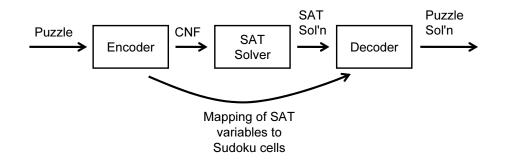
What is Sudoku?

		6	1		2	5		
	3	9				1	4	
				4				
9		2		3		4		1
	8						7	
1		3		6		8		9
				1				
	5	4				9	1	
		7	5		3	2		

- Played on a n×n board.
- A single number from 1 to n must be put in each cell; some cells are pre-filled.
- Board is subdivided into √n × √n blocks.
- Each number must appear exactly once in each row, column, and block.
- Designed to have a unique solution.

Puzzle-Solving Process



2

Naive Encoding (1)

- Use n^3 variables, labelled " $x_{0,0,0}$ " to " $x_{n,n,n}$ ".
- Variable $x_{r,c,d}$ represents whether the number d is in the cell at row r, column c.
- "Number d must occur exactly once in column c" \Rightarrow "Exactly one of $\{x_{1,c,d}, x_{2,c,d}, ..., x_{n,c,d}\}$ is true".
- How do we encode the constraint that exactly one variable in a set is true?

Example of Variable Encoding

column

3	2	1	4
4	1	2	3
1	4	3	2
2	3	4	1

Variable $x_{r,c,d}$ represents whether the digit d is in the cell at row r, column c.

$$x_{1,1,3} = {\sf true}, \; x_{1,2,2} = {\sf true}, \; x_{1,3,1} = {\sf true}, \; x_{1,4,4} = {\sf true}$$
 $x_{2,1,4} = {\sf true}, \; x_{2,2,1} = {\sf true}, \; x_{2,3,2} = {\sf true}, \; x_{2,4,3} = {\sf true}$ $x_{3,1,1} = {\sf true}, \; x_{3,2,4} = {\sf true}, \; x_{3,3,3} = {\sf true}, \; x_{3,4,2} = {\sf true}$ $x_{4,1,2} = {\sf true}, \; x_{4,2,3} = {\sf true}, \; x_{4,3,4} = {\sf true}, \; x_{4,4,1} = {\sf true}$ All others are false.

1

Naive Encoding (2)

- How do we encode the constraint that exactly one variable in a set is true?
- We can encode "exactly one" as the conjunction of "at least one" and "at most one".
- Encoding "at least one" is easy: simply take the logical OR of all the propositional variables.
- Encoding "at most one" is harder in CNF.
 Standard method: "no two variables are both true".
- I.e., enumerate every possible pair of variables and require that one variable in the pair is false.
 This takes O(n^2) clauses.
- [Example on next slide]

Naive Encoding (3)

- Example for 3 variables (x1, x2, x3).
- "At least one is true":

$$x1 \lor x2 \lor x3$$
.

• "At most one is true":

$$(\sim x1 \vee \sim x2) & (\sim x1 \vee \sim x3) & (\sim x2 \vee \sim x3).$$

"Exactly one is true":

$$(x_1 \lor x_2 \lor x_3) \& (\neg x_1 \lor \neg x_2) \& (\neg x_1 \lor \neg x_3) \& (\neg x_2 \lor \neg x_3).$$

5

Naive Encoding (4)

The following constraints are encoded:

- Exactly one digit appears in each cell.
- Each digit appears exactly once in each row.
- Each digit appears exactly once in each column.
- · Each digit appears exactly once in each block.

Each application of the above constraints has the form: "exactly one of a set variables is true".

All of the above constraints are independent of the prefilled cells.

Problem with Naive Encoding

- We need n³ total variables.
 (n rows, n cols, n digits)
- And O(n⁴) total clauses.
 - To require that the digit "1" appear exactly once in the first row, we need $O(n^2)$ clauses.
 - Repeat for each digit and each row.
- For your project, the naive encoding is OK.
- For large *n*, it is a problem.

6

A Better Encoding (1a)

- Simple idea: Don't emit variables that are made true or false by prefilled cells.
 - Larger grids have larger percentage prefilled.
- Also, don't emit clauses that are made true by the prefilled cells.
- This makes encoding and decoding more complicated.

A Better Encoding (1b)

Example: Consider the CNF formula $(a \lor d) \& (a \lor b \lor c) \& (c \lor \sim b \lor e).$

- Suppose the variable *b* is preset to **true**.
- Then the clause (a v b v c) is automatically true, so we skip the clause.
- Also, the literal ~b is false, so we leave it out from the 3rd clause.
- Final result: $(a \lor d) \& (c \lor e)$.

9

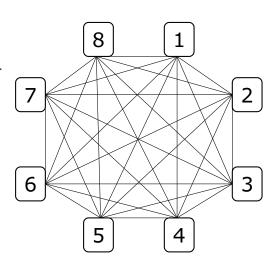
10

New Encoding: Implementation

- Keep a 3D array VarNums[r][c][d].
 - Map possible variables to an actual variable number if used.
 - Assign **0xfffffff** to true variables.
 - Assign -0xfffffff to false variables.
- Initialize VarNums[r][c][d] to zeros.
- For each prefilled cell, store the appropriate code (±0xffffff) into the array elems for the cell.
- For every cell in the same row, column, or block:
 - Assign -0xffffff (preset_false) to the var that would put the same digit in this cell.

Room for Another Improvement

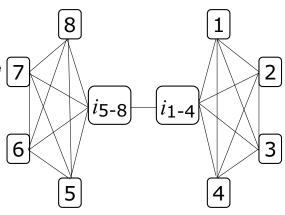
- It still takes O(n²) clauses to encode an "at most one" constraint.
- When one of these vars becomes true, the SAT solver examines clauses that contain the newly true var.
- This allows the SAT solver to quickly realize that none of the other vars in the "at most" set can be true.
- But requires (n)(n-1)/2 clauses.
- Improvement: Use 'intermediary' nodes (next slide).



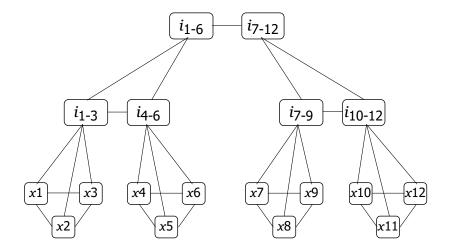
Intermediary Variables

Idea:

- Divide the n variables into groups containing only a handful of vars.
- Add an intermediary variable to each group of vars.
- An intermediary variable is to be true iff one of the (original) vars in its group is true.
- Add a constraint to ensure that at most one intermediary variable is true.
- If there are too many intermediary varibles, then they themselves may be grouped, forming a hierarchy.



Hierarchical Grouping



13

ı

Results

- Number of clauses for an "at most one" clause reduced from $O(n^2)$ to $O(n \log n)$.
- But in the larger puzzles, most of the cells are prefilled, so this only offered a 10%-20% performance benefit.

PUZZLE 100x100	NumVars	NumClauses	Sat Time
Var Elim Only	36,415	712,117	1.04 sec
Elim & Intermediary	61,793	428,231	0.76 sec

PUZZLE 144x144	NumVars	NumClauses	Sat Time
Var Elim Only	38,521	596,940	0.91 sec
Elim & Intermediary	58,843	405,487	0.76 sec

14