
15-122: Principles of Imperative Computation,
Summer 2011

Assignment 3: Sorting, Queues, Stacks, and Tab
Completion

Zachary Sparks (zsparks@andrew)

Out: Friday, May 27, 2011
Due: Wednesday, June 1, 2011

(Written part: before lecture,
Programming part: 11:59 pm)

1 Written: (25 points)

The written portion of this week’s homework will give you some practice working
with sorting algorithms, stacks and queue data structures and performing some
asymptotic analysis tasks. You can either type up your solutions or write them neatly
by hand, and you should submit your work in class on the due date just before lecture
begins. Please remember to staple your written homework before submission.

1.1 Sorting

Exercise 1 (11 pts). Consider the following function that sorts an array of integers.

void sort(int[] A, int n)

{

int i = 0;

while (i < n)

{

int j = findmin(A, i, n);

swap(A, i, j);

i = i + 1;

}

}

1

The code makes use of a findmin(A, lower, upper) function to find the index of
the minimum element in A[lower .. upper). In other words, the findmin function
obeys the following contract:

int findmin(int[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@ensures lower <= \result && \result < upper;

//@ensures leq(A[\result], A, lower, upper);

;

(a) Annotate the code with all contracts (pre-conditions, assertions, loop invariants,
and post-conditions) required to justify the correctness of this code. You may
use functions such as is sorted, lt, gt, leq, geq and other functions given in
lecture or recitation code. (You are not required to prove the code correct, but
your annotations should be sufficient to allow a proof.)

(b) Assume that findmin requires i − 1 “instructions” to find the minimum of an
unsorted array segment of size i. Let T(n) be the total number of “instructions”
executed by findmin calls on an array A of size n in the function sort. Express
T(n) as a function of n in closed form (that is, do not include “. . . ” in your final
answer). Show all work.

(c) We say that T(n) is O(f (n)) if there exist a constant c > 0 and n0 ≥ 0 such that
T(n) ≤ c f (n) for all n ≥ n0. Using the results obtained in previous part, show that
T(n) is O(n2) by finding appropriate values of c and n0.

1.2 Run-time Complexity

Exercise 2 (4 pts). The following run times were obtained when using two different
algorithms on a data set of size n. Based on this timing data, guess at the asymptotic
complexity of each algorithm as a function of n. Use big-O notation in its simplest
form and briefly explain how you reached your conclusion.

(a) n Execution Time (in seconds)

1000 0.743

2000 3.021

4000 12.184

8000 50.320

(b) n Execution Time (in microseconds or millionths of a second)

1000 0.01

1000000 20

1000000000 30000

2

1.3 Stacks and Queues

A queue and a stack that contains elements of of type elem are implemented with
the following interfaces:

queue queue_new();

bool queue_empty(queue Q);

int queue_size(queue Q);

void enq(queue Q, elem e);

elem deq(queue Q);

stack stack_new();

bool stack_empty(stack S);

int stack_size(stack S);

void push(stack S, elem e);

elem pop(stack S);

We do not know how these data structures are implemented. That is, we don’t
know if the programmer used arrays or linked lists, or something else—just that they
somehow implemented the functions shown above, and that they have the same
observable behavior as the ones we implemented in class.

Exercise 3 (10 pts). Consider the interfaces for queue and stack as given above.

(a) Write a function reverse for reversing the order of a queue using a stack. Include
proper annotations in your solution. What is the worst case run-time complexity
of this function if there are n elements in the queue? Explain.

(b) Write a function stack equal that takes two stacks of the same size containing
elems and returns true if the stacks contain the same elements in the same order.
You may assume a function bool elem_equal(elem e1, elem e2) for compar-
ing elements. After the operations, both stacks must remain in the original order;
you are allowed to use additional stacks or queues as needed—but no other data
structures. What is the worst case run-time complexity of your code if each stack
contains n elements? Explain.

Helpful suggestion: Try to write these functions by hand at first, using tools like contracts,
pictures, and small, on-paper examples to reason about your code. Once you believe your
functions are correct, you may find it useful to test them by implementing and running them
on a computer. But working through the functions “offline” first will help you to hone critical
reasoning skills and programming instincts that will serve you immeasurably in the future.

3

2 Programming: Tab Completion (25 points)

Most modern shells (including csh, which most of you are probably using) have
a feature called tab completion, which allows you to only type part of a command,
followed by the tab key. It then autocompletes to that entire command. For example,

$ vim strin<TAB>

$ vim stringsearch.c0

However, this is not always unambiguous—it is possible to type a prefix which has
multiple possible completions. In this case, instead of automatically completing to
one thing which may or may not be correct, what many shells opt to do is list out all
of the options. As another example:

$ gcc<TAB>

gcc gcc34 gcc44 gccbug gccmakedep

Another way to treat an ambiguous tab-completion is by cycling through the pos-
sible completions one-by-one. This makes the programmer have to type less, but is
inconvenient when there are a large number of possible completions. To make things
more useful for the user, we can make this cycle through the possible completions in
an order based on some heuristic value that we keep track of.

There are multiple ways to implement this functionality; one way is firmly within
our grasp in C0, using only arrays and some basic data structures!

2.1 Linked Lists and Queues

This section offers a brief introduction to lists and queues; for a more detailed dis-
cussion, please see the Lecture Notes on Queues and the Lecture Notes on Stacks.

Eventually, we will return a data structure called a queue that contains the
word_freqs matching a given prefix, sorted by frequency, but first we need to talk
about the data structure used to back our implementation of queues: namely, linked
lists.1

Linked lists are a powerful but simple data structure. Each node of a linked list
contains two things: the data it stores and a pointer to the next node in the linked
list. This structure is defined as follows:

struct list_node {

elem data;

struct list_node *next;

};

typedef struct list_node* list;

1http://cmubash.org/?1609

4

We will consider a linked list L to be valid if it is NULL or if L->data is a valid element
and L->next is a valid linked list.

Task 1 (5 pts). In order to specify that a linked list is sorted and well-formed, we
need to write some specification functions. In the file list.c0, implement functions
matching the following prototypes:

bool all_valid (list L);

bool is_sorted_list (list L)

//@requires all_valid (L);

;

The function all_valid should make sure every piece of data in L is valid (according
to the is_elem function), and is_sorted_list should make sure its list is sorted
(according to the elem_leq function).

Now that we have linked lists, we can write our implementation of queues. A
queue is a FIFO (that is, “first in, first out”) data structure—elements are removed
from it in the order that they are inserted. Importantly, we will not be using the
queue insert and remove (cleverly called “enqueue” and “dequeue”) to construct the
queue that our tab completion function returns, but it is still important to understand
these functions in order to understand queues.

In C0, our representation of queues is as follows:

struct queue {

list front;

list back;

};

typedef struct queue* queue;

A valid queue Q cannot be NULL, and we maintain a special invariant about queues:
instead of being like linked lists where the null pointer represents the empty list, we
create a special “blank” node that back always points to. Once we reach this node,
we have reached the end of the queue—the data stored in it is irrelevant. If both the
front and back pointers point to the same (blank) list node, then the queue is empty.

Recall that when we are tab-completing a prefix, we want to cycle through all
possible tab completions in order of frequency (that is, in the order in which they
have been placed in the queue that tab_complete will have returned). The de-
queue operation does not support this, though, since it removes an element from the
queue—when we reach the last possible tab completion, we want to cycle around to
the first.

Task 2 (5 pts). In the file queue.c0, implement a function matching the following
prototype:

5

queue make_queue (list L)

//@requires all_valid (L);

//@ensures \result != NULL;

//@ensures queue_all_valid (\result);

//@ensures is_queue(\result);

;

Your function should make sure the linked list backing the returned queue obeys
the queue invariants as described above (and in the lecture notes). You may modify
and/or reuse the input list, though you are not required to—there are several ways
to solve this problem!

Task 3 (5 pts). In the file queue.c0, implement a function matching the following
prototype:

elem cycle (queue Q)

//@requires is_queue(Q);

//@ensures is_queue(Q);

;

that cycles through the elements of Q. It should behave similarly to dequeue, but
it should never (permanently) remove an element from the queue. Your function
should only use the queue operations enqueue and dequeue.

If Q has only one element, calling cycle (Q) should always return that element.
If Q has exactly two elements, repeatedly calling cycle (Q) should first return the
first element, then the second element, then the first element again, and so on.

2.2 Freqshow

As mentioned above, we want to cycle through possible completions in some heuris-
tic order based on some metadata. This kind of analysis can get quite sophisticated,
but for now, we will just keep track of an integer in addition to strings. This string
represents the frequency with which that specific command is used.

In order to do this, we need a data structure containing both a string and an int.
Based on its intended use, we call this word_freq; it is defined as follows:

struct word_freq {

string word;

int freq;

};

typedef struct word_freq* word_freq;

So, if we have a variable wf != NULL of type word_freq, then we can access its string
with wf->word and its frequency with wf->freq.

6

2.3 Putting It All Together

With linked lists and queues out of the way, we can now write the actual tab-
completion code.

Task 4 (10 points). In the file prefix.c0, implement a function matching the follow-
ing prototype:

queue tab_complete (word_freq [] A, int n, string prefix)

//@requires 0 <= n && n <= \length(A);

//@requires freq_is_alpha_sorted (A, n);

//@ensures is_queue (\result);

//@ensures queue_all_valid (\result);

;

that returns a queue containing the elements of A, sorted according to their frequen-
cies. Recall that A is sorted alphabetically, not according to frequency.

There are two functions you may find useful in implementing tab_complete:

1. struct range* find_matching_range(word_freq[] A, int n, string prefix),
found in array.c0, returns the struct range * describing the subarray of A
containing words which match the given prefix.

(Recall that a range is represented by a struct containing two ints:

struct range {

int start;

int end;

};

A struct range* r represents the half-open interval [r->start .. r->end).)

2. list insert_in_order(elem data, list L), found in list.c0, inserts data
into the sorted-by-frequency list L in its appropriate place, returning the result.

7

