15-122: Principles of Imperative Computation,
Summer 2011
Assignment 2: Searching and Strings

Karl Naden
Zachary Sparks (zsparks@andrew)

Out: Monday, May 23, 2011
Due: Thursday, May 24, 2011

(Written part: before lecture,
Programming part: 11:59 pm)

1 Written: (20 points)

The written portion of this week’s homework will give you some practice working
with searching algorithms and test your understanding of contracts. You can either
type up your solutions or write them neatly by hand, and you should submit your
work in class on the due date just before lecture begins. Please remember to staple
your written homework before submission.

Note that the function is_sorted is slightly different from the one we have been
using in lecture—it takes a lower bound as well as an upper bound for the range of
the array that we care about.

Exercise 1 (8 pts). Consider the following implementation of the linear search algo-
rithm that finds the last occurrence of x in array A:

int find(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
{ int i = n-1;

while (i >= 0 && A[i] >= x)

{ if (A[i] == x) return i;

i=1-1;
3

return -1;

}

(@) Add loop invariants to the code and show that the they hold for this loop. Be
sure that the loop invariants precisely describe the computation in the loop.

(b) Add one or more ensures clause(s) to describe the intended postcondition in a
precise manner.

(c) Show that the loop invariant is strong enough by using the loop invariant to prove
that the postconditions hold at the end of the function (both if it ends by the
return statement in the loop or the return statement after the loop exits).

Exercise 2 (2 pts). Letxbean int in the Cg language. Express the following operations
in Cp using only one statement each. (Do not use an if statement here.) You should
think about using some of the bitwise operators: (&, |, ~, 7, <<, >>).

(a) Rotate x left one bit. (The leftmost bit reenters x in the rightmost position.) Store
the result back in x.

(b) Rotate x right one bit. (The rightmost bit reenters x in the leftmost position.)
Store the result back in x.

Exercise 3 (4 pts). An array can have duplicate values. A programmer wrote the
following variant of binary search to find the first occurrence of x in a sorted array A
of n integers so that the asymptotic complexity is still O(log n):

int binsearch_smallest(int x, int[] A, int n)
//@requires ® <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*@ensures (\result == -1 && !is_in(x, A, n))
[] (0 <= \result && \result < n && A[\result] == x
&& (\result == 0 || A[\result-1] < x));

@*/
{ int lower = 0;

int upper = n;

while (lower < upper)

//@loop_invariant 0 <= lower && lower <= upper && upper <= n;

//@loop_invariant lower == 0 || A[lower-1] < x;
//@loop_invariant upper == n || A[upper] >= Xx;
{ int mid = lower + (upper-lower)/2;

if (A[lower] == x) return lower;

if (A[mid] < x) lower = mid+1;
else /*@assert(A[mid] >= x); @*/ upper = mid;

}
//@assert lower == upper;
return -1;

}

There is a bug in this implementation. Describe the bug and fix the code (and the
annotations if necessary) so that it works correctly.

Exercise 4 (6 pts). This question is designed to test your knowledge of contracts,
how they are checked dynamically, and how they can be used to reason about the
correctness of your program. Your job is to identify the locations in a Cp function
and a main function that calls it where contracts are checked and where you can
assume that contracts must be true. Consider the mult function that we went over in
recitation and a main function that calls it:

int mult(int x, int y)
//@requires x >= 0 && y >= 0;
//@ensures \result == x*y;
{

int k = x; int n = y;

int res = 0;

while (n != 0)

//@loop_invariant x * y == * n + res;
{ if ((k & 1) == 1) res = res + n;
k =k > 1;
n=n<<1;
3
return res;
}
int main() {
int a;
a = mult(3,4);
return a;

}

(@) When you compile your Cy program with the -d flag, it adds runtime tests to
your program which are checked when it is executed. Based on the contracts for
the mult function above, write CHECK B at any point in the copy of the function
below where a boolean expression B is checked by a contract in the main and mult
functions given that they are compiled with the -d flag (Note: not all blank lines
below should be filled in). (Hint: The first check (a check of the loop invariant
just before the first check of the loop guard) is provided.)

int mult(int x, int y) {

int k = x; int n = y;
int res = 0;

CHECK x * y == k * n + res;
while (n '= 0) {

if ((k & 1) == 1) res = res + n;
k =k > 1;
n=n<<1;

return res;

}

int main() {
int a;

a = mult(3,4);

return a;

}

(b) Whenreasoning about programs using contracts, there are certain points in where
we can reason assuming that a certain fact is true based on what we know from
the contracts. In the copy of the function below, write KNOW B at any point in
the program where you know a boolean expression B to be true because it was
just checked (Note: not all blank lines below should be filled in). (Hint: As an
example, one of the KNOW statement is provided. You know at the beginning of
the function that the precondition holds)

int mult(int x, int y) {

KNOW x >= 0 & y >= 0
int k = x; int n = y;
int res = 0;

while (n != 0) {

if ((k & 1) == 1) res = res + n;
k =k > 1;
n=n<<1;

return res;

}

int main() {
int a;

a = mult(3,4);

return a;

}

2 Programming: String Processing (30 points)

For the programming portion of this week’s homework, you'll write three Cy files
corresponding to three different string processing tasks: duplicates.c® (described
in Section ??), common-unsorted. c®, and common-sorted.cO (described in Section 2?).
You should submit your code electronically by 11:59 pm on the due date. Detailed
submission instructions can be found below.
Again, note that this assignment uses a different is_sorted function than the one
we have been using up to this point in lecture.

Starter code. Download the file hw2-starter.zip from the course website. When
you unzip it, you will find two Cj files, stringsearch.c® and readfile.c0. The
first contains linear and binary search as developed in class, adapted to work over
string arrays. The second contains functionality for reading a text file into an array
of strings with its length, a type called string_bundle.

string_bundle read_words(string filename);

You need not understand anything about this type other than that you can extract its
underlying string array and the length of that array:

string[] string_bundle_array(string_bundle b);
int string_bundle_length(string_bundle b);

You can assume that all the strings returned have been converted to lowercase. You
will also see a texts/ directory with some sample text files you may use to test your
code.

For this homework, you are not provided any main() functions. Instead, you
should write your own main() functions for testing your code. You should put this
test code in separate files from the ones you will submit for the problems below. You
should not submit your testing code.

You should not modify or submit the starter code.

Compiling and running. You will compile and run your code using the standard
Cp tools. For example, if you've completed the program duplicates that relies on
functions defined in stringsearch.c® and you’'ve implemented some test code in
duplicates-test.c0, you might compile with a command like the following;:

ccO® stringsearch.c® duplicates.c® duplicates-test.c®

Don’t forget to include the -d switch if you’d like to enable dynamic annotation
checking.

Submitting. Once you've completed some files, you can submit them by running
the command

handin -a hw2 <filel>.c® ... <fileN>.c0®

The handin utility accepts a number of other switches you may find useful as well;
try handin -h for more information. As with the first assignment, the handin script
will ensures that your submissions compile and will run some basic tests on your
code. Remember to write your own tests as we reserve the right to run other tests
while grading.

You can submit files as many times as you like and in any order. When we grade
your assignment, we will consider the most recent version of each file submitted
before the due date. If you get any errors while trying to submit your code, you
should contact the course staff immediately.

Annotations. Besuretoincludeappropriate //@requires, //@ensures, //@assert,
and //@loop_invariant annotations in your program. For this assignment, we have
provided the pre- and postconditions for many of the functions that you will need
to implement. However, you should provide loop invariants and any assertions that
you use to check your reasoning. If you write any “helper” functions, include precise
and appropriate pre- and postconditions.

You should write these as you are writing the code rather than after you're
done: documenting your code as you go along will help you reason about what it
should be doing, and thus help you write code that is both clearer and more correct.
Annotations are part of your score for the programming problems; you will not
receive maximum credit if your annotations are weak or missing.

Style. Strive to write code with good style: indent every line of a block to the same
level, use descriptive variable names, keep lines to 80 characters or fewer, document
your code with comments, etc. We will read your code when we grade it, and
good style is sure to earn our good graces. Feel free to ask on the course bboard
(academic.cs.15-122) if you're unsure of what constitutes good style.

2.1 String Processing Overview

The three short programming problems you have for this assignment deal with
processing strings. In the Cp language, a string is a sequence of characters. Unlike
languages like C, a string is not the same as an array of characters. (See section
8 in the Cy language reference and section 2.2 of the Cy library reference for more
information on strings). There is a library of functions you can use to process strings:

// Returns the length of the given string
int string_length(string s);

// Returns the character at the given index of the string.
// If the index is out of range, aborts.
char string_charat(string s, int idx)

//@requires 0 <= idx && idx <= string_length(s);

// Returns a new string that is the result of concatenating b to a.
string string_join(string a, string b)
//@ensures string_length(\result) == string_length(a) +
string_length(b);

// Returns the substring composed of the characters of s beginning at
// index given by start and continuing up to but not including the
// index given by end. If end <= start, the empty string is returned
string string_sub(string a, int start, int end)

//@requires 0 <= start && start <= string_length(a);

//@requires start <= end && end <= string_length(a);

//@ensures string_length(\result) == end - start;

bool string equal(string a, string b);

int string_compare(string a, string b)
//@ensures -1 <= \result && \result <= 1;

The string_compare function performs a lexicographic comparison of two strings,
which is essentially the ordering used in a dictionary, but with character comparisons
being based on the characters” ASCII codes, not just alphabetical. For this reason, the
ordering used here is sometimes whimsically referred to as “ASCllIbetical” order. A
table of all the ASCII codes is shown in Figure ??.

The ASCII value for 0’ is 0x30 (48 in decimal), the ASCII code for *A’ is 0x41
(65 in decimal) and the ASCII code for ’a’ is 0x61 (97 in decimal). Note that ASCII
codes are set up so the character A’ is “less than” the character B’ which is less
than the character *C” and so on, so the “ASCllbetical” order coincides roughly with
ordinary alphabetical order.

2.2 Required: Removing Duplicates

In this programming exercise, you will take a sorted array of strings and return a
new sorted array that contains the same strings without duplicates. The length of
the new array should be just big enough to hold the unique strings. Place your code
for this section in a file called duplicates.c@.

o |12 3 4 5|6 |7
0 |MUL DLE space| O | & | P : 1]
1 |soH |BE1 | | |
2 | s Dcz| t 2 = R 1] r
3 |ETx (B # [EEEEEE R
4 |EOT |Dc4 | $ 4 10| T | d t
5 |ENa [Nak | % | A | E U | g 1
6 |AcCK [svM | 8 | B F | W f W
7 |BEL |[ETB| ' 7 G | W | g | w
g (B8 |[CaM| [| B | H | X | h x
9 | HT | EM [) E| I 5 I i
A | LF zuB| * J|Z | | 7
B | vT [ESC| + Kl [Pk
C|FF | Fs| | < | L |~ | |
D|crR | G5 2 = i] I L
E | 50 | RS . =M i h =
F | =3 |[Us | | Y B 0 | del

Figure 1: The ASCII table (from http://ascii-table.com/img/table.gif)

Task 1 (3 pts). Implement a function matching the following prototype:

bool is_unique(string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
where n represents the size of the subarray of A that we are considering. This function

should return true if the given string array contains no repeated strings and false
otherwise.

Task 2 (3 pts). Implement a function matching the following prototype:

int count_unique(string[] A, int n)

//@requires ® <= n && n <= \length(A);

//@requires is_sorted(A, 0, n);
where n represents the size of the subarray of A that we are considering. This function
should return the number of unique strings in the array, and your implementation
should have an appropriate asymptotic running time given the precondition.

Task 3 (6 pts). Implement a function matching the following prototype:

string[] remove_duplicates(string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
//@ensures \length(\result) == count_unique(A, n);
//@ensures is_sorted(\result, 0, \length(\result));
//@ensures is_unique(\result, \length(\result));

where nrepresents the size of the subarray of A that we are considering. The strings in
the array should be sorted before the array is passed to your function. This function
should return a new array that contains only one copy of each distinct string in the
array A. Your new array should be sorted as well. Your implementation should have
an appropriate asymptotic running time given the preconditions.

You must include annotations for the precondition(s), postcondition(s) and loop
invariant(s) for each function. You may include additional annotations for assertions
as necessary. You may include any auxiliary functions you need in the same file, but
you should not include a main() function.

2.3 Required: Counting Common Words

In this exercise, you will write two functions for counting the number of words from
a text that appear in a word list. A practical application of such a function would be
determining how many words in the Complete Works of Shakespeare are valid in the
game Scrabble.

For the following tasks, you may find the functions in stringsearch.c0 to be
useful!

Task 4 (6 pts). Create a file common-unsorted. c® containing a function common_unsorted
that matches the following signature:

int common_unsorted(string[] dictionary, int d, string[] wordlist, int w)
//@requires 0 <= d & & d <= \length(dictionary);
//@requires 0 <= w && w <= \length(wordlist);
//@requires is_sorted(dictionary, 0, d) &% is_unique(dictionary, d);

The function should return the number of words in the array wordlist that also ap-
pear in the array dictionary. (If a word appears multiple times in the wordlist, you
should count each occurrence separately.) Your function should be asymptotically
efficient given the preconditions; analyze its running time using big-O notation in a
comment in your source code. Note that a precondition of common-unsorted is that
the dictionary must be sorted, a fact you should exploit.

10

Task 5 (6 pts). Create a file common-sorted.c® with a function common_sorted that
matches the following signature:

int common_sorted(string[] dictionary, int d, string[] wordlist, int w)
//@requires 0 <= d && d <= \length(dictionary);
//@requires 0 <= w && w <= \length(wordlist);
//@requires is_sorted(dictionary, 0, d) && is_unique(dictionary, d);
//@requires is_sorted(wordlist, 0, w);

As above, the function should return the number of words in the array wordlist that
also appear in the array dictionary, and your function should be asymptotically
efficient; analyze its running time using big-O notation in a comment in your source
code. Note the additional precondition in the specification above: this function
requires not only that the dictionary be sorted, but also that the contents of the
wordlist be sorted.

Task 6 (4 pts). Create a file common-test.c®which containsa functionint common_test()
that uses the functionality from readfile.c® to read in the Complete Works of Shake-
speare (texts/shakespeare.txt) and the Scrabble word list (texts/scrabble.txt)
and answer the question of how many words from Shakespeare’s writing are in the
Scrabble dictionary.

You must include annotations for the precondition(s), postcondition(s) and loop
invariant(s) for each function. You may include additional annotations for assertions
as necessary. You may include any auxiliary functions you need in the same file, but
you should not include a main() function.

2.4 Optional: Judges’ Prize

Judges’ prizes for this assignment will be awarded to the first 6 students to submit
a wordle (www.wordle.net) of the 20 most prevalent Scrabble words from Shake-
speare’s collected works (Note: you may chose another reasonably sized body of
work that you have access to the text version of if you choose. If you would like
to go down this route, Project Gutenberg (www.gutenberg.org) is a good place to
look for texts). You will need to use a sorted version of Complete Works of Shakespeare
(texts/shakespeare_sorted.txt) to find which words are frequently used. You
will then check that they are in the Scrabble dictionary and then add them to your
wordle with their relative weights. Note that to find “interesting” words, you may
want to restrict the length of the words you choose as well. Paste your weighted
list of words (more copies of a single word means heavier weight) into the wordle
creation interface found on the wordle website and submit it by emailing a pdf to
zsparks@andrew.

11

