A

 in “early exit” example:
  u : int cont, since
  “product” should
  return an int

28

fun product nums =
 letcc u in 
 let fun prod … 
 in
  prod nums
 end

28



What can we do with them?

 Given an A cont, pass it an A
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What can we do with them?

 Given an A cont, pass it an A

 Given an A cont, construct an A ∧ B cont

◦ accept a pair : A ∧ B

◦ project the first component : A
◦ pass it to original continuation

 Given an A cont and a B cont, make an A ∨ B cont

◦ accept a sum : A ∨ B

◦ case analyze it to get either an A or a B
◦ if A, pass to the A cont; if B, pass to the B cont

29

A false ⊢ A ∧ B false

A false, B false ⊢ A ∨ B false

B false ⊢ A ∧ B false

29



Continuations are refutations!

30

Γ ⊢ k : A false ∧-F1
Γ ⊢ (#1; k) : A ∧ B false 

trueΓ ⊢ k : B false ∧-F2
Γ ⊢ (#2; k) : A ∧ B false 

true
Γ ⊢ k1 : A false Γ ⊢ k2 : B false ∨-F

Γ ⊢ [k1, k2] : A ∨ B false

30



Classical Curry-Howard

 Expressions: e : A true
 Continuations: k : A false

31

31



Classical Curry-Howard

 Expressions: e : A true
 Continuations: k : A false
 Programs:  k ⊲ e

31

Γ ⊢ e : C true Γ ⊢ k : C false

Γ ⊢ k ⊲ e : contra

31



Classical Curry-Howard
 Evaluate programs k ⊲ e:

32

#1; k ⊲ (e1, e2) k ⊲ e1

#2; k ⊲ (e1, e2) k ⊲ e2

[k1, k2] ⊲ inl e k1 ⊲ e

[k1, k2] ⊲ inr e k2 ⊲ e

32



Proof-by-contradiction redux

33

Γ, A false ⊢ contra

Γ ⊢ A true
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Proof-by-contradiction redux

33

Γ, u : A false ⊢ k ⊲ e : contra

Γ ⊢ letcc u in k ⊲ e : A true
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Proof-by-contradiction redux

33

Γ, u : A false ⊢ k ⊲ e : contra

Γ ⊢ letcc u in k ⊲ e : A true

k’ ⊲ letcc u in k ⊲ e [k’/u] (k ⊲ e)

33



� e ::= x | letcc u:A false in c)
      | (e1, e2) | ()
      | inl(e) | inr(e)
      | λx:A. e
      | not(k)

� k ::= u | let x:A true in c
      | #1; k | #2; k
      | [k1, k2] | []
      | e; k
      | not(e)

  A true
A ∧ B, ⊤
A ∨ B 
A ⇒ B

¬A
A false
A ∧ B
A ∨ B, ⊥
A ⇒ B
¬A

34

Classical proof terms
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Normalization

 Theorem: Every contradiction has a normal form.
◦ “normal”: cannot reduce any further

 Proof: By nested induction on the type at which a 
contradiction occurs and the terms undergoing 
evaluation.

35
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Normalization

 Theorem: Every contradiction has a normal form.
◦ “normal”: cannot reduce any further

 Proof: By nested induction on the type at which a 
contradiction occurs and the terms undergoing 
evaluation.

 Corollary: Classical logic is consistent, since there 
are no closed, normal contradictions

35
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Prior work

 Standing on many giants’ shoulders:
◦Andrzej Filinski
◦Michel Parigot
◦ Timothy Griffin
◦Chetan Murthy
◦ Pierre-Louis Curien and Hugo Herbelin
◦Aleksandar Nanevski
◦ Philip Wadler

 But one of the first -- and simplest -- proofs of 
normalization.

36
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Conclusion

 Observed that continuations em-
body refutations of propositions

 Constructed a programming
language with continuations,
based on proof-by-contradiction

 Proved the language terminating,
establishing the consistency of
classical logic

37

(John Reynolds approves)
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 Q: What is a proof of a proposition A?
 A: Depends on A…

 How about A ∧ B?

 A proof of A ∧ B is a proof of A and a proof of B.

38

To truth through proof

A true B true

A ∧ B true

38



 Q: What can we do with a proof?
 A: From a proof of A ∧ B, we can get a proof of A.  

(Also, a proof of B.)

39

To truth through proof

A ∧ B true

A true

A ∧ B true

B true

39



 Refine judgement: A true becomes Γ ⊢ A true, withΓ 
an unordered list of hypotheses A1, …, An

 Hypothesis rule:

 Substitution Principle:  if Γ, A true ⊢ B true and Γ ⊢ 
A true, then Γ ⊢ B true

40

Reasoning from hypotheses

Γ, A true ⊢ A true

40



 Introduction

 Elimination

41

Intros and Elims

Γ ⊢ A true    Γ ⊢ B true

Γ ⊢ A ∧ B true

Γ ⊢ A ∧ B true

Γ ⊢ A true

Γ ⊢ A ∧ B true

Γ ⊢ B true

41



 Eliminate “redundant” steps

42

Proof simplification

Γ ⊢ A true   Γ ⊢ B true

Γ ⊢ A ∧ B true

Γ ⊢ A true

Γ ⊢ A true

42



 Q: What is a proof of A ⇒ B?

 A: A proof of B, conditioned on a proof of A.

 Q: What can you do with a proof of A ⇒ B?

 A: Given a proof of A, make a proof of B.

43

Implication

43



 A little more interesting…

44

Implication rules

Γ, A true ⊢ B true

Γ ⊢ A ⇒ B true

Γ ⊢ A ⇒ B true  Γ ⊢ A true
Γ ⊢ B true

44



 Using Substitution Principle:

45

Implication simplification

Γ, A true ⊢ B true

Γ ⊢ A ⇒ B true Γ ⊢ A true

Γ ⊢ B true

Γ ⊢ A true

:

Γ ⊢ B true

Γ ⊢ A ⇒ B

45



 Compact representation of derivations

46

Proof terms

Γ ⊢ M : A true    Γ ⊢  N : B true

Γ ⊢ (M, N) : A ∧ B true

Γ ⊢ M : A ∧ B true

Γ ⊢ π1  M : A true

Γ ⊢ M : A ∧ B true

Γ ⊢ π2  M : B true

46



 Hypothesis get labels: now Γ is x1 : A1, …, xn : An

 Hypothesis rule:

 Substitution Principle: if Γ, x : A true ⊢ M : B true 
and Γ ⊢ N : A true, then Γ ⊢ [N/x] M : B true

47

Proof terms

Γ, x : A true ⊢ x : A true
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 Abstraction and application

48

Proof terms

Γ, x : A true ⊢ M : B true

Γ ⊢ λx:A. M : A ⇒ B true

Γ ⊢ M : A ⇒ B true  Γ ⊢ N : A true

Γ ⊢ M N : B true

48



 Reduction on trees ⇒ reduction on terms

 This is a programming language!

49

Proof term simplification

π1 (M, N) ====> M
π2 (M, N) ====> N

(λx:A. M) N ====> [N/x] M

49



� e ::= x | letcc(u÷A. c)
      | (e1, e2) | ()
      | inl(e) | inr(e)
      | λx:A. e
      | not(k)

� k ::= u | let(x:A. c)
      | k ◦ π1 | k ◦ π 2
      | [k1, k2] | []
      | e; k
      | not(e)

  A true
A ∧ B, ⊤
A ∨ B 
A ⇒ B
¬A

A false
A ∧ B
A ∨ B, ⊥
A ⇒ B
¬A

50

Classical proof terms
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