
Lecture Notes on
Dynamic Programming

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 23
November 16, 2010

1 Introduction

In this lecture we introduce dynamic programming, which is a high-level
computational thinking concept rather than a concrete algorithm. Perhaps
a more descriptive title for the lecture would be sharing, because dynamic
programming is about sharing computation. We have already seen earlier
that sharing of space is also crucial: binary decision diagrams in which sub-
trees are shared are (in practice) much more efficient than binary decision
trees in which there is no sharing.

In order to apply dynamic programming, we generally look for the fol-
lowing conditions:

1. The optimal solutions to a problem is composed of optimal solutions
to subproblems, and

2. if there are several optimal solutions, we don’t care which one we get.

The emphasis on optimality in these conditions dates back to the 1930’s
when dynamic programming was developed. The name also refers to pro-
gramming in the sense of the operations research literature (like, for exam-
ple, integer programming) and does not refer to programming the way we
understand today.

Under the above conditions, the idea of dynamic programming is to
build an exhaustive table with optimal solutions to subproblems. Then we
combine these solutions according to properties of the specific problem we
are addressing. The use of a table avoids recomputation—it shares compu-
tation by storing results and avoiding their recomputation.

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.2

We start with a simple example and the discuss the implementation of
BDDs, which uses dynamic programming in several places.

2 Fibonacci Numbers

As a very simple example, we consider the computation of the Fibonacci
numbers. They are defined by specifying, mathematically,

f0 = 0
f1 = 1
fn+2 = fn+1 + fn (n ≥ 0)

A direct (and very inefficient) implementation is a recursive function

int fib0(int n) {
REQUIRES(n >= 0);
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib0(n-1) + fib0(n-2);

}

When we draw the top part of a tree of the recursive calls that have to be
made, we notice that values are computed multiple times.

fib(n) 

fib(n‐1)  fib(n‐2) 

fib(n‐2)  fib(n‐3) fib(n‐3)  fib(n‐4) 

Before we move on to improve the efficience of this program, did you
notice that the program above is buggy in C, and the corresponding version
would be questionable in C0? Think about it before reading on.

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.3

The problem is that addition can overflow. In C, the result is unde-
fined, and arbitrary behavior by the code would be acceptable. In C0 the
result would be defined, but it would be the result of computing modulo
232 which could be clearly the wrong answer. We can fix this by explicitly
checking for overflow.

#include <limits.h>

int safe_plus(int x, int y) {
if ((x > 0 && y > INT_MAX-x)

|| (x < 0 && y < INT_MIN-x)) {
fprintf(stderr, "integer overflow\n");
abort();

} else {
return x+y;

}
}

int fib1(int n) {
REQUIRES(n >= 0);
if (n == 0) return 0;
else if (n == 1) return 1;
else return safe_plus(fib1(n-1),fib1(n-2));

}

Now the program will abort in a well-defined manner upon overflow, in-
stead of exhibiting undefined behavior which might silently give us the
wrong result.

3 Top-Down Dynamic Programming

In top-down dynamic programming we store the values as we compute them
recursively. Then, if we need to compute a value we just reuse the value
if we have computed it already. A characteristic pattern for top-down dy-
namic programming is a top-level function that allocates an array or similar
structure to save computed results, and a recursive function that maintains
this array.

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.4

int fib2_rec(int n, int* A) {
REQUIRES(n >= 0);
if (n == 0) return 0;
else if (n == 1) return 1;
else if (A[n] > 0) return A[n];
else {
int result = safe_plus(fib2_rec(n-1,A), fib2_rec(n-2,A));
A[n] = result; /* store A[n] == fib(n) */
return result;

}
}

int fib2(int n) {
REQUIRES(n >= 0);
int* A = calloc(n+1, sizeof(int));
if (A == NULL) { fprintf(stderr, "allocation failed\n"); abort(); }
/* calloc initializes the array with 0s */
int result = fib2_rec(n, A);
free(A);
return result;

}

We also call this programming technique memoization.
We might be tempted to improve this function slightly, by looking up

the second value:

int fib2_rec(int n, int* A) {
REQUIRES(n >= 0);
if (n == 0) return 0;
else if (n == 1) return 1;
else if (A[n] > 0) return A[n];
else {
int result = safe_plus(fib2_rec(n-1,A), A[n-2]);
A[n] = result; /* store A[n] == fib(n) */
return result;

}
}

This would be incorrect, but why?

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.5

The problem is that C does not guarantee the order of evaluation except
in some specific circumstances such as short-circuiting conjunction. So it
might evaluate A[n-2] first, before fib2_rec(n-1,A). At that point, A[n−2]
might still be 0 and we obtain an incorrect answer.

4 Bottom-Up Dynamic Programming

Top-down dynamic programming retains the structure of the original (in-
efficient) recursive function. Bottom-up dynamic programming inverts the
order and starts from the bottom of the recursion, building up the table of
values. In bottom-up dynamic programming, recursion is often profitably
replaced by iteration.

In our example, we would like to compute A[0], A[1], A[2], . . . in this
order.

int fib3(int n) {
REQUIRES(n >= 0);
int i;
int* A = calloc(n+1, sizeof(int));
if (A == NULL) { fprintf(stderr, "allocation failed\n"); abort(); }
A[0] = 0; A[1] = 1;
for (i = 2; i <= n; i++) {
/* loop invariant: 2 <= i && i <= n+1; */
/* loop invariant: A[i] = fib(i) for i in [0,i) */
A[i] = safe_plus(A[i-1], A[i-2]);

}
ASSERT(i == n+1);
int result = A[n];
free(A);
return result;

}

We have indicated the loop invariant here only informally, although we
could refer to one of the earlier implementations if we wanted to, perhaps
viewing fib0 as a specification.

5 Implementing ROBDDs

In the implementation of ROBDDs, dynamic programming plays a perva-
sive role. Recall from Lecture 19 that ROBDDs are binary decision diagrams

LECTURE NOTES NOVEMBER 16, 2010

http://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/19-bdds.pdf

Dynamic Programming L23.6

(BDDs) satisfying two conditions:

Irredundancy: The low and high successors of every node are distinct.

Uniqueness: There are no two distinct nodes testing the same variable
with the same successors.

These two conditions guarantee canonicity of the representation of boolean
functions and also make the data structure efficient in many common cases.

We use dynamic programming ideas in order to maintain the unique-
ness invariant; irredundancy is simple in comparison. The idea is that
whenever we are asked to construct a new node, given a low and high
successor and a variable to test, we look in a hashtable if we have already
constructed such a node. If so, we reuse it. If not, we construct it and enter
it in the hashtable. The key to this hashtable consists of the variable and the
(indices of) the low and high successors.

A similar idea applies when we apply a binary operation to two ROB-
DDs to create a new one. Here, we also check if the given operation has
been applied to the same two ROBDDs before, and if so we reuse the pre-
viously stored results. If not, we compute it and store it to avoid its recom-
putation.

For more information on ROBDDs and the algorithms to construct and
test them, we refer the reader to the code in robdd.c and the lectures notes
by Henrik Reif Anderson at http://www.itu.dk/~hra/notes-index.html.
The implementation referenced above is based quite closely and Ander-
son’s notes.

6 Encoding the n-Queens Problem

The n-queens problem is to fill an n ∗ n chessboard with n queens such that
none attacks any other. Queens in chess can move horizontally, vertically,
and diagonally. For example, the following are examples and counterex-
amples of solutions on a 4 ∗ 4 board.

Q

Q

Q

Q

Solution

Q

Q

Q

Q

Non-solution

LECTURE NOTES NOVEMBER 16, 2010

http://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/23-dynprog/robdd.c
http://www.itu.dk/~hra/notes-index.html

Dynamic Programming L23.7

We would like to encode n-queens problems as ROBDDS. The idea is to
assign a boolean variable to each square, where a value of 1 means that the
square is occupied by a queen, and a 0 means that the square is empty. We
write these variables as xij for the square at column i and row j.

x00 x10 x20 x30

x01 x11 x21 x31

x02 x12 x22 x32

x03 x13 x23 x33

Now we need to generate constraints on these boolean variables such
that a correct solution will be evaluated as true (1) and an incorrect situation
will be evaluated as false (0). For example, to encode that the column 0 has
at least one queen on a 4 ∗ 4 board, we would write

x00 ∨ x01 ∨ x02 ∨ x03

Similarly, to encode that the main diagonal has no more than one queen we
might write

(x00 ⊃ (¬x11 ∧ ¬x22 ∧ ¬x33))
∧ (x11 ⊃ (¬x00 ∧ ¬x22 ∧ ¬x33))
∧ (x22 ⊃ (¬x00 ∧ ¬x11 ∧ ¬x33))
∧ (x33 ⊃ (¬x00 ∧ ¬x11 ∧ ¬x22))

where b ⊃ c (b implies c) is the same as (¬b) ∨ c in boolean logic.
To see how this is programmed, we need to see the interface to the

ROBDD package.

typedef struct bdd* bdd;
typedef int bdd_node;
bdd bdd_new(int k); /* k variables */
void bdd_free(bdd B);
int bdd_size(bdd B); /* total number of nodes */
bdd_node make(bdd B, int var, bdd_node low, bdd_node high);
bdd_node apply(bdd B, int (*func)(int b1, int b2), bdd_node u1, bdd_node u2);
int satcount(bdd B, bdd_node u);
void onesat(bdd B, bdd_node u);
void allsat(bdd B, bdd_node u);

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.8

The crucial functions here are make and apply.
make(B, x, u, v) takes a BDD B and a variable x and returns a node

testing the variable x with low successor u and high successor v. Both u
and v must be defined in B, and the result will be a node w also defined
in B. We only use this to create variables and their negations, exploiting
that the BDD nodes representing false and true are 0 and 1, respectively.
The variable xij gets index i + j ∗ n + 1, where 1 is added because the
BDD library counts variables starting at 1. So we can obtain a BDD node
representing just the BDD variable x33 on a 4 ∗ 4 board with

bdd B = bdd_new(4*4);
x33 = make(B, 3+3*4+1, 0, 1);

where 0 means that the low successor of x33 will be 0 (false), and 1 means
that the high successor of x will be 1 (true).

apply(B, op, u, v) takes two BDD nodes u and v and applies boolean
operation op to them, returning a new node represention u op v. In the im-
plementation this will be a function pointer, where the function implements
the boolean operation on integers. It will be passed only 0 and 1 and must
return either 0 or 1.

For example, the boolean expression

r = x00 ∨ x01 ∨ x02 ∨ x03

could be represented as

bdd B = bdd_new(4*4);
int x00 = make(B, 1, 0, 1);
int x01 = make(B, 2, 0, 1);
int x02 = make(B, 3, 0, 1);
int x03 = make(B, 4, 0, 1);
int r = apply(B, &or, x00, x01);
r = apply(B, &or, r, x02);
r = apply(B, &or, r, x03);

where we have previously defined

int or(int b1, int b2) {
return b1 | b2;

}

Now it is pretty straightforward to encode, in general, that each column
has a queen. We assume B holds a BDD of n ∗ n variables.

LECTURE NOTES NOVEMBER 16, 2010

Dynamic Programming L23.9

r = 1;
/* each column has a queen */
for (i = 0; i < n; i++) {
u = 0; /* false */
for (j = 0; j < n; j++) {
x = make(B, i+j*n+1, 0, 1); /* x_ij */
u = apply(B, &or, u, x);

}
r = apply(B, &and, r, u);

}

The outer loop (i) goes through each column building up the result BDD
for r, while the inner loop (j) goes through each row in the column i and
builds up u. Schematically we have

r = 1 ∧ u0 ∧ · · · ∧ un−1

ui = 0 ∨ xi0 ∨ · · · ∨ xi(n−1)

This should be enough of a roadmap to be able to read the code in
nqueens.c. We can count the number of solutions, using the satcount func-
tion, and obtain an enumeration of all solutions with allsat. For larger
boards it may be infeasible to print all solutions, even if it is still feasible to
calculate their number.

LECTURE NOTES NOVEMBER 16, 2010

http://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/23-dynprog/nqueens.c

	Introduction
	Fibonacci Numbers
	Top-Down Dynamic Programming
	Bottom-Up Dynamic Programming
	Implementing ROBDDs
	Encoding the n-Queens Problem

