
Exam II

15-122 Principles of Imperative Computation, Summer 2011
William Lovas

June 10, 2011

Name: Andrew ID:

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

• Consider writing out programs or diagrams on scratch paper first.

• And most importantly,

DON’T PANIC!

UBA BSTs and

Queues Heapsort Ropes Rotations

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score

Max 40 40 40 30 150

Grader

1



1 Queues as Unbounded Arrays (40 points)

We can use the idea behind an unbounded array to implement queues. We represent a queue as
an array stored with its length and two indices, one to the front of the queue and one to the back:

front back limit

As usual, elements are inserted at the back and removed from the front. If either index ever passes
the limit, it wraps around to the beginning of the array:

frontback limit

Due to this wrapping nature of the indices, the array can be visualized as a circle or a ring, so this
representation is sometimes called a circular buffer or a ring buffer. If the array becomes full, we can
double its size using a queue_double function, which doubles the array backing a queue, copying
over all of its elements in their insertion order:

void queue_double(queue Q)
//@requires is_queue(Q);
//@ensures is_queue(Q);
//@ensures Q->limit == 2 * \old(Q->limit);
;

The front and back indices should only be equal if the queue is empty:

front,
back

limit

typedef struct queue* queue;
struct queue {

int limit; /* limit > 0 */
elem[] A; /* \length(A) == limit */
int front; /* 0 <= front && front < limit */
int back; /* 0 <= back && back < limit */
/* front == back iff queue is empty */

};

2



As an example, here is the function that checks whether a queue is empty.

bool queue_empty(queue Q)
//@requires is_queue(Q);
{

return Q->front == Q->back;
}

Task 1 (10 pts). Implement the is_queue function that checks the data structure invariants of a
queue implemented as a ring buffer.

bool is_queue(queue Q) {

}

(Continued)

3



Task 2 (10 pts). Implement the deq function that dequeues the element at the front of the queue.

elem deq(queue Q)
//@requires is_queue(Q);
//@requires !queue_empty(Q);
//@ensures is_queue(Q);
{

}

Task 3 (10 pts). Implement the enq function that enqueues an element. Remember to double the
size of the queue if necessary.

void enq(queue Q, elem e)
//@requires is_queue(Q);
//@ensures is_queue(Q);
//@ensures !queue_empty(Q);
{

}

(Continued)

4



For the following questions, express your answer in big-O notation in terms of the number of
array reads and writes that an operation performs.

Task 4 (5 pts). What is the worst-case asymptotic complexity of a single queue operation on a
queue of size n? Justify your answer in a sentence or two.

Task 5 (5 pts). What is the worst-case asymptotic complexity of a sequence of k queue operations
starting from an empty queue? Justify your answer in a sentence or two.

5



2 Heapsort (40 points)

We can use the invariant behind heaps in order to implement an in-place sorting algorithm for
arrays called heapsort. For simplicity, we use max heaps, which satisfy:

Max Heap Ordering Invariant: Each node except for the root must be less or equal to
its parent.

This guarantees that a maximal element is at the root of the heap, rather than a minimal one as we
did in lecture.

The algorithm proceeds in two phases. In phase one we build up a heap spanning the whole
array, and in phase two we successively delete the maximum element from the heap and move it
the end.

Here is our implementation, written compactly, with only pre- and post-conditions, but no
loop invariants or assertions. Note that we only sort the range A[1, n), ignoring A[0].

void heapsort(int[] A, int n)
//@requires 1 <= n && n <= \length(A);
//@ensures is_sorted(A, 1, n);
{

int i;
for (i = 2; i < n; i++) { /* phase one */
sift_up(A, i, i+1);

}
for (i = n-1; 2 <= i; i--) { /* phase two */
swap(A, 1, i);
sift_down(A, 1, i);

}
}

The functions sift_up and sift_down are like the functions we wrote in lecture, except that they
take an array as a first argument and what we called H->next (the index right after the last element
currently in the heap) as the third argument. The contracts for both functions are given below.

Your main task will be to enrich this code with invariants and assertions. You should assume
the following functions:

bool is_heap(int[] A, int n);
bool is_heap_except_up(int[] A, int i, int n);
bool is_heap_except_down(int[] A, int i, int n);
bool is_sorted(int[] A, int lower, int upper);

with the following interpretation:

is_heap(A, n) means that the range A[1, n) satisfies the heap invariant.

is_heap_except_up(A, i, n) means that the range A[1, n) satisfies the heap invariant except
that A[i] (which must be in the heap) may be greater than its parent.

is_heap_except_down(A, i, n) means that the range A[1, n) satisfies the heap invariant except
that A[i] (which must be in the heap) may be less than one or both of its children.

6



is_sorted(A, lower, upper) means that the range A[lower , upper) is sorted in increasing order.

Here are the contracts for the sift_up and sift_down functions that are called from heapsort.

void sift_up(int[] A, int i, int n)
//@requires is_heap_except_up(A, i, n);
//@ensures is_heap(A, n);
;

void sift_down(int[] A, int i, int n)
//@requires is_heap_except_down(A, i, n);
//@ensures is_heap(A, n);
;

Task 1 (25 pts). The following is a correct implementation of heapsort, which sorts the range
A[1, n) in place. Fill in the strongest correct annotations in the given places, using only the func-
tions is_heap, is_heap_except_up, is_heap_except_down and is_sorted. To give you a head
start we have included loop index invariants already. (Hint: you may find it helpful to draw a
picture visualizing the intermediate stages of heapsort.)

void heapsort(int[] A, int n)
//@requires 1 <= n && n <= \length(A);
//@ensures is_sorted(A, 1, n);
{ int i;

for (i = 2; i < n; i++)
//@loop_invariant 2 <= i && i <= n;

//@loop_invariant ______________________________________________________ ;
{

//@assert __________________________________________________________ ;
sift_up(A, i, i+1);

}

//@assert ______________________________________________________________ ;
for (i = n-1; 2 <= i; i--)
//@loop_invariant 1 <= i && i <= n-1;

//@loop_invariant ______________________________________________________ ;
{

swap(A, 1, i);

//@assert __________________________________________________________ ;
sift_down(A, 1, i);

}
}

7



Task 2 (15 pts). Analyze the asymptotic complexity of our version of heapsort.

8



3 Ropes (40 points)

In C0 and C, strings are typically represented as arrays of characters. This allows constant-time
access of a character at an arbitrary position, but it also has some disadvantages. In particular, con-
catenating two strings (function string_join) is an expensive operation since we have to create a
new character array and copy the two given strings into the new array character by character.

Task 1 (10 pts). What is the asymptotic complexity of the following loop as a function of n?
Assume that string_fromint is a constant-time operation.

string string_fromarray(int[] A, int n)
//@requires 0 <= n && n < \length(A);
{

string s = "["; int i;
for (i = 0; i < n; i++)

//@loop_invariant 0 <= i && i <= n;
s = string_join(s, string_fromint(A[i]));

return string_join(s, "]");
}

The data structure of ropes attempts to improve efficiency of concatenation by representing
strings as binary trees, where the leaves contain ordinary strings and the intermediate nodes repre-
sent concatenations. For example, the string "totally efficient" might look as follows (among
many other possibilities):

“totally ef” 

“fici”  “ent” 

Note that ordinary strings are only stored at the leaves. Assuming no rebalancing, concatenation
of ropes is a constant-time operation.

(Continued)

9



Task 2 (10 pts). Assuming no rebalancing, show the final result of concatenating the rope above
first on the left with "[" then on the right with "]" to form a rope for the string "[totally efficient]".
(Remember that concatenation should be a constant-time operation!)

(Continued)

10



Task 3 (10 pts). Describe what additional information you might store in the nodes so that ac-
cessing the ith character in a string of length n represented by a rope is O(log(n)) if the rope is
balanced.

Task 4 (10 pts). Carefully describe the invariant for your data structure. You do not need to write
code to check it, but your description should be precise and detailed enough that it would be clear
how to write the code.

11



4 Binary Search Trees and Rotations (30 points)

In this problem we consider plain binary search trees, without rebalancing.

Task 1 (5 pts). Consider the tree below. Give a sequence of numbers that, when inserted in that
order into an empty tree, would construct exactly this tree.

11 

3 

1  7 

9 5 

Task 2 (5 pts). Assume that we have a sorted array from which we want to construct a binary
search tree. Which order of insertion should we follow to obtain a tree that is as balanced as
possible?

12



The transformation below, from the tree on the left to the tree on the right, we called a double
rotation. It can be used to rebalance binary search trees after insertion. We assume keys are integers
and x, y, and z are the keys for the three nodes shown explicitly.

Task 3 (10 pts). Show that the name double rotation is justified by drawing an intermediate tree
between the two, so that each step is a single rotation.

x

y

z
A

B C

D
x y

z

A B C D

13



Task 4 (10 pts). Give a sequence of single left or right rotations, and the two nodes being rotated,
to transform the tree on the left to the tree on the right. For full credit, find the shortest sequence
(which requires less than 5 steps). Indicate in the rightmost column if the tree after the rotation
satisfies the balance invariant of the AVL trees (i.e., the heights of the left and right children of any
node differ by at most one).

11 

3 

1  7 

9 5 

11 

3 

1 

7 

9 

5 

sequence of rota2ons? 

Step Left or Right? at nodes AVL?

1

2

3

4

5

14


