FLAC Project — Using SAT to Solve Sudoku

Although SAT is an NP-complete problem in general, certain kinds of large SAT instances
can be solved in a reasonable amount of time. In this project, you will use a SAT solver to
solve Sudoku puzzles.

Most existing SAT sol.vers .require the input p cnf NumVars NumClauses
formula to be in Conjunctive Normal Form Clause,
(CNF). The most commonly used input for- Clause,

mat is the DIMACS format, whose structure
is as shown at the right:

Clause,

The variables are assumed to be numbered

from 1 to NumVars. The i*! variable is repre-

sented by the positive integer 7; the negation p cof 45
of this variable is represented by the negative 10

integer —i. A clause is represented by listing 230

the literals in the clause, separated by spaces, 4 -10
followed by a zero (“0”). For example, the be- 12340
low CNF formula is represented in DIMACS 240

as shown at the right.
T A (IL‘Q V _|ZL‘3) N (_\ZL‘4 V _\ZL‘l) N <_\£L'1 V e) V T3 V 174) A (_|ZL'Q V ZE4)
For more information about DIMACS, see:

http://www.cs.ubc.ca/"hoos/SATLIB/Benchmarks/SAT/satformat.ps

For this assignment we will use the MiniSAT solver, which was the fastest SAT solver in the
SAT Competition in 2005 and 2006. You can download and build MiniSAT on the Andrew
machines (unix.andrew.cmu.edu via ssh or PuTTY) as follows:

wget http://minisat.se/downloads/minisat2-070721.zip
unzip minisat2-070721.zip

cd minisat/core

make

You can run MiniSat by the following command:
“/minisat/core/minisat InputFile OutputFile

If the input formula is unsatisfiable, then MiniSat writes “UNSAT” to the output file. If the
formula is satisfiable, then it writes “SAT” and a satisfying assignment.

Exercise: Download http://www.cs.cmu.edu/"emc/flac09/sample-cnfs.zip and run
MiniSat on these files.

Page 1

Sudoku. Sudoku is played on an nxn board, where n is a perfect square. Some cells are
prefilled with numbers from 1 to n; the rest are blank. The board is subdivided into v/n x y/n
blocks. The goal is to fill each cell with a number in such a way that each number from 1 to
n occurs exactly once in each row, each column, and each block. The prefilled squares are
such that there is a unique solution.

For this assignment, you will write a program which does the following: (1) read a Sudoku
puzzle from an input file, (2) encode the Sudoku puzzle as a CNF formula in DIMACS
format, (3) use MiniSat to find a satisfying assignment to the CNF formula, (4) read the
satisfying assignment produced by MiniSat to generate the solution to the input Sukodu
problem. The input and output formats for Sudoku puzzles will be as follows (where 0
indicates that a square is empty):

Sample Input Sample Output
060104050 963174258
008305600 1783256409
200000001 254689731
800407006 821437596
006000300 496852317
700901004 735961824
500000002 589713462
007206900 317246985
040508070 642598173

Due the limited time you have, we recommend using the naive encoding with n® boolean
variables and O(n4) clauses. Let the boolean variable z, .4 be true iff the number d is in the
cell at row r, column c. Encode the following constraints, along with the prefilled cells:

- Exactly one number appears in each cell.

- Each number appears exactly once in each row.

- Each number appears exactly once in each column.

- Each number appears exactly once in each block.

Hint: Encode “exactly one” as “at least one and at most one”. See slides for more details.

Your solver will take five command-line arguments, as follows:
./solver InputPuzzle OutputSoln MiniSatFExec TempToSat TempFromSat

where MiniSatExec is the filename of the MiniSAT executable (e.g., ““/minisat/core/minisat”),
TempToSat is the name of the temporary DIMACS file that your solver will produce, and
TempFromSat is the solution that MiniSAT will generate.

We suggest writing your solver in C/C++ (compiled by GCC) or Python 2.5. Other possible
languages include Java 1.5 (J2SE 5.0), Ruby 1.8.6, and OCaml 3.08. If you would like to use
another language, please email the TAs to see if it would be available on the test machine.

Benchmarks and a sample program skeleton are at www.cs.cmu.edu/~emc/flac09/bench.zip
and skel.py. The output of your program on the benchmark inputs must match the pro-
vided benchmark solutions exactly, except for possible minor differences in whitespace (we
will compare with diff -Bbs).

Page 2

