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Transactional Concepts

Jeannette M. Wing !
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1 Revisiting Transactions

Distributed systems are different from concurrent (and parallel) systems because

‘they need to deal with failures, not just concurrency. Transactions are a way ol

masking the distributed nature of a computation at the programming languag
level by transforming all failures into aborted transactions. If a communicatior
link goes down or a node crashes, the transaction simply aborts. Users may tr)
again later to rerun their computation, but they are at least guaranteed that the
system is left in some consistent state.

Transactions are a well-known and fundamental control abstraction tha
arose out of the database community. They have three properties that distin
guish them from normal sequential processes: (1) A transaction is a sequenc:
of operations that is performed atomically (“all-or-nothing”). If it complete
successfully, it commits; otherwise, it aborts; (2) concurrent transactions are se
rializable (appear to occur one-at-a-time), supporting the principle of isolatior
and (3) effects of committed transactions are persistent (survive failures).

1.1 Separation of concerns

Systems like Tabs (8] and Camelot [3] demonstrate the viability of layering
general-purpose transactional facility on top of an operating system. Languag:
such as Argus [4] and Avalon/C++ [2] go one step further by providing lingui
tic support for transactions in the context of a general-purpose programmil
language. In principle programmers can now use transactions as a unit of encaj
sulation to structure an application program without regard for how they a
implemented at the operating system level.

1 This research is sponsored by the Wright Laboratory, Aeronautical Systems Cent«
Air Force Materiel Command, USAF, and the Advanced Research Projects Agen
(ARPA) under grant number F33615-93-1-1330.

The views and conclusions contained in this document are those of the authors a:
should not be interpreted as necessarily representing the official policies or endor:
ments, either expressed or implied, of Wright Laboratory or the U. S. Governme)

The U. S. Government is authorized to reproduce and distribute reprints for G
ernment purposes notwithstanding any copyright notation thereon. This manuscri
is submitted for publication with the understanding that the U. S. Government
authorized to reproduce and distribute reprints for Governmental purposes.
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In practice, however, transactions have yet to be shown useful in general-
purpose applications programming. One problem is that state-of-the-art trans-
actional facilities are so tightly integrated that application builders must buy
into a facility in foto, even if they need only one of its services. For example,
the Coda file system (7] was originally built on top of Camelot, which supports
distributed, concurrent, nested transactions. Coda needs transactions for stor-
ing “metadata” (e.g., inodes) about files and directories. Coda is structured such
that updates to metadata are guaranteed to occur by only one thread execut-
ing at a single-site within a single top-level transaction. Hence Coda needs only
single-site, single-threaded, non-nested transactions, but by using Camelot was
forced to pay the performance overhead for Camelot’s other features.

The Venari Project at CMU is revisiting support for transactions by adopt-
ing a “pick-and-choose” approach rather than a “kit-and-kaboodle” approach
[10]. Ideally, we want to provide separable components to support transactional
semantics for different settings, e.g., in the absence or presence of concurrency
and/or distribution. Programmers are then free to compose those components
supporting only those features of transactions they need for their application.
Our approach also enables programmers to code some applications that cannot
be done without an explicit separation of concerns.

We want to support this approach at the programming language level. The
current status of the Venari Project is that we can support concurrent, multi-
threaded, nested transactions in the context of Standard ML. Our implementa-
tion, however, does not yet run in a distributed environment.

1.2 Why SML?

To explore the feasibility of designing a language to support orthogonal trans-
actional concepts, we chose not to design a brand new language from scratch.
Instead, we decided we would target an existing language as a basis for extension;
we chose Standard ML, and in particular the New Jersey implementation.

SML is not the obvious choice for building a transaction-based program-
ming language, even less so for building an object-oriented distributed language.
SML’s heart is in functional (stateless) programming and transactions are very
much a state-oriented concept. SML has no notion of subtype or inheritance and
no direct support for concurrency, distribution, or persistence.

However, SML does give a good starting point. In the design and imple-
mentation of our extensions, we gained leverage from SML’s high-level language
features including strong typing, exceptions, first-class functions, and modules.
SML makes a type distinction between immutable and mutable values (refs and
arrays); we rely on strong typing to let the runtime system safely operate on
addresses (without the programmer’s knowledge). SML’s support for first-class
functions (closures) allow us to make transactions first-class. We use signatures
to separate interface information from implementation and functors to compose
parameterized modules. SML’s modules facility enables us to support our “pick-
and-choose” approach at the language level.
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2 The Application Programmer’s View of Venari/ML
Transactions

If £ is a function applied to some argument a, then to execute:
f a
in a transaction, programmers can write:
(transact f) a
or more probably,
((transact f) a ) handle Foo => [some work]

where Foo is a user-defined exception. Here £ might be multi-threaded. Infor-
mally, the meaning of calling £ with transact is the same as that of just calling £
with the following additional side effects: If £ returns normally, then the transac-
tion commits, and if it is a top-level transaction, its effects are saved to persistent
memory (i.e., written to disk). If £ terminates by raising any uncaught excep-
tion, e.g., Foo, then the transaction aborts and all of £’s effects are undone.
Through SML’s exception-handling, in the case of an aborted transaction, the
programmer has control of what to do such as clean-up and/or retrying the
transaction.

As a more compelling (and the canonical) example, suppose we want to trans-
fer money from one bank account to another. This would involve withdrawing
money from one account and depositing it in the other. We need to make sure
that either both the withdrawal and the deposit succeed, or that neither of them
occur. If only the withdrawal happened, the money would be lost, and we would
be very unhappy. If only the deposit happened, the money would be “dupli-
cated,” and the bank would be very unhappy. So, we use a transaction to effect
the desired behavior.

fun transfer (account_1, account_2, amount) =
let fun do_transfer () =
(withdraw (account_1, amount);
deposit (account_2, amount))
in
transact do_transfer ()
end

The function transfer transfers money from account_1 to account_2 with the
guarantee that a partial transfer will not occur. The transfer itself occurs in the
function do_transfer, which withdraws the money from account_1 and deposits
it into account_2. The functions withdraw and deposit are expected to raise
an exception if something goes wrong, e.g., if account_1 has insufficient funds
or the bank’s computer goes down. We wrap a transaction around the call to
do_transfer so that if anything goes wrong, the whole transfer will be aborted.
If the transfer is aborted, we reraise the exception that caused the abort.
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We could make the transfer transaction multi-threaded by having one ﬁ.mowm
do the withdrawal while another does the deposit. All we would woo& to dois to
replace the two-line definition of do_transfer with the starred lines below:

fun transfer (account_1, account_2, amount) =
let fun do_transfer () =
(fork (fn () => withdraw (account_1, amount)); *
. deposit (account_2, amount)) *
in
transact do_transfer ()
end

3 The Venari/ML Interfaces

In our design, we teased apart the usual atomicity, serializability, and v.mamwm»_@:no
properties rolled into transactions, and added the ability for transactions to be
multi-threaded. In particular, we provide support for the following features, mwo.r
as a separable component—the name of the Venari/ML signature is given in
parentheses.

— Persistence (PERS)
Undoability (UKDO)
Reader-writer locks (RW_LOCK)
Threads (THREADS)

Skeins (SKEINS)

|

|

The basic idea is that we want the individual pieces to compose in a seam-
less way to give us transactions. Persistence ensures permanence of mm.mom_m of
top-level transactions. Undoability allows us to handle aborted transactions.
Reader-writer locks provide isolation of changes to the store, and hence en-
sure transaction serializability of concurrent transactions. Skeins let us group
a collection of threads together, giving us the ability to make multi-threaded

transactions. .
Putting all these pieces together into a single ML module culminates in our
main VENARI interface shown below. It provides a way for application program-
mers to create and manipulate concurrent multi-threaded transactions. What
distinguishes our model from the more standard model of concurrent, nested
transactions is our ability to identify multiple threads of control (not just one

thread) with a single transaction.
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signature VENARI =
sig
val transact : (’a -> ’'_b) -> ’a -> ’'_b

structure Threads : THREADS
structure Skeins : SKEINS
structure RW_Lock : RW_LOCK
structure Undo : UNDO
structure Pers : PERS

end

Roughly speaking, a transaction is a locking skein of threads whose effects
are undone if the transaction aborts or made persistent if it terminates. (In SML
'a is a polymorphic type variable.)

By having separated transactional concepts from one another, we also pro-
vide the ability to put some pieces together, ignoring others. This separation of
concerns enables direct support for different non-transactional models of com-
putation. Here are some of the more interesting combinations:

Multi-threaded persistence (threads + persistence = persistent skeins)
Multi-threaded undo (threads + undo = undo skeins)
Locking threads (threads + r/w locks = locking skeins)

Concurrent persistence (threads + r/w locks + persistence = locking persis-
tent skeins)

!

|

Concurrent multi-threaded transactions

(persistence + undo + r/w locks + threads = transactional skeins)

As seen, the VENARI interface above supports this particular combination
directly.

All skeins can be nested, hence each combination above can be nested. Per-
manence of a nested persistent skein’s effects is relative to its parent. All mixes
are possible. For example, a transaction can have an undo skein or locking skein
within it, and vice versa. A skein can have nested within it concurrent skeins of
different flavors. Finally, the single-threaded case of any of these is just a special
case in which a skein has just one thread; Venari/ML does not explicitly provide
interfaces for the single-threaded cases.

In previously published papers, we have already reported on various aspects
of the Venari/ML interfaces. Details of the design and implementation of the
Threads interface are reported in [1}; of the separation between persistence and
undoability for single-threaded nested transactions, in [6]. An early design of
concurrent multi-threaded transactions appears in [11]. The remainder of this
paper focuses on the details of the synchronization primitives provided for our
model of computation.
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4 Synchronizing Concurrent Multi-threaded Transactions

Our generalized model of transactions requires a generalization of Moss’s (tra-
ditional) locking rules used for nested transactions [6]. Between transactions we
must of course guarantee isolation; but within a transaction, threads may freely
execute and need not be serialized with respect to each other. Our model also al-
lows parents and children to execute simultaneously; parents are not suspended.
To deal with some of the semantic complexity of this model, we provide a notion
of safe state for users and we implement certain runtime checks that guaran-
tee the principle of isolation for transactions. We can make this guarantee only
under the assumption that users access only safe state. Thus, we begin by de-
scribing safe state and then describe the transaction guarantees that we have
implemented.

4.1 Safe State

As seen, we not only allow transactions to run concurrently and we also allow
each transaction to be multi-threaded. What implications does this model of
computation have on access to shared data? It requires a means to synchro-
nize concurrent threads and a means to synchronize concurrent transactions.
These two different requirements suggest having two different grains of locks for
synchronizing access to shared mutable data.

First, as typical for multi-threaded programs, we rely on mutez locks; second,
as typical for concurrent transactions, we rely on reader-writer locks. Mutex locks
allow threads within a transaction to synchronize, in particular, to enforce mu-
tual exclusion; reader-writer locks allow concurrent transactions to synchronize,
in particular, to enforce isolation (i.e., serializability). Without transactions, a
thread need only acquire a mutex lock before accessing shared data, but with
multi-threaded transactions, it must acquire a reader-writer lock.

To provide programming language support for this model we were easily in
Standard ML to provide safe state [9): mutable data that is guaranteed to be
always accessed by a thread that has acquired the right kind of lock. What
is “safe” about safe state are the correctness guarantees it provides: mutual
exclusion between threads and isolation between transactions. Disciplined pro-
grammers, those who use only safe state, will be assured that their concurrent
multi-threaded transactions are serializable.

Let’s look in some detail at the abstractions needed. First, we need two
types of locks, mutex locks and rw.locks, respectively defined in Threads and
RW_Lock modules. In particular, the Threads module declares (among others)
the following type and function values:

type mutex

val mutex : unit -> mutex
val acquire : mutex -> unit
val release : mutex -> unit
val owner : mutex -> bool

val with_mutex: mutex -> (unit -> ’a) -> ’a
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Evaluation of the function call matex() creates a new mutex value. The function
acquire attempts to lock a mutex and blocks the calling thread until it succeeds;
release unlocks a mutex, giving other threads a chance to acquire it; owner
returns true if and only if the mutex is currently held by the current thread. The
evaluation of with-mutex m f acquires the mutex m, applies the function £, and
then releases m.

The RW_Lock module includes (among others) the following type and function
values:

type rw_lock

val create : unit -> rw_lock
val read : rw_lock -> (’a -> ’'b) -> ’a > 'b
val write : ru_lock > (’a -> 'b) -> ’a => ’b

The read and write functions take a lock, a function, and its argument, and
apply the function to the argument with the guarantee that the lock is held
in the appropriate read or write mode during the execution of the function. In
particular, no other thread may use the lock in read or write mode while the
function executes. If some thread within a transaction calls read or write with-
out holding the lock in the appropriate mode, we raise an exception; otherwise,
read and write will block until the condition is satisfied.

Second, we exploit the fact that SML makes a type distinction between im-
mutable and mutable values. In SML, only refs and arrays are mutable. Thus,
only refs and arrays need to be protected by any kind of lock. (Since refs and
arrays are treated similarly, we will talk about just refs for the remainder of this
paper.) Below are the two relevant functions on ref types:

val ! : ’'a ref -> ’a
val := : ’a ref * ’a —-> unit
If x is of type int ref then x := & assigns the integer 5 to x; subsequent

evaluation of !x is 5.

Now, we can build muter refs, safe state for multi-threaded programs. An
m_ref is a regular (unsafe) ref protected by a mutex lock. The relevant functions
that we can perform on mutex refs are akin to their unsafe counterparts:

val m_get: ’a m_ref -> ’a
val m_set: ’a m_ref -> ’a -> unit

But, what is so elegantly expressible in SML are their definitions (implementa-
tions):

datatype 'a m_ref = M_Ref of (a ref * Threads .mutex)

fun m_get (M_Ref (uref,l)) =

if Threads.owner 1 then (luref) else raise NotOwner
fun m_set (M_Ref (uref,l)) v =

if Threads.owner 1 then uref := v else raise NotOwner
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Here we see explicitly how an m_ref is implemented—as a pair of a regular ref
and a mutex lock. A call tom_get checks to see that the caller owns the associated
lock 1 before performing the access (') on the ref uref itself. If the check fails,
an exception is raised. Similarly for m_set.

Finally, we can play the same game of making transactionally safe state
by building reader-writer refs. As for mutex refs, we can perform get and set
functions on reader-writer refs:

val rw_get: ‘a rw_ref -> ‘a
val rv_set: ’a rw_ref -> 'a —> unit

where again by looking at their definitions, we can see how we enforce safe access:

datatype ’'a rw_ref = RW_Ref of (’a ref * RW_Lock.rw_lock)

fun rw_get (RVW_Ref (r,1)) =
RW_Lock.read 1 !r

fun rv_set (RW_Ret (r,1)) v =
RW_Lock.write 1 (fn () => r:=v) O

Since a rw_ref is a regular ref protected by a reader-writer lock, a call to rw_get
guarantees safe access to the ref because it acquires the lock 1 in read mode
before returning the value stored in the ref r. Similarly for rw_set.

To show a simple use of mutex refs (reader-writer refs would be similar),
consider a multi-threaded application that uses a logical clock to establish the
order of events. Here’s an SML signature for such a clock:

signature CLOCK = sig
val get_time : unit —> int
end

It exports only the one function, get-time, which increments the clock and re-
turns a new, unique time. We can implement the clock and its get_time function
as:

val time = m_ref (O, Threads.mutex())

fun get_time () =
with_m_ref time (fn () => (m_inc time; m_get time))

where the mutex ref time stores the logical time, with.m.ref is the mutex ref
counterpart to with_mutex, and m_inc increments the integer value of the clock
by 1 (defined in the obvious way in terms of the increment function on int
refs.). Time must be protected by a mutex to avoid the following incorrect
sequence of events in which two threads would be given the same time:
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thread A thread B
inc time
inc time

Itime
itime

To ensure that each caller is given a unique time, the function get_time wraps
with.m_ret around the calls to increment and read time.

To summarize, we guarantee the principle of isolation for transactions by
making use of safe state. In the context of just threads, a normal SML ref is
unsafe, while a ref protected by a mutex is a safe ref. In the context of trans-
actions, a ref protected by only a mutex is an unsafe ref, while a ref protected
by a reader-writer lock is a safe ref. A read or write of a safe ref will fail unless
the thread (transaction) holds the mutex (reader-writer lock) of the ref. Thus, it
is impossible to violate the isolation principle if the programmer uses only safe
state.

4.2 Transaction Guarantees

Given that within a (multi-threaded) transaction only safe state is accessed, we
generalize traditional rules for managing nested transactions.
If the body thread or any sub-thread raises an uncaught exception, the trans-
action aborts. If the body evaluates successfully, the transaction commits.
When a transaction aborts,

— all changes to the persistent and volatile stores made by the transaction and
its descendants are undone; and

_ all reader-writer locks held by the transaction and its descendants are re-
leased.

When a transaction commits,

_ if this is a top-level transaction (i-e., no ancestor skein is persistent, undoable,
or a transaction), and the persistent store is initialized, any changes to the
persistent store are committed to disk; and

— all reader-writer locks are handed to the nearest locking ancestor skein.

If the functions executed within transactions have no effects except through
the use of the safe state, then we can make certain guarantees regarding the
interaction of those transactions. Let T be a transaction, and let S and S’ be
any locking skeins (thus S and S' may be transactions as well). (T, S, and S’
are all different from one another.) The following guarantees hold:
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— If neither S nor T is a descendant of the other, then
e if T aborts, S observes no effects of T or T’s descendants;
e the effects of T' and its descendants appear atomic to S (i.e., S sees either
all of their effects or none of their effects); and
o the effects of S and T are serializable from the viewpoint of any other
locking skein S”.
— If T is a descendant of S, then
o the effects of T and its descendants appear atomic to S; and
e the state which T observes will reflect a “snapshot” of S’s effects (taken
at the instant after T acquires its last reader-writer lock); and
o if §’s effects before and after the “snapshot” point are denoted Eg”*"
and m..m.s ter and the effects of T and its decendants are denoted Er, then

these effects will appear to S’ to take place in the order A@m& ore Er, @m.n .

— The image of the persistent store on disk will always be consistent (partial
effects of a transaction will never appear on disk).

One should consider a transaction 7 which is a child of transaction T3
to be doing work “on behalf of” Tj. The guarantees above hold even if non-
transactional skeins or threads are invoked within the transactions involved.

5 Summary and Future Work

Unlike other transaction-based high-level programming languages such as Argus
and Avalon, Venari/ML is the first to support multi-threaded transactions, where
each transaction may have multiple threads of control executing within its scope.
This generalization of the standard transactional model led to our support for
concurrent multi-threaded transactions and some novel abstractions like skeins
and safe state. Moreover, our model required rethinking the synchronization
rules for nested transactions, leading to the transaction guarantees described in
Section 4.2.

The Venari/ML interfaces are cast in terms of SML’s modules facility. Our
modules support a separation of concerns, e.g., persistence from undoability,
that are often tightly integrated in other transactional systems. We also make
extensive use of closures in SML, allowing us at runtime to compose different
functions, each of which supports a different feature of transactions. E.g., the
argument to the function transact is a closure.

There are two main directions that we would like to pursue in the future.
First, our effort to support a “pick-and-choose” approach for transactions has
the advantage of providing us with a way to take performance measurements on
different combinations of our separable modules. The Venari Project expects to
do some careful performance analysis of our implemented features. Second, we
hope to build a non-trivial and non-traditional application using our interfaces.
Existing transactional facilities have been designed primarily for applications
like electronic banking and airline reservations. We are more interested in ap-
plications like cooperative work environments and engineering design systems
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where the objects of interest are irregular in structure and the computations
may span hours or even days.
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