Lecture Notes on
Linear Search

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 5
January 25, 2011

1 Introduction

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search for an integer
in a sorted array to exemplify it. As a preliminary study in this lecture we
analyze linear search, which is simpler, but not nearly as efficient. Still it is
often used when the requirements for binary search are not satisfied, for
example, when we do not have the elements we have to search arranged in
a sorted array.

2 Linear Search in an Unsorted Array

If we are given an array of integers A without any further information and
have to decide if an element x is in A, we just have to search through it,
element by element. We return true as soon as we find an element that
equals z, false if not such element can be found.

bool is_in(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
{ int i;
for (i = 0; 1 < n; i++)
//@loop_invariant 0 <= i && 1 <= n;
if (A[i] == x) return true;
return false;

}

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.2

We used the statement i++ which is equivalent to i = i+1 to step through
the array, element by element.

The precondition is very common when working with arrays. We pass
an array, and we also pass n which we generally think of as its length.
However, for the test to work correctly it need not be the length—it could
be smaller. That’s useful if we want to express an invariant such as x is not
among the first k elements of A, which would be 'is_in(x, A, k).

The loop invariant is also typical for loops over an array. We examine
every element (i ranges from 0 to n—1). But we will have i = n after the last
iteration, so the loop invariant which is checked just before the exit condition
must allow for this case.

Could we strengthen the loop invariant, or write a postcondition? We
could try something like

//@loop_invariant !is_in(x, A, 1i);

where !b is the negation of b. However, it is difficult to make sense of this
use of recursion in a contract or loop invariant so we will avoid it.

This is small illustration of the general observation that some functions
are basic specifications and are themselves not subject to further specifica-
tion. Because such basic specifications are generally very inefficient, they
are mostly used in other specifications (that is, pre- or post-conditions, loop
invariants, general assertions) rather than in code intended to be executed.

3 Sorted Arrays

A number of algorithms on arrays would like to assume that they are sorted.
We begin with a specification of this property. The function is_sorted(4,n)
traverses the array A from left to right, checking that each element is smaller
or equal to its right neighbor. We need to be careful about the loop invari-
ant to guarantee that there will be no attempt to access a memory element
out of bounds.

bool is_sorted(int[] A, int n)
//@requires 0 <= n && n <= \length(A);
{
for (int i = 0; i < n-1; i++)
//@loop_invariant n == 0 || (0 <= i && i <= n-1);
if (V(A[i] <= A[i+1])) return false;
return true;

}

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.3

The loop invariant here is a disjunction: either n = 0 or 7 is between 0 and
n — 1. This is a simple or on boolean values (true and false) and not an
exclusive or, even though we will often pronounce it as either ... or

Why is it necessary? If we ask if a zero-length array is sorted, then
before the check the exit condition of the loop the first time we have i = 0
and n = 0, so it is not the case that i« < n — 1. Therefore the second part of
the loop invariant does not hold. We account for that explicitly by allowing
n to be 0.

For an example of reasoning with loop invariants, we verify in some
detail why this is a valid loop invariant.

Initially: Upon loop entry, i« = 0. We distinguish two cases. If n = 0, then
the left disjunction n == 0 holds. If n # 0 then n > 0 because the
precondition of the function requires n > 0. Butif n > 0and i = 0
theni <n —1. Wealsohave 0 <iso0 <= i && i <= n-1holds.

Preservation: Assume the loop invariant holds before the test, so either
n=0or0 <i <n — 1. Because we do not exit the loop, we also have
i < n — 1. The step statement in the loop increments i so we have
i =i+1
Since? =i+ 1and 0 < ¢ we have 0 < 7. Also, sincei < n — 1 and
i =i+ 1wehavei —1 <n —1and so < n. Thereforei <n — 1.

So 0 < ¢ < n — 1 and the loop invariant is still satisfied because the
right disjunct is true for the new value ¢’ of 4.

One pedantic point (and we do want to be pedantic in this class when
assessing function correctness, just like the machine is): from 0 < ¢ and
i" =i+ 1 we inferred 0 < ¢’. This is only justified in modular arithmetic if
we know that i + 1 does not overflow. Fortunately, we also know i < n —1,
so i < n and ¢ is bounded from above by a positive integer. Therefore
incrementing ¢ cannot overflow.

We generally do not verify loop invariants in this amount of detail, but
it is important for you do know how to reason attentively through loop
invariants to uncover errors, be they in the program or in the loop invariant
itself.

4 Linear Search in a Sorted Array

Next, we want to search for an element z in an array A which we know is
sorted in ascending order. We want to return —1 if x is not in the array and

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.4

the index of the element if it is.
The pre- and postcondition as well as a first version of the function itself
are relatively easy to write.

int linsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*Q@ensures (\result == -1 && 'is_in(x, A, n))
[l ((0 <= \result && \result < n) && A[\result] == x);
©ex/
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && 1 <= n;
if (A[i] == x) return i;
return -1;

}

This does not exploit that the array is sorted. We would like to exit the
loop and return —1 as soon as we find that A[i| > z. If we haven’t found z
already, we will not find it subsequently since all elements to the right of i
will be greater or equal to Afi] and therefore strictly greater than x. But we
have to be careful: the following program has a bug.

int linsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*Qensures (-1 == \result && 'is_in(x, A, n))
|| ((0 <= \result && \result < n) && A[\result] == x);
@x/
{ int 1i;
for (i = 0; A[i] <= x && i < n; i++)
//@loop_invariant 0 <= i && i <= n;
if (A[i] == x) return i;
return -1;

}

Can you spot the problem? If you cannot spot it immediately, reason
through the loop invariant. Read on if you are confident in your answer.

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.5

The problem is that the loop invariant only guarantees that 0 < i < n
before the exit condition is tested. So it is possible that i = n and the test
A[i] <= x will try access an array element out of bounds: the n elements
of A are numbered from Oton — 1.

We can solve this problem by taking advantage of the so-called short-
circuiting evaluation of the boolean operators of conjunction (“and”) && and
disjunction (“or”) | |. If we have condition el && e2 (e; and e3) then we
do not attempt to evaluate e if e; is false. This is because a conjunction
will always be false when the first conjunct is false, so the work would be
redundant.

Similarly, in a disjunction el || e2 (e; or ez) we do not evaluate ey if
e1 is true. This is because a disjunction will always be true when the first
disjunct it true, so the work would be redundant.

In our linear search program, we just swap the two conjuncts in the exit
test.

int linsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*Q@ensures (-1 == \result && 'is_in(x, A, n))
[l (0 <= \result && \result < n) && A[\result] == x);
@x*/
{
for (int 1 = 0; i < n && A[i] <= x; i++)
//@loop_invariant 0 <= i && i <= n;
if (A[i] == x) return i;
return -1;

}

Now A[i] <= x will only be evaluated if ¢ < n and the access will be in
bounds since we also know 0 < i from the loop invariant.

Alternatively, and perhaps easier to read, we can move the test into the
loop body.

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.6

int linsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(4);
//@requires is_sorted(A, n);
/*Q@ensures (-1 == \result && 'is_in(x, A, n))
[l ((0 <= \result && \result < n) && A[\result] == x);

ex*/
{

for (int i = 0; 1 < n; i++)

//@loop_invariant 0 <= i && i <= n;

{
if (A[i] == x) return i;
else if (A[i] > x) return -1;
}
return -1;

}

This program is not yet satisfactory, because the loop invariant does not
have enough information to prove the postcondition. We do know that if we
return directly from inside the loop, that A[i] = x and so A[\result] ==
holds. But we cannot deduce that !'is_in(x, A, n) if we return —1.

Before you read on, consider which loop invariant you might add to
guarantee that. Try to reason why the fact that the exit condition must
be false and the loop invariant true is enough information to know that
'is_in(x, A, n) holds.

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.7

Did you try to exploit that the array is sorted? If not, then your invariant
is most likely too weak, because the function is incorrect if the array is not
sorted!

What we want to say is that all elements in A to the left of index i are smaller
than x. Just saying A[i-1] < x isn’t quite right, because when the loop is
entered the first time we have i = 0 and we would try to access A[—1]. We
again exploit shirt-circuiting evaluation, this time for disjunction

int linsearch(int x, int[] A, int n)
//@requires O <= n && n <= \length(A);
//Qrequires is_sorted(A, n);
/*Qensures (-1 == \result && 'is_in(x, A, n))
|| ((0 <= \result && \result < n) && A[\result] == x);
ex/
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
//@loop_invariant i == 0 || A[i-1] < x;

{
if (A[i] == x) return i;
else if (A[i] > x) return -1;
}
return -1;

}

It is easy to see that this invariant is preserved. Upon loop entry, ¢ = 0.
Before we test the exit condition, we just incremented i. We did not return
while inside the loop, so A[i — 1] # « and also A[i — 1] < z. From these two
together we have Afi — 1] < z.

Why does the loop invariant imply the postcondition of the function? If
we exit the loop normally, then the loop condition must be false. So ¢ > n.
know A[n — 1] = A[i — 1] < z. Since the array is sorted, all elements from
0 ton — 1 are less or equal to A[n — 1] and so also strictly less than z and «
can not be in the array.

If we exit from the loop because A[i] > z, we also know that A[i—1] <
so z cannot be in the array since it is sorted.

LECTURE NOTES JANUARY 25, 2011

Linear Search L5.8

5 Analyzing the Number of Operations

In the worst case, linear search goes around the loop n times, where n is the
given bound. On each iteration except the last, we perform three compar-
isons: i < n, Ali] = z and A[i] > z. Therefore, the number of comparisons
is almost exactly 3 * n in the worst case. We can express this by saying that
the running time is linear in the size of the input (n). This allows us to pre-
dict the running time pretty accurately. We run it for some reasonably large
n and measure its time. Doubling the size of the input n’ = 2 * n mean that
now we perform 3 n’ = 3% 2xn = 2% (3 *n) operations, twice as many as
for n inputs.

We will introduce more abstract measurements for the running times in
the next lecture.

LECTURE NOTES JANUARY 25, 2011

	Introduction
	Linear Search in an Unsorted Array
	Sorted Arrays
	Linear Search in a Sorted Array
	Analyzing the Number of Operations

