Exam I

15-122 Principles of Imperative Computation, Summer 2011
William Lovas

May 27, 2011

Name: Andrew ID:

Instructions

e This exam is closed-book with one sheet of notes permitted.
¢ You have 80 minutes to complete the exam.

e There are 4 problems.

Read each problem carefully before attempting to solve it.

Do not spend too much time on any one problem.

Consider if you might want to skip a problem on a first pass and return to it later.

¢ And most importantly,

DoON’T PANIC!

Mod .arith. Search Quicksort Big-O

Prob1 | Prob2 | Prob3 | Prob 4 || Total

Score

Max 30 40 40 40 150

Grader

1 Modular Arithmetic (30 pts)

In CO, values of type int are defined to have 32 bits. In this problem we work with a version of
CO called C8 where values of type int are defined to have only 8 bits. In other respects it is the
same as C0. All integer operations are still in two’s complement arithmetic, but now modulo 2.
All bitwise operations are still bitwise, except on only 8 bit words instead of 32 bit words.

Task 1 (15 pts). Fill in the missing quantities, in the specified notation.

(a) The minimal negative integer, in decimal:
(b) The maximal positive integer, in decimal:
(c) —5,in hexadecimal: 0x

(d) 23,in hexadecimal: 0x

(e) 0x36, in decimal:

Task 2 (15 pts). Assume int x has been declared and initialized to an unknown value. For each
of the following, indicate if the expression always evaluates to true, or if it could sometimes be
false. In the latter case, indicate a counterexample in C8 by giving a value for x that falsifies the
claim. You may use decimal or hexadecimal notation.

(@) x+1 > x

(b) ((x<<1)>>1) | (x & 0x80) == x

(c) x = (Cx) == -1

(d) x <= 1<<7

(e) x+x == 2*x

2 Binary Search (40 pts)

Consider a recursive implementation of binary search. The main binsearch function calls a recur-
sive helper function:

int binsearch(int x, int[] A, int n)
//@requires O <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*Q@ensures (\result == -1 && 'is_in(x, A, 0, n))
|| (0 <= \result && \result < n && A[\result] == x);
©ex*/
{

return bsearch(x, A, 0, n);

Task 1 (10 pts). Complete the recursive bsearch helper function.

int bsearch(int x, int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@requires is_sorted(A, lower, upper);
/*Qensures (\result == -1 && 'is_in(x, A, lower, upper))
[l (Lower <= \result && \result < upper && A[\result] == x);

Q@x/
{
if (upper == lower) return _______________________________ ; /% (a) */
int mid = lower + (upper - lower) / 2;
if (Almid] == x)
return __________ __ ; /% (b) */
else if (A[mid] < x)
return __________ __ ; /% (c) */
else
return _____________ _ __ _ _ _ ;

Task 2 (20 pts). Argue that your code satisfies the postcondition given for bsearch.

(a) Argue that the return statement marked (a) satisfies the postcondition.

(b) Argue that the return statement marked (b) satisfies the postcondition.

(Continued)

(c) Argue that the return statement marked (c) satisfies the postcondition. (Hint: there will be
two cases.)

Task 3 (10 pts). Argue that your code terminates by arguing that every recursive call has “smaller”
inputs than the function itself, for some appropriate meaning of “smaller”. (Your argument may
appeal to intuition using pictures.)

3 Quicksort (40 pts)
The implementation of quicksort we saw in lecture chooses the middle element as the pivot.

Task 1 (5 pts). Give an array of 5 distinct elements that exhibits worst-case O(n?) behavior. That
is, at each partitioning step, one of the segments is empty.

Even an implementation of quicksort that chooses a random pivot can have deterministic worst-
case inputs.

Task 2 (5 pts). Explain why even a randomized version of our algorithm has O(n?) running time
if all the array elements are the same.

Consider an alternative implementation of quicksort that partitions the current subarray into
three segments: those less than the pivot, those equal to the pivot, and those greater than the pivot.
We maintain three indices, left, middle, and right, and the general case of the loop invariant can
now be pictured as follows, where the bold segment must be non-empty.

< pivot = pivot > pivot ?7?

T | L] !

lower left middle right upper

The partition function will now need to return not just an index but an entire range representing
the segment of the partition containing elements equal to the pivot. (Since a pivot must exist, this
range must be non-empty.) We represent a range as a pointer to a struct containing two int fields,
start and end:

struct range {
int start;
int end;

};

A variable r of type struct range * represents the half-open interval [r->start .. r->end).
Using this representation of a range, the three-way tripartition function may be specified
as follows:

struct range * tripartition(int[] A, int lower, int upper)

//@requires O <= lower && lower < upper && upper <= \length(A);

//Qensures \result != NULL;

/*Q@ensures lower <= \result->start
&& \result->start < \result->end // NB: result range non-empty
&& \result->end <= upper;

@x/

//@ensures gt(A[\result->start], A, lower, \result->start);

//Q@ensures eq(A[\result->start], A, \result->start, \result->end);

//@ensures 1t(A[\result->start], A, \result->end, upper);

b

Task 3 (20 pts). Fill in the loop invariants and code for the tripartition function below. You
should ensure—but need not prove—that your code satisfies your loop invariants and that your
loop invariants imply the postcondition. (Hint: draw pictures!)

(Continued)

struct range * tripartition(int[] A, int lower, int upper)

{

int pivot_index = lower + (upper - lower) / 2;

int pivot = A[pivot_index];
swap(A, lower, pivot_index);

int left = lower;
int middle = lower + 1;
int right = lower + 1;
while (right < upper)

//@loop_invariant
//@loop_invariant
//@loop_invariant
//@loop_invariant

{
if (pivot < A[right]) {

/* (code continues on following page) */

//Q@assert right == upper;
struct range * r = alloc(struct range);

r->start

r->end

return r;

Task 4 (10 pts). Complete the following trigsort function that uses tripartition to sort an
array.

void trigsort(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//Q@ensures is_sorted(A, lower, upper);

{
if O o) return;
struct range * r = _____ ___ __ 5
trigsort(A, _________ __ _______________ >);
trigsort(A, _________ __ _______________ >);
}

4 Big-O (40 pts)

Task 1 (15 pts). Define the big-O notation
f(n) € O(g(n)) if and only if

and briefly state the two key ideas behind this definition in two sentences:

Task 2 (15 pts). For each of the following, indicate if the statement is true or false.

(@) O(n? +1024n + 32) = O(31n? — 34)
(b) O(n *log(n)) C O(n)

(©) O(n) C O(n *log(n))

(d) 0(32) = 0(2%?)

(e) O(2") = 0(2*")

Task 3 (10 pts). You observe the following timings when executing an implementation of sorting
on randomly chosen arrays of size n. Form a conjecture about the asymptotic running time of each
implementation.

A B C
n time (s) n time (s) n time (s)
215 10.23 215 22.36 215 2.01
216 20.51 216 90.55 216 5.03
217 41.99 217 368.97 217 12.77
218 85.27 218 1723.03 218 29.93
O() o() O()

Which would be preferable for inputs of about 1 million elements? Circle one:

A B C

10

