GEE Vee Zero Point One

Kurt Wallnau, Fred Hansen, Scott Hissam, Fred Long, Robert Seacord

COTS Based Systems Group

Software Engineering Institute

August 18, 1998

The GEE Model Problem, Version 0.1, postulates a shipping company with Customers, Customer Agents, and Dispatchers (GEE User.html). In this document I will show how we have arrived at a systems deign for this problem and what alternatives we are considering for later iterations.

Our design process to this point has had three explicit phases and much exploration of available technology. In the first phase we HTML files that show what each user will see and what interactions the user can conduct. In the second we sketched the design and fleshed it out by considering what communications among the components were necessary for each of the user interactions. In this third phase we have selected among the available technologies a particular set which can implement the Model Problem in a very general way.

Assumptions

We have made a number of simplifying assumptions in the specification and design of V0.1:

1. We have limited the data base operations such that there is only one example of comon operations like viewing multiple records for a query and modifying the fields of a record.

2. If update occurs, there may be two different versions of a record on view at two different work stations. One of these would be out of date and updates through it would fail.

3. When an object is created from the data base in response to a user query, that object will persist for the duratio of the user's session.

System Design Sketch

Figure 1 outlines the system design arrived at in the third phase. There are essentially six blocks--the screen/keyboard, the GUI code, a security module, the business logic, a data base interface, and a data base.

[image: image1.wmf]GUI

GUI Driver

Business

Logic

Data Base

Interface

Data Base

Security

Module

A

A

A

A

A

E

B

C

D

F

Figure 1. System Design Sketch

Before going on to more specific details of these blocks, we can see what sorts of communication are needed to carry out two of the interaction sequences identified in phase two. In any case, the user's identity is first established with a call from the GUI to the security module. We will write "Event Sequence Diagrams" like these to indicate messages passed:

E:GUI Driver-> security module(certificate) -- here is my certificate, what can I do?

E:GUI Driver<-Security module(token) -- here is your token to request services

In such a line, the interface is named before the colon, the sender is the module before the arrow (->) and the recipient is after the arrow. In parentheses are the parameters of the message and comments follow the double dash. The token returned from the security manager is thereafter passed along on any request that travels from left to right in Figure 1.

A "package tracking request" interaction has the query possibilities shown in Figure 2 and the result form shown in Figure 3.

[image: image2.png]
Figure 2. Package Tracking Query Screen Image

Sending Company: Trans Global Co.

Sender ID: RC12389

Sending location code: 001

Sender: William Jefferson

Pay method: Bill sender

Service: Same day

Receiving Co: Point Park Products

Receiving ID: (none)

Recevier: John Henry

Receving location code: (none)

Address: 773 Byers Lane

Zip code: 15222
Phone: (412) 867-3388

Weight: 124 Pounds
Location: 4500 Fifth Ave., Pittsburgh
Pick up time: 2:33PM 30 July, 1998
Figure 3. Package Tracking Query Response Screen Image

Here is the Event Sequence Diagram for a package tracking request:

A:GUI->GUI Driver() -- what query should I display?

A:GUI<-GUI Driver(query image) -- here, show this

A:GUI->GUI Driver(query) -- here's what my user wants

B:GUI Driver->Business Logic(query) -- what do I tell this guy?

C:Business Logic->Data Base Interface(query) -- find package(s)

F:Business Logic->Security Module() -- this query has occurred

F:Business Logic<-Security Module() -- thanks

D:DB Interface->Data Base(query) -- find package(s)

D:DB Interface<-Data Base() -- here are the rows you need

C:BusLog<-DB Interface() -- I have the package

C:BusLog->DB Interface() -- send me field(s) of package

C:BusLog<-DB Interface(fields) -- here they are

F:Business Logic->Security Module(record) -- what fields are allowed?

F:Business Logic<-Security Module(fields list) -- these are allowed

B:GUI Driver<-BusLog(response) -- show this

A:GUI<-GUI Driver(response) -- tell the user this

Glossary

GUI - Graphic User Interface. (A slight misnomer since the interface is mostly textual.)

HTML - "Mark-up" language for writing web browser pages.

HTTPS - an http server, where http is the protocol exchanged between a web browser and the web server.

IIOP - Internet Inter-Orb Protocol (?). Communication via IIOP goes across the network.

The V0.1 Design

For GEE V0.1, we have considered various alternatives as detailed in later sections and decided that the modules and interfaces will be implemented as follows:

GUI and GUI Driver - The GUI will be written in Java 1.2 using the JFC widget set. The GUI and GUI driver will be bundled together as a Java applet or application. If an applet, it will be launched from a browser, but will thereafter conduct its own communication with a server other than the https server.

Interface A. - local Java method calls.

Interface B - IIOP calls to the business logic. The user's security token will be passed along using the Visibroker "interceptor" mechanism.

Business Logic - Java code running on a server fielding IIOP with Visigenix Visibroker. The Business Logic invokes Data Base Interface services via another IIOP interface.

Interface C - IIOP to data base services. The user's security token will be passed along using the Visibroker "interceptor" mechanism.

Data Base Interface - Java code running on a server fielding IIOP with Visigenix Visibroker.

Interface D - JDBC protocol including JSQL queries. The Data Base Interface will also query the AS/400 server, as required, using the appropriate protocols.

Data Base - Implemented in Oracle.

Interfaces E and F - IIOP to Security Module server.

Security Module - Server running somewhere on the net.

Alternatives at the GUI end

Here are some of the alternatives for the GUI/GUI Driver/Business Logic.

1. Server code in Java. Various technologies are available to have https servers run Java code in response to arriving URLs. An Applet GUI /GUI Driver can send requests to the Business Logic as URLs; and the Business Logic is implemented as Java code in the https server.

2. Ultra-thin client. It is possible to avoid writing the GUI altogether. The GUI Driver need only generate html code and return it to the browser where the query originated from an html page. For true graphic images, of course, applets may be needed. As with the previous alternative, much of the work is done in Java invoked from the https server. Among the approaches to running Java in the server are:

use the java web server

use server-side Java pages (ssjp) in netscape

3. RMI. Instead of IIOP and an ORB, the GUI Driver could communicate with the Business Logic via Java's "remote Method Invocation" (RMI).

Alternatives at the Data Base end

1. Data base mapping tools. Several companies offer tools which map between Java objects and data base tables. With the aid of one of these tools, the Business Logic can directly access the Data base without an IIOP interface. These tools may have limitiations such as an inability to access multiple data bases or an inability to perform a JOIN operation to construct Java objects from multiple tables. Examples of such tools include

Java Blend

Universal Cross Logic

2. RMI. Instead of IIOP and an ORB, the Business Logic could communicate with the Data Base Interface via Java's "remote Method Invocation" (RMI).

_1008575621.doc

F

D

C

B

E

Security

Module

A

A

A

A

A

Business

Logic

Data Base

Interface

Data Base

GUI

GUI Driver

