01/11/99
1
23
GeeBuild.doc - 01/11/99

1
Gee Building
Fred Hansen

Software Engineering Institute

Carnegie Mellon University

Abstract: "GEE," the Generic Enterprise Ensemble, is a tool for building interactive applications that run on distributed workstations and access/update a central data base. The tool consists of a handbook and a suite of sample code which is itself executable and also provides templates. The system sources are organized in a tree of directories, one for each component. Each engineer has a “sandbox” with a copy of the source tree or a subtree and performs construction and testing in that snadbox. When the system is ready, an integrator installs into a tree of destination directories. The tools available for tree maintenance, building, and testing are described in this document. The viewpoint is that of an individual engineer creating or modifying a component of the system.

2 Introduction

Most of this document presupposes that you are an engineer working to modify and test some portion of a system—a component-- that has been developed under the gee development environment. The tools for creating components are also covered. Actual installation of the system is not typically done by every engineer and is covered in Appendix G.

A component is defined by a set of files stored in a directory, possibly one having subdirectories so that the component is composed of a number of sub-components. The size and constituents of a component can vary widely. One reasonable hallmark is that the pieces of a lowest level component are roughly what one programmer would want to create in a week or two.

Along with the files of a component is an Imakefile which contains machine readable instructions for compiling, testing, and installing the component and its subcomponents into the deployed system. The design is such that building and testing occur in the tree of sources. Then if multiple components need to be changed, they can be changed in synchronization. Each programmer can have a separate tree or subtree so test interference is avoided. An integrator installer will also have a source tree to build in prior to new installation.

Installation takes place by copying the results of the compilations into a separate “destination tree” of directories. After installation, the source trees where the compilation has taken place can be deleted, leaving—as it were—no hint of the grubby details behind the wonders of the finished system.

The full set of source files for the system is stored in a tree of directories managed by a source control system. When creating a tree of directories for the components of Gee, the structure of the created tree should mirror the structure of the source control directory tree. This directory structure is basically a root directory with sub directories named src, external, tools, and doc; see Appendix A. The important Gee source are in the src/ directory which has these components:

…/src/config/ – tools for configuring the system and commands used in building it.

…/src/gee/ – fundamental utility classes

…/src/security/ – responsible for authenticating a user and making the results available to other components

…/src/rdbms/ – business objects; interface to the data base

…/src/busLog/ – business logic; does the bulk of the processing

…/src/appclient/ – the user interface as an application or an applet

…/src/GenoServlet/ – the user interface as a set of Java servlets

At the SEI, we control sources with “RCS” augmented with the few scripts described fully in Appendix E and utilized in the next section. (These scripts can be readily adapted to other source control systems,)

Your Unix environment variables. For Gee development, your Unix environment should have two additional path entries and a setting for OSAGENT_PORT. The path entries are the directory into which the rcs scripts have been installed and the <dest>/bin/ directory, where <dest> is the root of the tree where gee will be installed. At the SEI these values are /usr/local/gee/bin and /usr/local/gee/dest/bin. The OSAGENT_PORT entry is needed if you are going to test VisiBroker interfaces; your value should be different than that of all other engineers developing in the same environment. At the SEI, we use 14002, 14004, …. For execution with the standard VisiBroker servers, the OSAGENT_PORT value should be your site default, usually 14000.

3 Sandboxes – Building a system component

As an engineer, you create your own sandbox directory in which to edit and build. Into this sandbox you copy the files for a component, edit them, and compile and test them. Often a single directory will suffice, but sometimes it is necessary to have a whole subtree of components to allow coordinated changes among several components.

3.1 Creating a sandbox

To begin, choose a directory to hold your sandbox; let’s call it p, for playground. Your sandboxes will be subdirectories of p. To get a sandbox for some component, say src/rdbms, change directory to p and give the command
rcscotree src/rdbms

The result will be a subdirectory of p named rdbms and containing copies of the source files of the src/rdbms component. If the component has subcomponents, those too are created and populated with copies of the files from the source control system. In the case of rdbms, the subcomponents are the Java package osc/dm. Note that rcscotree likes to create the new component directory and will complain if it already exists.

3.2 Genmake – Create a Makefile

Commands for building and installing each component are contained in an Imakefile, usually in the component’s directory. (For Java packages, the Imakefile is the one in the component’s main directory. The Java code is in a subdirectory named according to its package name.)

To convert an Imakefile to a Makefile, use the `genmake` command:

genmake

3.3 Compiling the code

To compile the code for the component, use the Unix `make` command:

make

The make command can be issued with various targets as parameters, see Appendix C.

To do the compilations in a whole subtree of components the make command is

make Compiles

This can be restricted to a subset of the subcomponents by adding a definition for SUBDIRS:

make Compiles SUBDIRS=”asubcomponent anothersub”

If you change the Imakefile you can create a new Makefile with

make Makefile

Other useful make targets are ‘clean’ which deletes non-source files and ‘javadoc’ which runs the javadoc processor over the Java sources and creates a subdirectory javadoc with the resulting html. The make targets Makefiles, Javadocs, and Clean are the same as Makefile, javadoc, and clean, except they process the command over the entire subtree of directories subordinate to the current one (at least that subtree identified by the value of SUBDIRS).

3.4 Creating a full source sandbox

For changes cutting across multiple components or for changes to the system gee.properties file, it is sometimes convenient to have a sandbox for the entire set of sources. The sandbox directory itself can be created with simply

rcscotree src

Creating the Makefiles is a two step process, especially if you modify any of the tools in src/config. First you build the topmost Makefile and then build Makefiles for all the subdirectories.

When making the topmost Makefile, in the src/ directory itself, you must have javac, java, and a cc compiler available on your PATH environment variable. (You can test for this with `which cc` or `which java`.) In you are using a Java 1.1 or earlier compiler for this step, your CLASSPATH variable must include the basic Java classes.) The topmost Makefile is now created by changing directory to the topmost directory-that is, the src/ directory--and giving this command:

make –f Imakefile

In this case the Imakefile is itself a Makefile and has special instructions to do some compiles in the config directory and then build the actual Makefile using the Amakefile as the source.

The next step is to make Makefiles throughout the rest of the tree. For this, the command is

make Makefiles

Makefiles generated with genmake always use the config files in the destination tree. Those created with `make –f Imakefile` at the top level will use the config files in the subordinate config directory. Makefiles generated with `make Makefiles` in a given directory will use the config file originally built into the Makefile in that directory by one of the other two methods.

3.5 Checking out, locking, and checking in

In a project with multiple engineers, it may be necessary for more than one engineer to modify a file. Most source control systems, including RCS, offer a locking mechanism so an engineer can lock a file, modify it, and then unlock it. In RCS this mechanism is embodied in the checkin and checkout process.

./RCS, a link. Each source component directory is connected to its progenitor in the rcs tree by a symbolic link called RCS. This link is created by rcscotree. An RCS link can be created in an arbitrary directory with the rcslink command described in Appendix E.

Check out. In any directory with an RCS link, you can check out a new copy of a file if another engineer tells you he has changed it and checked it in to RCS:

co filename

Co copies the file from the RCS tree to the current directory. To check out a file and lock it so you can change it, add the ‘-l’ flag (for “lock”.)

co –l filename

Check in. After you have edited AND TESTED a file, there is a five step process for checking it back in. (This is a convention. It could be checked back in with one command, but errors can arise unless you take precautions.)

Step 1. Give the rcslocks command to see what files are locked:

rcslocks –apr

Also at this step check to see if you have created any new files and remember to check them in.

Step 2. Find out what has changed in the files that you have locked

rcsdiff `rcslocks`

If there are many differences, you may wish to redirect the output to a file.

Step 3. Check the differences.

Are they all what you intended?

Has anyone else changed the file in the meantime?

Are any other changes needed?

How do you describe them in a log entry?

At some sites this step is automated and the source control administrator produces the diff listings for your review. This is a good idea.

Step 4. Check in new files that you have just created.

ci –u filename

The ci command will prompt you for a description of the new file. This will be read be people trying to understand the workings of this component and how the pieces fit together. Be kind to them.

Step 5. Check in the modified files:

ci –u filename

You are prompted for a log entry, which you prepared in step 3. The “-u” flag means that the file should be checked out again, but not locked. If you forget this flag, the file will be deleted from the current directory. It is probably useful to establish an alias for ci in your shell:

alias ci “ci –u”

Even with this alias you can supply the ‘-l’ flag to ci in order to check in the file and still keep it locked. You might want to do this if another engineer needs to use your interim version of the file.
4 Imakefile – preserving build commands

Traditional Unix Makefiles have numerous deficiencies which were alleviated by the X Consortium’s imake system. In this system, a set of high level macros in an Imakefile is processed through a macro processor to produce the actual Makefile. Among the advantages are that Imakefiles are much short and easier to write and system procedures can be changed by rewriting the macros instead of editing numerous Makefiles. The Imakefile can be independent of platform by putting all platform dependent information is in the macros.

The macros and make variables available for Imakefiles are detailed in Appendix D.

4.1 Gee.properties – defining the environment for Java programs

The source file src/config/gee.properties is a set of property definitions used by many Java files throughout Gee. It is a fundamental tool for tailoring gee to different sites. For instance, the value of the gee.destination.directory property is the location into which the Gee system files are installed.

To make the definitions of gee.properties available to every kind of source file, gee.properties is processed to produce two other forms of definition file. In these the property names are converted to all upper case and the dots are replaced by underlines; for instance, GEE_DESTINATION_DIRECTORY. The gee.h definition file uses #define to give these property names their values for use by the C preprocessor. The gee.sed gives these property names definitions such that they can be expanded with the sed processor; see the ExpandGeeProperties macro.

4.2 A simple Imakefile

Here is the Imakefile from src/appclient:

/* src/appclient/Imakefile

appclient is an application which interfaces to the busLog server

*/

EXTRACLASSES = ../rdbms:../security:../busLog

JavaPackage(.)

InstallJavaPackage(., ${GEECLASSESDIR})

MkdirTarget(${GEELIBDIR}/images)

InstallDataFiles(images/ALLFILES.gif,${GEELIBDIR})

InstallDataFiles(Genotype.html,${GEEHTMLDIR})

The initial comment identifies this file. Note that comments in Imakefiles are delimited with /* … */, just as in C files.

The assignment line defines the Makefile variable EXTRACLASSES to refer to two paralllel source directories. The directories are used in the Java compilations to find imported classes. If one or more of these parallel directories do not exist, the necessary files will be fetched from gee/dest/classes instead. (For execution with gj, these classes would have to be in the engineer’s CLASSPATH environment value.)

The next two lines handle compilation and installation of the Java files in this directory. Java files are always installed in ${GEECLASSESDIR}, which is defined within the Makefile that is generated. If the Java files were in a package other than the default, the dot would be replaced by the package name with slashes in place of the dots; for instance, osc/security for package osc.security. In this case, the source files would be a subdirectory whose path is the same; that is, ./osc/security/.

Execution of appclient requires some images. In this source tree they are in the ./images subdirectory, but they needed to be installed into the images subdirectory of gee/dest/lib/. The MkdirTarget macro ensures that this directory actually gets created. The first InstallDataFiles macro installs the images into their directory.

Finally, the last line installs an html file that includes this client’s applet.

4.3 How do Imakefiles become Makefiles

The imake processor is invoked by both genmake and `make Makefiles.` At heart it runs the file src/config/imake.tmpl through the C preprocessor. In addition to some definitions of its own, imake.tmpl has include statements to include, in order, the files

gee.h – all the definitions from gee.properties

gee.rls – the macro definitions

site.mcr – initially empty, this file can override any of the above

the Imakefile – invocations of macros

Consider the line

InstallDataFiles(images/ALLFILES.gif,${GEELIBDIR})

This is an invocation of the InstallDataFiles macro defined in src/config/gee.rls. The symbol ALLFILES is #defined in imake.tmpl and has the value “*”. Its use avoids having “/*” appear directly in the text because this would be taken as a comment. GEELIBDIR is a make variable defined in imake.tmpl to be

GEE_DESTINATION_DIRECTORY/lib

Where the value of GEE_DESTINATION_DIRECTORY comes from gee.h (and thus ultimately from gee.properties).

4.4 Installing files

The major installation macros will be defined in the applicable sections below (Java, VisiBroker, Oracle, …). There are few generic install commands that we might as well get out of the way. For all of these, the first argument is a list of files, where the names are separated by whitespace, and the second argument is a directory name. The difference is that for some types of files platform dependent processing may be necessary.

InstallDocs(files, dest) – install documents

InstallDataFiles(files, dest) – install data (or html files)

InstallLibFiles(files, dest) – install object code

InstallShScript(file, dest) – install a shell script

InstallCshScript(file, dest) – install a csh script

4.5 Making subcomponents

When a directory has subcomponent directories, the Imakefile must convey this information. This is done with the RecursiveMakes macro as in this example from src/GenoServlet:

SUBDIRS = public_html servlets

RecursiveMakes(${SUBDIRS})

The argument to RecursiveMakes is a list of the subdirectories.

It is incorrect to use RecursiveMakes for Java packages. Indeed there should be no Imakefiles in the subdirectories for Java packages because they are built from a macro invocation in the parent directory.

4.6 Some Conventions

Making `clean' does not affect the destination directories. It is best to “clean” these by deleting them all and rebuilding the system. This policy avoids having a system that works only because some special hack has been manually inserted in the destination directories.

Nothing is put in the destination directory until `make install`. The idea is to do testing in the source directory and only do installs when the code works. In a working environment, installs would only be done by specialized staff.

The argument to RecursiveMakes() is always ${SUBDIRS}, where SUBDIRS is defined on a previous line. Done this way, a make command can specify a smaller list of subdirectories, as in

make Compiles SUBDIRS=”security rdbms busLog”
5 Java – Compiling and testing

The generic coding standards for Java are in the rcs tree in doc/gee-coding.html.

Some additional principles for coding Gee modules are in lessonsLearned.txt in the same directory.

The major Imakefile macros for Java are

JavaPackage(package-directory)

InstallJavaPackage(package-directory, destination-directory)

The .java files for package x.y.z are in subdirectory x/y/z and that value exactly is placed as the package-directory argument. The destination directory for GEE is always ${GEECLASSESDIR}. If the Java code is in the default package and thus has no package statement, the files are placed in the current directopry and “.” Is put as the package-directory value.

5.1 CLASSPATHs

Java compilation and execution both require access to the .class files for any imported packages. These are usually found via a CLASSPATH environment variable. With Gee, much of this burden is resolved. The classpath for Gee and all the software it depends on is built into the Makefile macros for Java and the commands gjc and gj (which are for compilation and execution, respectively).

When building Gee in a full source sandbox, it is common to want to use classes that have been compiled earlier in the tree and not yet fully tested or installed in the destination directories. Thus they would not be in ${GEECLASSESDIR}. This problem is solved with the “EXTRACLASSES” make variable. The value of this variable is included in the classpath for Java compilations done by `make` (but not in those of gjc or gj).

In the example above for src/appclient, the classes from three directories in the source tree were required. This was indicated with the line

EXTRACLASSES = ../rdbms:../security:../busLog

These diretories are always incorporated in the CLASSPATH when doing `make compile`. If there is no such relative directory the Java compiler is not concerned. If there is such a parallel directory and its class files should NOT be used, they are best handled by deleting them.

5.2 Compiling with gjc and running with gj

An arbitrary java file can be compiled with the `gjc` command. It has a classpath for the full set of class directories including the gee classes and the tools gee depends on. If additional classes are needed they can be listed in a CLASSPATH environment variable.

An arbitrary java file can be executed with the `gj` command. It has the same CLASSPATH provisions as gjc.

5.3 Javadoc

The javadoc information can be constructed for a single directory or for the entire gee tree. The make targets are

javadoc – makes javadocs for the current directory

Javadocs – makes javadocs for the subtree rooted at the current directory

Gee – at the top level, makes full javadoc for everything

The javadocs are installed into subdirectory javadoc of the current directory. In addition, the Gee target installs the javadocs into ${GEEDOCDIR}/javadoc.

If the javadoc operation complains about missing @serial tags, see the discussion at

java.sun.com/products/jdk/1.2/docs/guide/serialization/spec/serialarch.doc6.html

6 Visibroker (& CORBA)

CORBA servers in Gee are described in .idl files; for instance, Servers.idl. The module line in this file must give the module the same name as the file: Servers. For each .idl file in the sources, there must be an IDLPackage(idlFile.idl) in the Imakefile. This rule runs the idl file through VisiBroker’s idl2java, creating a subdirectory named with the module name containing the generated Java files. Then the rule arranges to compile the Java files.

6.1 Starting private Visibroker services

When testing CORBA interfaces, it is useful to have separate VisiBroker servers for each user so there is no interference. For this purpose, each tester should have a distinct port on which to start VisiBroker servers. Put this in your .cshrc (or .profile)

setenv OSAGENT_PORT xxxxx

where xxxxx is a port for your personal use. Every person in the group should have his/r own port number.

To start your instance of the VisiBroker services the command (in gee/dest/bin) is

vbstart

This starts three servers (osagent, oad, and locserver) and send their outputs to log files in directoy /tmp/<usermname>. Vbstart APPENDS new log entries after the old, so the log files can get large; it is best to occasionally run

vbstop; rm /tmp/<username>

Vbstart forks off a timer set for 8 hours; when time elapses, this fork terminates the VisiBroker services. (Their pid’s are listed in /tmp/<username>/pids.) You can terminate the servers early with

vbstop

osagent.log gets larger by the minute in verbose mode because keep alives are constantly exchanged and logged. It gets almost ten thousand bytes bigger for a new process registration or termination.

6.2 Debugging

The VisiBroker debugger can give additional information if an interface repository is available to it. {But I don’t know how it finds the repository. Maybe it has to be in vbroker/adm/irep_dir.} In addition, repositories may sometimes be useful for programs that discern interfaces dynamically.

Gee provides the command

girep repositoryname

which starts an irep server containing the interfaces for all gee .idl files (which are installed into GEE/lib/idl). Any name can be given for the repository name; it is used for rendezvous with idl2ir. For debugging, you can replace an interface in the server with a newer version with the VisiBroker command:

idl2ir –ir repositoryname –replace interfacename.idl
Note: When I first tried idl2ir, it failed when trying to locate

IDL:visigenic.com/tools/ir/RepositoryManager:1.0

I had to manually register the RepositoryManager with oadutil:

oadutil reg –r IDL:visigenic.com/tools/ir/RepositoryManager:1.0 –o RepositoryManager –java com.visgenic.vbroker.tools.ir.RepositoryManager
7 Oracle

The oracle server is started during system boot. Thereafter, interaction with the server is via program code.

There is a command in the rdbms component:

runsql sql-file-name

which connects to the oracle server and executes the SQL commands in the named file. See src/rdbms/Imakefile. The jloader command in src/rdbms may also be of use in creating a new oracle data base.
8 Jrun

Servlets are activated from the web server via `Jrun` from Live Software (www.livesoftware.com). A recent version of this code is in <rcs>/external/livesoftware. Installation according to the Makefile in this directory puts the jrun files into /usr/local/jrun, modifies them a bit, arranges to start the server at boot time, and links jrun to the Netscape server.

The most blatant modification is to change
jrun/jsm-default/services/jse/properties/jrun.properties

so that it says that the class files for servlets are to be found in gee/jrunclasses. The other modification is to add three commands to jrun.bin:

gstartjsm – Starts the jrun servers, using the gee classpath and boot path.

gstopjsm – Stops the jrun servers.

gjrunadmin – Initiates the jrun administrator application. I have found little use for this; it seems easier to modify the properties files directly. Just be sure to stop and restart the jrun servers.
The jrun servers are pretty well written such that it is acceptable to run the command

(cd /usr/local/jrun/bin; ./gstopjsm; ./gstartjsm)

If the restart fails with socket errors, it is sufficient to rerun this command.
The Makefile runs the jrun setup tool which links jrun to the Netscape web server. After this, the Netscape server needs to be restarted from its administration page.

8.1 jrunclasses
The key to gee’s usage of jrun is a symbolic link, gee/jrunclasses. Jrun is told of this name as both an element of its CLASSPATH and as the location of servlet classes. The default directory to which jrunclasses is linked is the classes directory in destXX, where destXX is the latest release. (‘dest’ itself is prerelease software at all times.)
Each night jrunclasses is reset to the lexicographically highest directory with a name matching gee/dest*/classes. The name is further constrained by removing any portion following a dot, as in dest02.old. WARNING: Each version number should be lexicographically larger than its predecessor. WARNING: There should be no dot in a version value. If these warnings prove onerous, the algorithm at the end of <rcs>/external/cron/dailybuild.sh can be adjusted.
8.2 Mapping URLs to classes
A URL for a servlet takes a torturous path to finding the Java class file to execute. Here are the gory details.

A path to a servlet has the form <host>/servlet/<classname>. The jrun setup process has told the server that all URL’s beginning /servlet/ should be passed along to jrun, so jrun gets our request. In jrun’s rules.properties file (in …/jrun/jsm-default/services/jse/properties/) there is a mapping which says that a URL or form /servlet/<classname> will be handled by “invoker”. This means that the class name will be sought in the directory named in the property jrun.servletdir in file jrun.properties (in the same jrun directory). For gee, the later has been changed to be the …/gee/jrunclasses. Since this is a symbolic link to a destXX/classes directory, that is where jrun will find the class to satisfy the URL.

Apparently jrun retains the name jrunclasses as a string and looks up files through it each time. This means that the symbolic link can be changed to refer to a different destXX/classes directory without restarting jrun. (This seems to be true, but if there are problems I would try restarting jrun.) For testing, jrunclasses can be set to other values, although this will interfere with any other use of the web site. It would be polite to reset jrunclasses after testing, but the nightly cron job does try to cope.
9 Version change
When a new version of Gee is going to be produced, the old needs to be stored away and the new initiated. The strategy we have adopted is that storing a version means storing the entire RCS tree as of the date of the changeover. If further changes are needed to the old version, parallel changes have to be made in the new version’s RCS tree.

The RCS tree, called gee/rcs, is copied to a new directory gee/rcsXX where XX is the number of the old version, e. g., rcs02. Similarly the destination directory is changed from dest to destXX. At the same time, gee.properties in rcsXX must be changed to thave destXX as the value gee.destination.directory.

To complete the version switchover, several changes are needed in the file src/config/gee.properties in the rcs tree (not the rcsXX tree) Change gee.version to a new value—say YY, change the suffix on the value for gee.keystore, and change the value of gee.oracle.schema and gee.password.for.oracle.schema. Please remember to create the oracle schema/password pair at the same time. At present this needs to be done with an Oracle administration tool.
Design documentation for the new version is stored in a newly created directory, rcs/doc/GvY.Y, where Y.Y is the new version. The doc/Imakefile must be revised to include GY.Y among the recursive builds. In the new directory, create a new index.html refering to its documents and an Imakefile to install the index.html file and the documents. Revise rcs/doc/index.html to include a reference to the new dest/doc/GvY.Y. Create a runappYY.cgi and have the Imakefile install it in gee/cgi-bin. In the runappXX.cgi, change the title in two places and change the destXX directory used for running gj.
Change doc/index.html so it refers to the new GvY.Y /index.html.
The demo on the website is that for the most recently archived version, in the notation above, version XX. The rcsXX/doc/GvX.X/demos.html file must be made to run the demos (it may also refer to earlier demos).
Note: The daily cron job resets gee/jrunclasses so it is a link to the destxx with the lexicographically highest name. (That is, to the last name produced by `ls –d gee/dest?*`. Any portion of the name following a dot is removed.) If this algorithm does not get the latest released dest—the one before dest itself—then this algorithm needs to be changed. See the file <rcs>/external/cron/dailybuild.sh.
10 Problems

This section is just a listing of some problems that are inherent in the present implementation.

· Imakefile has all the instructions for installing the software, even though this is not used by most engineers. There could be a separate makefile for installation.

· InstallXxxx macros depend on install.time. To force an installation to happen, one can delete install.time. It would be better if each installation macro created a rule for which the target is the installed file and the dependency is on the file to be installed. Then only needed installs would happen.

· The ci command without the –u flag deletes the source file. If an Imakefile is deleted this way, a superordinate `make Makefiles` will fail. The `save` command should be used instead of ci.
· If an engineer wants to use gj in a source directory,m the CLASSPATH has to be set to include all the needed parallel source directories. That is, the directories named in the EXTRACLASSES definition in the Imakefile are not automatically utilized by gj.

· gj utilizes the full CLASSPATH supplied by the engineer’s environment. In many cases this may have duplicate directories to those supplied by gj. Or the engineer may have JDK1.1 classes while gj is trying to use JDK 1.2.

· The installation process hardwires the gee.destination.directory into too many places. It would be good to be able to build and install the system into directory B while engineers were using directory A. Then with one `mv B A` command, those using directory A would begin using the newly installed system in B. To do this, there needs to be a way to separate the use of gee.destination.directory between those cases where it is used as part of an install destination and those other cases where it will be used during eventual execution to locate files in the installed directory.

·
· As currently implemented, osc/security uses gee.properties to find oscStore. This is just plain wrong for an applet which is going to operate on a client’s workstation.

· Passwords are stored in plain text in gee.properties. Clearly poor security.

· OSAGENT_PORT. If an engineer has this set in the environment, then demos of the deployed system can only be done by resetting this to the default value.

·
· The commands in external/*/Imakefile should test for superuser privileges and not fail if they are lacking. Instead a comment telling what to do should be printed to the log.

· The value “dest01” is hardwired in doc/…/*.html.

· The JarFile() macro needs to specify the locations of the .class files; to get the latest, the invocatio may specify relative directories in the source tree. But this fails if a full source tree is not used.

· The current system puts servlets in the same directory as all other GEE .class files. This means that any class may in principle be invoked from a browser. This is probably not a real difficulty in that most classes do not inherit from HTTPServlet and so cannot really do anything if invoked from the server.
Appendix A. Gee Components Directory Structure

The four top level source directories are tools/, src/, external/, and doc/. Below each the structure is this

…/tools/

…/tools/arcs – rcs scripts

…/src/

…/src/config/ – tools for configuring the system and commands used in building it.

…/src/gee/ – fundamental utility classes

…/src/gee/edu/cmu/sei/gee/ java package

…/src/security/ – responsible for authenticating a user and making the results available to other components

…/src/security/osc/sec – java package

…/src/rdbms/ – business objects; interface to the data base

…/src/rdbms/osc/dm – java package

…/src/busLog/ – business logic; does the bulk of the processing

(during a build, there are subdirectories …/src/busLog/Genotype and …/src/busLog/Genotype/UserFactoryPackage)

…/src/appclient/ – the user interface as an application or an applet

…/src/GenoServlet/ – the user interface as a set of Java servlets

…/src/GenoServlet/public_html

…/src/GenoServlet/servlets

…/src/testsubdir – some tests and examples

…/external/

…/external/oracle – augmentation for the oracle installation

…/external/visibroker – augment visibroker installation

…/external/java – Java Servlet Dev Kit

…/doc/ - documentation

…/doc/html/genotype – original dummy screens

In some cases, such as .doc files, the file in RCS is the file itself rather than a “,v” file managed by rcs’s co and ci. This file is copied to the source tree by rcscotree. Modifications can be made by replacing the file in the rcs tree.

Appendix B. Gee commands

The <gee destination root>/bin directory begins with a number of utility commands that are of value in doing builds and tests. Some are typically accessed only from rules in the Imakefile, but others are not.

· vbstart [-q] [port-number]
-q turns off the verbose flags to the servers (the default is to invoke the servers in verbose mode)

port-number is the number for the OSAGENT_PORT. You should avoid using port-number. Instead, you should have set OSAGENT_PORT set in your environment. Each developer should have a separate value for this variable to avoid interference between tests.

Logs of the transactions are maintained in tmp/${LOGNAME}/. Also in that directory is a file `pids' which contains the process ids of processes to be killed to stop these servers. The processes are killed by `vbstop`.

For vbstart to work, the user must have write permissions to

<visibroker-home>/adm/impl_dir/imp_rep

· vbstop
Terminates the VisiBroker server processes whose numbers are recorded in /tmp/<username>/pids.

· girep

Starts a VisiBorker irep server containing the interfaces for all gee .idl files (which are installed into GEE/lib/idl). Any name can be given for the repository name; it is used for rendezvous with idl2ir. For debugging, you can replace an interface in the server with a newer version with the VisiBroker command:

idl2ir –ir repositoryname –replace interfacename.idl

· gj [java-options] [classname]

Executes the main() function in ‘classname’, using a CLASSPATH appropriate for gee. The ‘java-options’ can be any of the Java execution parameters; they are supplied to java first on the command line. In addition, the following environment options are utilized:

GJOPTIONS – The value of this environment variable is supplied as the first parameters to the `java` command.

CLASSPATH – The value is prepended to the classpath. Note that if this is an all-inclusive classpath there may be duplicate entries on the classpath actually used. This should not be a problem.

OSAGENT_PORT – This value is passed in the system parameters as the value for ORBagentPort, which is interrogated by VisiBroker applications.

OSAGENT_ADDR – This value is passed in the system parameters as the value for ORBagentAddr, which is interrogated by VisiBroker applications.

· gjc [javac-options] filename.java …

Executes `javac`, the Java compiler for all the java files listed. The ‘javac-options’ are the usual java compiler options. They are prepended to the java argument list. The environment variables GJCOPTIONS and CLASSPATH are treated in the same manner as GJOPTIONS and CLASSPATH for the gj command.

· gj11, gjc11

Same as gj and gjc, but they use JDK1.1.

· geemkdirs directory-path

Makes a directory. Makes all parent directories, as required.

· genmake [destination-directory]

Processes an Imakefile in the current directory to produce a Makefile in the same directory. The original Makefile, if any, is discarded. If destination-directory is specified, the config subdirectory there will be used as the source of gee.properties, imake.tmpl, and gee.rls

· needjc file-name.java …

Prints a string consisting of selected members of the list of arguments. An argument is printed if it is a .java file and the corresponding .class file is non-existent or is older than the .java file. (This command is utilized in initiating Java compilations from the Makefile.)
Appendix C. gee.properties

The file gee.properties in src/config defines parameter values used in Imakefiles and other parts of the system. Java programs access these values via the GeeProperties class (see the system Javadoc output). As noted in section 3.1, the gee.properties values are also accessible via gee.h and gee.sed, though these are intended primarily for use by Makefiles.
WARNING: No property name should be a substring of any other property name.
Gee.properties files are read with the java.util.Propeties load() method and follow the syntax documented there. Each line starts with a property name followed by an equal sign, and then the value. The value can be extended to multiple lines by ending each line with a backslash. Whitespace characters are ignored around the equal sign and prior to the first non-whitespace character on each continuation line.
The syntax is extended for GEE so that the string

${property.name}

is replaced with the value of the named property, if found. Thus there is no need to write any value in more than one place in gee.properties. The substituted value is also scanned for ${…} before the substitution. The string “$${“ is converted to “${“ and otherwise ignored.
Here are the defined properties
GEE

gee.destination.directory: the root of installation tree
gee.version: version number; only letters and digits
WEB SITE

gee.web.host: host for gee web site
gee.website.prefix: overall gee website
gee.html.prefix: URL for Gee html files
gee.servlet.prefix: url location for servlets
gee.cgi.prefix: url location for cgi-bin executables
SECURITY

gee.keystore: location of key store
gee.password.for.keystore: password

VISIBROKER

gee.visibroker: path to Visibroker directory tree (on build machine)
gee.visibroker.host: host to connect to for visibroker
gee.visibroker.port: port to connect to
ORACLE

gee.oracle.base: the location of Oracle

gee.oracle.home: the particular Oracle version in use.

gee.oracle.owner: the userid of the owner of gee.oracle.home

gee.oracle.sid: the oracle data base name

gee.oracle.term: the oracle terminal type

gee.oracle.schema: the schema used for GEE

gee.oracle.password.for.schema: password
gee.oracle.server: server name

gee.oracle.port: port number on server
JAVA
The Java of choice is jdk1.2, for which are defined the following. (The bootclasspath lists Visibroker before the Java runtime to avoid using the Java builtin ORB.)
gee.java.home: location of java jdk1.2
gee.java.bootclasspath: classes for booting
gee.java.classpath: classes for execution
For compilation and execution with JDK1.1, the following are defined.
gee.java11.home, gee.java11.classpath

Appendix D. Makefile targets
The following targets can be made with `make`. Capitalized target names (other than Makefile) apply to the current directory and all subordinate directories; lower case target names apply only to the current directory.

Makefiles, Makefile – Recreate the Makefile from the Imakefile.

subMakefiles – Makes the Makefile in all immediate subdirectories.

Compiles, compile – Creates all files that will be installed from the current directory, including testable executables.

Javadocs, javadoc – Create a subdirectory called javadoc and run javadoc to populate it with documentation for all Java classes.

Clean, clean – Removes all but the original source files.

There are also implicit rules for creating a .class file from a .java file and for checking out files from RCS for files with extensions .java .sh .csh .sql and .idl.

The following should ordinarily not be used.

GEE – Equivalent to `make Makefiles Compiles Install SystemInstall`. Also buillds Javadocs in the top level source directory and copies it to the destination directory.

javalist – Makes in ./javadoc/,javafiles a list of all the .java files in this directory. (This is used by `make javadoc`.)

install.time – Installs any files that have been created or revised since the last time installation was done. To ensure that everything gets installed, delete install.time. See note below.

Installs, install – Copies files to their destination. See note below.

SystemInstall, systeminstall – Must be run as superuser. Does installation of commands to start servers, and other superuser stuff. Used exclusively in the SRC/external subtree.
all: Equivalent to 'compile'.

listdirs – Prints the SUBDIR make variable. If the convention has been followed, this is the argument to RecursiveMakes and shows what directories will be made by the capitalized versions of the make targets.

Note: The installation commands creat the necessary directories and files in the destination subtree. If it is desirable to give group rights for modifying these files, the installer’s umask should be 002.

Appendix E. Creating Imakefiles (gee.rls, imake.tmpl)

As noted in the text, Imakefiles are usually very simple. In every project, however, at least a few directories require more complex contents. This Appendix describes everything that can go into an Imakefile. Sites will often find it useful to define additional rules with definitions in the site.mcr file.

Comments. The Imakefile is preprocessed with the C preprocessor. Comments are indicated by marking them as C comments: /* … */. The identifier ALLFLAGS is #defined to the value “*”. It can be used in after a slash in a path name to avoid writing /* which would be interpreted as the start of a comment.

If you look at a generated Makefile, you will see many assignments to MACROINVOKED. These are just markers to indicate the source in the Imakefile of each section of the Makefile. The assigned value is the macro invocation that produced the succeeding Make text.

In addition to macro invocations, an Imakefile may contain plain makefile lines. These are included directly into the Makefile and may incorporate variable references which will be expanded.

Variables in Imakefiles come in two flavors, makevars and properties. Both have names which are conventionally rendered in all upper case, but they are defined and utilized differently. A makevar is defined with

VAR = value string

The value string is trimmed of leading and trailing blanks, but otherwise retained as is. A makevar is expanded to its value by writing it inside ${ and }, as in

${VAR}

If the value contains invocations of makevars, they too are expanded. All of this expansion is done lazily, so the last value assigned to a makevar is the one that will be used in evaluation of a rule.

Properties are defined originally in gee.properties, a file in the format of Java properties files. A definition is a period punctuated name, an equal sign, and a value:

gee.java.home = /usr/local/jdk1.2

This file is preprocessed to produce gee.h; the variable names are converted to upper case and the periods are replaced with underline characters:

GEE_JAVA_HOME

Property names are written as themselves in the Imakefile and are expanded during the processing from Imakefile to Makefile.

The end-result Makefile is derived from five sources:

Imake.tmpl – The backbone. It defines some useful makevars and the principle make targets and then includes the other files (in the following order).

gee.h – From gee.properties. Contains #define definitions for everything in gee.properties. The most commonly accessed of these, GEE_DESTINATION_DIRECTORY, is usually avoided in favor of using one of the ${GEExxxDIR} makevars.

gee.rls – Contains #define definitions of the macros that make it so much easier to create Imakefiles than Makefiles.

site.mcr – An empty file in the distribution. Rather than modify gee.rls or imake.tmpl, sites can put overriding definitions or makevars and properties in this file.

The Imakefile itself

· MAKEVARS
Subsequent paragraphs describe the defined makevars which may be of use in writing Imakefiles.

CONFIGDIR – The location of the configuration files. In both the source and destination trees, they are in the “config” directory of the root and the value of CONFIGDIR indicates which to use. When the Makefile is generated by `make Makefiles` from the source tree root, the source tree config directory is used. When the Makefile is generated with `genmake`, the destination tree directory is used. This is a central part of the mechanisms which make it possible to execute from the build tree during testing.

The following values are useful for the destinations in InstallXxxx() macro calls. They each produce the path name to a subdirectory of the root destination directory.

GEEBINDIR – Executable files, including shell scripts.

GEELIBDIR – Traditionally, libraries of C modules.

GEEDOCDIR – Documentation. Consider using a subdirectory.

GEECLASSESDIR – Java class files should go here.

GEEHTMLDIR – HTML files to be made available as part of Gee. The javadocs go into the javadocs subdirectories. {{We need subdirectories for the handbook and other things that are about Gee, but not of Gee.}}

GEEETCDIR – Files that do not fit naturally in one of the other places.

The Java system of choice for GEE is Java JDK1.2. A number of related properties are defined in gee.properties so a site can indicate the location of JDK. In addition, the gee.rls Java macros refer to a number of makevars which are nowhere defined. (Undefined makevars are replaced with the empty string.) These can be defined in the Imakefile or site.mcr to futher tailor gee to local requirements.

EXTRACLASSES – Added to CLASSPATH. Can be set in Imakefile to a colon separated list of../Xxx entries to incorporate class files from sibling directories in the source tree.

SITE_CLASSES – More colon-separated classpath entries. Intended for definition in site.mcr.

JAVAC_OPTIONS – Compiler options that can be set in Imakefile.

SITE_JAVAC_OPTIONS – Compiler options. Intended for setting in site.mcr.

JAVA_OPTIONS – Run-time options for Java executions that are initiated from the Makefile. Intended to be set in the Imakefile.

SITE_JAVA_OPTIONS– Run-time options for Java executions that are initiated from the Makefile. Intended to be set in site.mcr.

JAVA_DEFINES – Java property definitions. A space separated list of definitions in the form -Dxx=xx. Intended to be set in the Imakefile.

SITE_JAVA_DEFINES – Like JAVA_DEFINES, but intended to be set in site.mcr.

Java JDK 1.1 is also supported in Gee. (It is required for VisiBroker’s idl2java.) The makevars defined for 1.1 are similar to those for 1.2, but with an extra “11” in the names: EXTRACLASSES11 SITE_CLASSES11 JAVAC11_OPTIONS SITE_JAVAC11_OPTIONS JAVA11_OPTIONS SITE_JAVA11_OPTIONS JAVA11_DEFINES SITE_JAVA11_DEFINES.

Makevar names are provided for a number of Unix™ commands. It is prefereable to use these names—as in ${LS}—instead of the Unix command names because engineers often have aliases and other strange definitions for system commands. The site.mcr file may override the definitions of these makevars where necessary.

JAVACOMPILE

JAVARUN

JAVADOC

JAVACOMPILE11

JAVARUN11

JAVADOC11

CC = cc

CPP = cc -E

CXX = g++

IMAKE = imake

AWK = /bin/awk

CAT = /bin/cat

CHGRP = /bin/chgrp

CHOWN = /bin/chown

CO = /usr/local/bin/co

CP = /bin/cp

CSH = /bin/csh -f

ECHO = echo

INSTALL = /usr/ucb/install /* must be the ucb version */
JAR = GEE_JAVA_HOME/bin/jar

LN = /bin/ln

LS = /bin/ls

LSLD = /bin/ls –ld
/* must show group name */
MKDIR = /bin/mkdir

MV = /bin/mv

PWD = /bin/pwd

RM = /bin/rm -f

RMIC = GEE_JAVA_HOME/bin/rmic

SED = /bin/sed

SH = /bin/sh

TAR = /bin/tar

TOUCH = /bin/touch

ZCAT = /bin/zcat

The following makevars define flags suitable for the flags field of the InstallXxxx() macros.

INSTPROGFLAGS – For an executable file.

INSTUIDFLAGS – For an executable file to be made SETUID.

INSTCLASSFLAGS – For a Java .class file.

INSTDATAFLAGS – For installing plainread-only files.

INSTLIBFLAGS – For installing C library files.

INSTDOCFLAGS – For installing documentation.

INSTMANFLAGS – For installing man pages.

If you are writing a macro, all the above variables and all the existing macros are available. In addition, you may use two special #define identifiers in sequences of sh commands:

NOSHERRORS – Propagates to the shell those make flags (-I and -k) which indicate that the `make` should not terminate for errors.

SHVERBOSE – Sets the sh flag (-x) which indicates that the shell should echo its commands.

MACROS

The following paragraphs describe the macros defined by gee.rls. WARNING: Do not use TAB characters as whitespace after a left parenthesis, before a right parenthesis, or on either side of a comma. It is acceptable to continue a macro invokation with a backslash-newline, but do not use TAB characters as white space at the beginning of the continuation line.

·

· IDLSource(idlfile, modulenames)

For this rule, the directory must contain a file idlfile.idl and the module definitions in that file must list the cited modulenames. At compile time, IDLSource runs idl2java on idlfile.idl to create subdirectories named for each of the modulenames and containing the resulting .java sources. The list modulenames is used for the `clean' target; all named directories are deleted in full. The Imakefile should also have
InstallIDLSource(idlfile, ${GEELIBDIR}/idl)
so it will be available for debugging.
For each module, there should be an instance of IDLModule and an InstallIDLModule. For each Object which is a separate process, the Imakefile must have a RegisterVBServer. The Imakefile should also have

JavaPackage(.)

InstallJavaPackage(.)

so it can deal with the xxxImpl.java files

· IDLModule(modulename)

Arranges to compile the java files in the named module, which must also be the name of a directory. This directory will have been created by execution of IDLSource for an idl file which defines ‘modulename’. The Imakefile must also have

InstallIDLModule(modulename, destination-directory)
For each Object, objmain, which is a main() and registers an interface server, the Imakefile must have

RegisterVBServer(modulename, interfaceserver, objmain)

If there are nested definitions inside interface PkgName/IFwNestedType, then the Imakefile needs the lines

JavaPackage(PkgName/IfwNestedType)

InstallJavaPackage(PkgName/IfwNestedType, ${GEECLASSESDIR})
· JarFile(name, files)

Creates a .jar file containing the named files and a default manifest. The `name' must end with the .jar extension. Each dollar sign ($) in a file name must be represented with four (4) consecutive dollar-signs ($$$$), as in

GenoClient$$$$9.class
· JarFileWithManifest(name, files)

Creates a .jar file containing the named files and manifest
META-INF/MANIFEST.MF

The `name' must end with the .jar extension. The manifest must exist with the name MANIFEST.MF in a subdirectory named META-INF. Each dollar sign ($) in a file name must be represented with four (4) consecutive dollar-signs ($$$$), as in

GenoClient$$$$9.class

· JavaPackage(packagename)

Compiles all the .java files in the indicated directory. Packagename is the full package name, but with ‘/’ instead of each ‘.’. The .java files for the package should be in the subdirectory ./packagename. The .class files will be built in the same directory. (There should normally be no Imakefiles in any of the directories named in packagename.)

· Java11Package(packageName)

Same as JavaPackage, but uses jdk1.1.

· Sedify(infile, script, outfile)

Creates a compile:: rule to preprocess the infile through the sed script to create the indicated output file. A clean:: rule is also generated to delete the output file. Sedify is usually used via ExpandGeeProperties.

· ExpandGeeProperties(infile, outfile)

Infile is copied to outfile, except that the variables defined in gee.properties are replaced with their values. (Invokes Sedify using gee.sed.)

· RecursiveMakes(subdirs)

This rule is used in the Imakefile for a directory having subdirectories that also have Imakefiles. By convention, the argument to RecursiveMakes is ${SUBDIRS} and the makevar SUBDIRS is set to the list of subdirectories to be made. Then a subset can be made with a definition of SUBDIRS on the command line:

make Compiles SUBDIRS=”rdbms busLog”

Sometimes #if logic is employed to decide which subdirectories to include in SUBDIRS.

· RegisterVBServer(modulename,interface,classnm)

Registers the indicated interface and implementation with the VisiBroker object activation daemon (oad).

module - the name following the keyword "module"

interface - the name following the keyword “interface”

classnm - the name of the java class which registers the interface

The classnm object must register the interface by calling boa.obj_is_ready(impl), where impl is a java object of class interfaceImpl. It is assumed that this class is in the default package.

Example:

RegisterVBServer(Genotype,UserFactory,UserFactoryImpl)

· CleanTarget(files)

Arranges that the named files will be deleted for `make clean.`

· INSTALLATION RULES

MkdirTarget(dirs) – Ensures that all the named directories exist. An Imakefile can assume that the destination directory and the subsidiaries named in GEExxxDIR makevars will all exist. Other directories should be created at the appropriate point in the build tree.

InstallJavaPackage(package,dir) – Installs all the .class files in package into the corresponding subdirectory of dir. The subdirectory is created, if necessary.
InstallIDLSource(idlfile,dir) – Installs idlfile into the dir, which should be ${GEELIBDIR}/idl.
InstallIDLModule(modulename,dir) – Installs all the .class files from ./modulename/ into dir.

InstallJarFile(file,dir)
- Installs the file into dir with permissions for a Java class (normally, these are read-only).

InstallDocs(files, dir) – Installs the files into the directory dir with flags ${INSTDOCFLAGS}. Some installations may give modification permissions to a different group.

InstallDataFiles(files, dir) – Installs the files into the directory dir with flags ${INSTDATAFLAGS}.

InstallLibFiles(files, dir) – Installs the files into the directory dir with flags ${INSTLIBFLAGS}. On some platforms special processing is performed.

InstallCshScript(file, dir) – Installs the files into the directory dir with flags ${INSTPROGFLAGS}. On some platforms special processing is performed.

InstallShScript(file, dir) – Installs the files into the directory dir with flags ${INSTPROGFLAGS}. On some platforms special processing is performed.

InstallFileAsNeeded(file, mode, dest) – Acts in response to `make install,` but installs the file as the file dest only if file is more recent than dest. The specified mode is given to the file.

· DEPRECATED RULES

IDLPackage(modulename) - For this rule, the directory must contain a file modulenname.idl and the module line in that file must list the name modulename. At compile:: time, IDLPackage runs idl2java on modulename.idl to create a subdirectory named modulename containing the resulting .java sources. The rule goes on to compile the .java files. The Imakefile must also have

InstallIDLPackage(modulename, destination-directory)

For each Object, objmain, which is a main() and registers an interface server, the Imakefile must have

RegisterVBServer(modulename, interfaceserver, objmain)

Ordinarily, the xxxImpl.java files are in the current directory. To accommodate them, the Imakefile should also have

JavaPackage(.)

InstallJavaPackage(., ${GEECLASSESDIR})

If there are nested definitions inside interface PkgName/IFwNestedType, then the Imakefile needs the lines

JavaPackage(PkgName/IfwNestedType)

JavaPackage(PkgName/IfwNestedType, ${GEECLASSESDIR})

AppendFiles(target, sources)
 - Creates the target file if it is older than one or more of the sources. The target is the concatenation of the sources.

InstallFiles(files, mode, dir) - (See gee.rls for a gorgeous hack for file names containing ‘$’.)
InstallIDLPackage(modulename,dir) – Installs all the .class files from ./modulename/ into dir and installs modulename.idl into ${GEELIBDIR}/idl.
InstallFileToFile(file, mode, destfile) – The destination is a filename, not a directory name.

ForceInstallFiles(files, mode, dir) – Always does the installation.

SystemInstallFileAsNeeded(file, mode,dest) – Acts in response to `make systeminstall,` and installs the file as dest/file, but only if file is more recent than dest/file. The first argument must be strictly a file name, it must not have a path prefix. The third argument must not begin with spaces and should not end with slash.
Appendix F. The Gee RCS tools

These tools are not, strictly speaking part of Gee since we tend not to release it in RCS form. They are based on similar commands used in source maintenance by the Andrew Consortium. The sources for these tools are in the tools/arcs directory of the source tree. If you are building from the rcs version of the tree, you need to check them out, review the Makefile, and run make to do the installation of these commands.

· rcslink - link to a directory in rcs

rcslink [-r] [-c] [-f] RcsDir

-r = descend tree recursively

-c = create

-f = force (even if there is a link already)

Creates a symbolic link named RCS from the current directory to RcsDir. If RcsDir is a subdirectory of the rcs root tree designated at the time arcs was installed, that portion of the name may be omitted. To get rid of the link, just remove it with the `rm` command.

The –c flag will create in RCS the directory you specify. Use this with caution. If you do create a directory in RCS, check to make sure it has write permissions for the group of people who are using that RCS tree.

· rcscotree - check out a subtree from rcs

rcscotree dirpath/dirname

Checks . for dirname and fails if that name exists. Creates dirname and rcslinks it to dirpath/dirname. Checks out the entire tree under dirpath/dirname, creating subdirectories as needed. If a file named "subdirs" is checked out into a directory, its contents are used as the list of subdirectories. If there are files in the rcs tree which do not end in ",v" they are simply copied to the new tree.
· save – careful checkin
save file

Effectively does

rcsdiff file

ci -u file

but also checks that the file checked back out is identical to the one that was checked in. If not, the differences and an error message are printed.
· rcsls - list files in the RCS subdirectory

rcsls [options] [filename] ...

The `options’ are any that are valid for ls.
If no files are name in the command, all files in the RCS directory are listed. In any case, the trailing ,v is removed from file names.

· rcslocks - list locked files

rcslocks [-arps] (file | directory)*

Lists the files you have locked in RCS

-a
Display locks by all users, not just you

-r
Recursively descend into subdirectories

-p
Print the name of the locker as well as the filename

-s
Silent mode (return success, 0, or failure, 1)

· rcsmkdir - create a directory

rcsmkdir path

Just like mkdir, except that any needed parent directories are also created.

· rcsmakelinks - create links from build directory to source directory

rcsmakelinks [-R] sourcedirectory object directory

-R means to do the operation recursively for subdirecctories

Makes symbolic links in an object directory to files in a source file directory. Deletes any existing links that do not correspond to files in the source directory. Deletes any files that should be links and replaces them with links. Does not makes links to entries which are directories, begin with '.', or end with ".private"; deletes existing entries in the object directory with these undesirable characteristics.

Exit: 0 if successful; 1 if anything went wrong.

Note that rcsmakelinks is pretty dogmatic and unforgiving.

· striplist - strip the executables in a tree

striplist [-s] path

This command searches the directories path/bin and path/etc. All strippable files are listed to stdout. If -s is given, the listed files are stripped and then set chmod +rx -w.

Appendix G. Prerequisites for building Gee

We are using the following products and versions. Earlier versions will in some cases suffice, but we have do no checking.

Java - jdk1.2beta4 from Sun
(Our sources include Java Servler DevKit 2.0, but a more recent version should be fetched.)

Oracle 8.0.3 from Oracle
(Our sources include the JDBC addon, version 8.0.4.0.5, but a more recent version should be fetched.)

VisiBroker 3.2 or 3.3 from Inprise
Including Integrated Transaction Service (ITS)
Jrun 2.2a from Livesoftware
After using setup to connect jrun to the web server, the web server must be administered. For Netscape, a message will ask you to apply manual edits that have been made to the configuration files. Do so and then stop and restart the server.
JavaWebServer1.1.1 (on Unix) from Sun
Netscape 4.05 (on PC’s) from Netscape
Netscape Enterprise Server (3.0) from Netscape

The ‘make’ command we are using is /opt/SUNWspro/ParallelMake/bin/make. It requires that the environment variable LM_LICENSE_FILE be set to the location of a license file. In our case, the value is /u/fs0a/b/CF/SunTech_License/license.dat.solaris.
Appendix H. Installing Gee from the sources

These instructions assume you are doing the install on a Unix(tm) platform. Your PATH environment variable include the directory GEE_DEST/bin. (See step 2.)
1. Copy the files of the GEE source tree to a tree of directories. We will refer to the root directory in this tree as GEE_SRC. This directory contains four subdirectories: tools external src doc. The tools in the tools/ directory are useful if you are managing the sources with RCS. GEE_SRC/external is pieces that must be installed to make the system suitable for GEE. Please check, these may already be in place on your system. GEE_SRC/src is the GEE sources proper. GEE_SRC/doc is the documentation.

2. Choose a path and directory name for the GEE installation files which result from building GEE according to 1. Call this GEE_DEST.

3. Edit the file GEE_SRC/config/gee.properties to describe the locations of various pieces of software at your site; be sure the definition of gee.destination.directory is GEE_DEST, and change the other places that have copies of the former value of gee.destination.directory. Edit the file site.mcr to give the locations of the commands specified therein. This file can override any of the definitions in src/config/gee.rls or src/config/imake.tmpl.
4. For the next step (and only that step) you must have the following in your environment:

The PATH must include javac, java, cc, and imake.

If the javac is JDK1.1, the CLASSPATH value must include the standard Java libraries.

5. Change directory to GEE_SRC/src. Give the command

make -f Imakefile
which will process the Amakefile through imake to produce the correct, parameterized Makefile.
6. Give the command

make Makefiles Installs SUBDIRS=config
7. Review the Imakefiles in each of the subdirectories of GEE_SRC/external to see if you should update the ssystem pieces imported from elsewhere or need other site dependent modification.

8. Change directory to GEE_SRC/external and give the command

GEE_DEST/bin/genmake

make Makefiles Installs

Perform the appropriate magic to become the superuser and give the command

make SystemInstall
The Oracle and VisiBroker servers must be running before GEE_SRC/src can be successfully built.
9. return to the directory GEE_SRC/src and give the command 'make GEE'. This will build and install GEE. You can also do the process in steps:

make Makefiles

make Compiles

make Install

make SystemInstall

See Appendix C for a complete list of supported make targets.
10. If `make GEE` fails, some directories may not have Makefiles so `make Clean` will fail. Running `make Makefiles` will correctly build all the Makefiles.

11. Change to directory GEE_SRC/doc and give the commands:

genmake; make GEE

This will install documenation and a web site.

12. Administer your web server so some name, say "GEE", maps to GEE_DEST/html.
To run the installed versions of the Clients, navigate with your browser to the web location you established in step 12. Click on the option to run the client and follow instructions.
Appendix I.

·

·

