What is Sudoku?

* Played on a nxn board.

6
3]9 14 * A single number from 1 to n

4 must be put in each cell;

2{ (3] 4] |t some cells are pre-filled.

3| |e] [s| [9] ¢ Board is subdivided into

vn x Vn blocks.

9
s 1512 « Each number must appear

exactly once in each row,
column, and block.

* Designed to have a unique
solution.

Puzzle-Solving Process

Puzzle
—> | Encoder

CNF
—

SAT
Solver

SAT
Sol'n
>

Puzzle

Sol'n
Decoder | =———>

\/

Mapping of SAT

variables to

Sudoku cells

Naive Encoding (1)

Use n3 variables, labelled “xp 00" t0 “Xn.n.n".

Variable x, ¢ 4 represents whether the number d
is in the cell at row r, column c.

i

“Number d must occur exactly once in column ¢’
— “Exactly one of {x1¢a, X2¢c,d, ---, Xn,c,d} IS true”.

How do we encode the constraint that
exactly one variable in a set is true?

Example
of Variable
Encoding

T1,1,3 = true, r1 22 = true,
T2,1,4 = true, To21 = true,
T3,1,1 = true, T3 24 = true,
T4,1,2 = true, T4 23 = true,

All others

|— digit

column
row

N =, W

AP OOIN| -~

2
1
4
3

= INW|Ps

Variable xr.¢c ¢
represents whether
the digit d is in the
cell at row r,
column c.

T1,3,1 = true, T1 44 = true
T232 = true, To 43 = true
T33,3 = true, r342 = true
T43,4 = true, T441 = true

are false.




Naive Encoding (2)

* How do we encode the constraint that
exactly one variable in a set is true?

» We can encode “exactly one” as the conjunction
of “at least one” and “at most one”.

« Encoding “at least one” is easy: simply take the
logical OR of all the propositional variables.

* Encoding “at most one” is harder in CNF.
Standard method: “no two variables are both true”.

* |.e., enumerate every possible pair of variables and
require that one variable in the pair is false.
This takes O(n"2) clauses.

* [ Example on next slide ]

Naive Encoding (3)

Example for 3 variables (x/, x2, x3).
“At least one is true”:
xl vx2vx3.
“At most one is true”:
(~x1v ~x2) & (~xI v ~x3) & (~x2 v ~x3).
“Exactly one is true”:

(v x,vx;) & (~x v ~x,) & (~x v ~x;) & (~x,v ~x;).

Naive Encoding (4)

The following constraints are encoded:

» Exactly one digit appears in each cell.

« Each digit appears exactly once in each row.

» Each digit appears exactly once in each column.
» Each digit appears exactly once in each block.

Each application of the above constraints has the form:
“exactly one of a set variables is true”.

All of the above constraints are
independent of the prefilled cells.

Problem with Naive Encoding

We need n3 total variables.
(n rows, n cols, n digits)

And O(n?) total clauses.

— To require that the digit “1” appear exactly
once in the first row, we need O(n?) clauses.

— Repeat for each digit and each row.
For your project, the naive encoding is OK.
For large n, it is a problem.




A Better Encoding (1a)

« Simple idea: Don’t emit variables that are
made true or false by prefilled cells.
— Larger grids have larger percentage prefilled.
» Also, don’t emit clauses that are made true
by the prefilled cells.

» This makes encoding and decoding more
complicated.

A Better Encoding (1b)

Example: Consider the CNF formula
(avd)&(avbvcec)&(cv~bve).
Suppose the variable b is preset to true.

Then the clause (av b vc)is
automatically true, so we skip the clause.

Also, the literal ~b is false, so we leave it
out from the 3rd clause.

Final result: (avd) & (cve).

10

New Encoding: Implementation

* Keep a 3D array VarNums [r] [c] [d].

— Map possible variables to an actual variable
number if used.

— Assign OxFFFFFFF to true variables.
— Assign -O0xFFFFFFF to false variables.
* |nitialize varNums [r] [¢c] [d] to zeros.

» For each prefilled cell, store the appropriate code
(*OxFFFFFFF) into the array elems for the cell.

» For every cell in the same row, column, or block:
— Assign -0xFFFFFFF (preset_false) to the var that
would put the same digit in this cell.

11

* When one of these vars

» This allows the SAT solver to

can be true.
 But requires (n)(n-1)/2 clauses. 6 3

* Improvement: Use

Room for Another Improvement

« |t still takes O(n2) clauses to

encode an “at most one”
constraint. 8 1

becomes true, the SAT solver

examines clauses that contain 7 2

the newly true var.

quickly realize that none of the
other vars in the “at most” set

‘intermediary’ nodes (next
slide). 5 4

12




Intermediary Variables

Idea:

* Divide the n variables into 8 1
groups containing only a
handful of vars.

* Add an intermediary variable [z
to each group of vars. -~ <

* An intermediary variable is to ; ;
be true iff one of the (original) 15-8 11-4)
vars in its group is true.

» Add a constraint to ensure 6
that at most one intermediary
variable is true. 5 4

* If there are too many
intermediary varibles, then
they themselves may be
grouped, forming a hierarchy.

Hierarchical Grouping
[i1-6 ]—[i7-12]

113 J a6 | 79 Ji10-12)

14

Results

 Number of clauses for an “at most one”
clause reduced from O(n?) to O(n log n).

« Butin the larger puzzles, most of the cells are prefilled,
so this only offered a 10%-20% performance benefit.

PUZZLE 100x100 NumVars| NumClauses Sat Time
Var Elim Only 36,415 712,117 1.04 sec
Elim & Intermediary 61,793 428,231 0.76 sec
PUZZLE 144x144 NumVars| NumClauses|  Sat Time
Var Elim Only 38,521 596,940 0.91 sec
Elim & Intermediary 58,843 405,487 0.76 sec

15




