
Exam I

15-122 Principles of Imperative Computation, Summer 2011
William Lovas

May 27, 2011

Name: Sample Solution Andrew ID: wlovas

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

• And most importantly,

DON’T PANIC!

Mod.arith. Search Quicksort Big-O

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score 30 40 40 40 150

Max 30 40 40 40 150

Grader
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1 Modular Arithmetic (30 pts)

In C0, values of type int are defined to have 32 bits. In this problem we work with a version of
C0 called C8 where values of type int are defined to have only 8 bits. In other respects it is the
same as C0. All integer operations are still in two’s complement arithmetic, but now modulo 28.
All bitwise operations are still bitwise, except on only 8 bit words instead of 32 bit words.

Task 1 (15 pts). Fill in the missing quantities, in the specified notation.

(a) The minimal negative integer, in decimal: -128

(b) The maximal positive integer, in decimal: 127

(c) −5, in hexadecimal: 0x FB

(d) 23, in hexadecimal: 0x 17

(e) 0x36, in decimal: 54

Task 2 (15 pts). Assume int x has been declared and initialized to an unknown value. For each
of the following, indicate if the expression always evaluates to true, or if it could sometimes be
false. In the latter case, indicate a counterexample in C8 by giving a value for x that falsifies the
claim. You may use decimal or hexadecimal notation.

(a) x+1 > x false, x = 127

(b) ((x<<1)>>1) | (x & 0x80) == x false, x = 0x40

(c) x ^ (~x) == -1 true

(d) x <= 1<<7 false, x = 0 (or any x other than 1<<7)

(e) x+x == 2*x true
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2 Binary Search (40 pts)

Consider a recursive implementation of binary search. The main binsearch function calls a recur-
sive helper function:

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*@ensures (\result == -1 && !is_in(x, A, 0, n))

|| (0 <= \result && \result < n && A[\result] == x);
@*/

{
return bsearch(x, A, 0, n);

}

Task 1 (10 pts). Complete the recursive bsearch helper function.

int bsearch(int x, int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@requires is_sorted(A, lower, upper);
/*@ensures (\result == -1 && !is_in(x, A, lower, upper))

|| (lower <= \result && \result < upper && A[\result] == x);
@*/

{
if (upper == lower) return ______ -1 _____________________ ; /* (a) */

int mid = lower + (upper - lower) / 2;

if (A[mid] == x)

return ______ mid ____________________________________ ; /* (b) */

else if (A[mid] < x)

return ______ bsearch(x, A, mid+1, upper) ____________ ; /* (c) */

else

return ______ bsearch(x, A, lower, mid) ______________ ;
}
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Task 2 (20 pts). Argue that your code satisfies the postcondition given for bsearch.

(a) Argue that the return statement marked (a) satisfies the postcondition.

At (a) we return -1, so we must show !is_in(x, A, lower, upper).

When upper == lower, the subarray under consideration is empty, which implies
!is_in(x, A, lower, upper).

(b) Argue that the return statement marked (b) satisfies the postcondition.

At (b) we return mid, so we must show lower <= mid && mid < upper && A[mid] == x,
where mid == lower + (upper - lower) / 2.

We have A[mid] == x by the given if-condition.

We have lower < upper by the precondition and the negation of the first if-
statement. From this, we get 0 < upper - lower, or 1 <= upper - lower,
which gives 0 <= (upper - lower) / 2. Adding lower to both sides gives us
lower <= lower + (upper - lower) / 2), i.e., lower <= mid.

From 0 < upper - lower, we also know that (upper - lower) / 2 < upper - lower.
Adding lower to both sides gives us lower + (upper - lower) / 2 < upper, i.e.,
mid < upper.

(Continued)
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(c) Argue that the return statement marked (c) satisfies the postcondition. (Hint: there will be
two cases.)

In order to call bsearch(x, A, mid+1, upper), we need to establish its precondi-
tion: 0 <= mid+1 && mid+1 <= upper && upper <= \length(A). We argued above that
lower <= mid && mid < upper, which gives lower <= mid+1 && mid+1 <= upper. The
“outer” precondition tells us 0 <= lower and upper <= \length(A), so the call is permitted.

After the call to bsearch returns, we obtain its postcondition:

(\result == -1 && !is_in(x, A, mid+1, upper))
|| (mid+1 <= \result && \result < upper && A[\result] == x)

We proceed by cases.

In the first case, we return -1 so we must establish !is_in(x, A, lower, upper). This fol-
lows from !is_in(x, A, mid+1, upper) and the if-condition A[mid] < x.

In the second case, we return a \result for which we know
mid+1 <= \result && \result < upper && A[\result] == x. It remains only to be
shown that lower <= \result; this follows from lower <= mid, which we argued above.

Task 3 (10 pts). Argue that your code terminates by arguing that every recursive call has “smaller”
inputs than the function itself, for some appropriate meaning of “smaller”. (Your argument may
appeal to intuition using pictures.)

We have lower < upper by the precondition and the negation of the first if-statement,
meaning our interval is non-empty. The intervals on either side of the mid point, excluding the
mid point itself, are both smaller than the entire interval, i.e., the recursive calls are on strictly
smaller intervals.
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3 Quicksort (40 pts)

The implementation of quicksort we saw in lecture chooses the middle element as the pivot.

Task 1 (5 pts). Give an array of 5 distinct elements that exhibits worst-case O(n2) behavior. That
is, at each partitioning step, one of the segments is empty.

The array [2, 4, 5, 3, 1] is one such array: at each partitioning step, the largest remaining
element is selected as the pivot.

Even an implementation of quicksort that chooses a random pivot can have deterministic worst-
case inputs.

Task 2 (5 pts). Explain why even a randomized version of our algorithm has O(n2) running time
if all the array elements are the same.

If all the array elements are the same, then every element is an equally bad pivot: all other
elements will wind up in the “≥ pivot” segment of the partition, and the “< pivot” segment
will always be empty.
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Consider an alternative implementation of quicksort that partitions the current subarray into
three segments: those less than the pivot, those equal to the pivot, and those greater than the pivot.
We maintain three indices, left, middle, and right, and the general case of the loop invariant can
now be pictured as follows, where the bold segment must be non-empty.

< pivot ???

lower left middle right upper

> pivot= pivot

The partition function will now need to return not just an index but an entire range representing
the segment of the partition containing elements equal to the pivot. (Since a pivot must exist, this
range must be non-empty.) We represent a range as a pointer to a struct containing two int fields,
start and end:

struct range {
int start;
int end;

};

A variable r of type struct range * represents the half-open interval [r->start .. r->end).
Using this representation of a range, the three-way tripartition function may be specified

as follows:

struct range * tripartition(int[] A, int lower, int upper)
//@requires 0 <= lower && lower < upper && upper <= \length(A);
//@ensures \result != NULL;
/*@ensures lower <= \result->start

&& \result->start < \result->end // NB: result range non-empty
&& \result->end <= upper;

@*/
//@ensures gt(A[\result->start], A, lower, \result->start);
//@ensures eq(A[\result->start], A, \result->start, \result->end);
//@ensures lt(A[\result->start], A, \result->end, upper);
;

Task 3 (20 pts). Fill in the loop invariants and code for the tripartition function below. You
should ensure—but need not prove—that your code satisfies your loop invariants and that your
loop invariants imply the postcondition. (Hint: draw pictures!)

(Continued)
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struct range * tripartition(int[] A, int lower, int upper)
{

int pivot_index = lower + (upper - lower) / 2;
int pivot = A[pivot_index];
swap(A, lower, pivot_index);

int left = lower;
int middle = lower + 1;
int right = lower + 1;

while (right < upper)
lower <= left && left < middle

//@loop_invariant ____ && middle <= right && right <= upper _____________ ;

//@loop_invariant ____ gt(pivot, A, lower, left) ________________________ ;

//@loop_invariant ____ eq(pivot, A, left, middle) _______________________ ;

//@loop_invariant ____ lt(pivot, A, middle, right) ______________________ ;
{

if (pivot < A[right]) {

____ right++ ________________________________ ;

} else if (pivot == A[right]) {

____ swap(A, middle, right) _________________ ;

____ middle++ _______________________________ ;

____ right++ ________________________________ ;

} else /*@assert pivot > A[right]; @*/ {

____ swap(A, middle, right) _________________ ;

____ swap(A, left, middle) __________________ ;

____ left++ _________________________________ ;

____ middle++ _______________________________ ;

____ right++ ________________________________ ;
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}
}

//@assert right == upper;
struct range * r = alloc(struct range);

r->start = ____ left __________________ ;

r->end = ____ middle ________________ ;

return r;
}

Task 4 (10 pts). Complete the following triqsort function that uses tripartition to sort an
array.

void triqsort(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);
{

if ( ____ upper - lower <= 1 ________________________ ) return;

struct range * r = ____ tripartition(A, lower, upper) ______________ ;

triqsort(A, ____ lower _______________ , ____ r->start ____________ );

triqsort(A, ____ r->end ______________ , ____ upper _______________ );

}
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4 Big-O (40 pts)

Task 1 (15 pts). Define the big-O notation

f(n) ∈ O(g(n)) if and only if there is an n0 and c > 0 such that f(n) ≤ c ∗ g(n) for all n ≥ n0

and briefly state the two key ideas behind this definition in two sentences:

In the mathematical analysis of function complexity, our main concern is the asymptotic
behavior of functions on larger and larger inputs. Furthermore, we reason at a high level of
abstraction, ignoring constant factors.

Task 2 (15 pts). For each of the following, indicate if the statement is true or false.

(a) O(n2 + 1024n + 32) = O(31n2 − 34) true

(b) O(n ∗ log(n)) ⊂ O(n) false

(c) O(n) ⊂ O(n ∗ log(n)) true

(d) O(32) = O(232) true

(e) O(2n) = O(22n
) false

Task 3 (10 pts). You observe the following timings when executing an implementation of sorting
on randomly chosen arrays of size n. Form a conjecture about the asymptotic running time of each
implementation.

A

n time (s)

215 10.23
216 20.51
217 41.99
218 85.27

O( n )

B

n time (s)

215 22.36
216 90.55
217 368.97
218 1723.03

O( n2 )

C

n time (s)

215 2.01
216 5.03
217 12.77
218 29.93

O( n ∗ log(n) )

Which would be preferable for inputs of about 1 million elements? Circle one:

A B C C
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