
Linearizab|e Concurrent Objects

Maur~ce p. Heriihy and JeannetIc M. Wing 1
Department of Computer Science

Carnegac Mellon Universaty
Piasburgh, PA 15213-3890

Overview

T ~ o ~ o ~ ~dv~c~s ~r~ making mu|tJproccssors m~x~ :c~fily avRihble, but despite impressive progress at the
h~dw~r~ ~eveL i~ is sutl ~cuR m rr~diz~ these machines' po~enti~ for parallelism. In the scqueumd domain,
'~objccboncn~cd" ~rogr~nming methodologies basca on dam absn'ac~on are widely recognized as an effective
means of enhancing modularity, cxl~.ssibility ' and cc~rrccmcss. Our paper" describes the foundations for a new
~q~prosch to ~ n g objecbori~d methodologies m h~ghly-concun~nz shared-memory multiproc_~ssars.

The basic i d a is ~ f o x i n g : , ra~e,r" than c ~ ~ g through low-leve! nmchinz ccansmuas such as bytes,
~ , ~ , processes communicate ~ a ~ u a a data ~ called ~ncurrem objects. For

~mpie, m a real.time system consisting of a pool of sensor end acmau~ processes, the processes might

cz3mmunic~xe via ~ first-in-first-out (FIFO) queue object in shared memory. When a sensor process detects a
condition requiring a response, it records the cor~ifion by enqueumg a record in the queue. Whenever an actuator
process becomes idle, it dequeues the next item from the queue and takes appropnam action. While the correct

behavior of objects such as FIFO queues is weil-unacrsuxxl in the scquentml domain, it is not so obvious how a

FIFO queue should behave when manipulated by ccncuzrent processes. We advocate a new cormcm~ss condition,
li~.ariza~iliry, f ~ implementing and reasoning about concarrent objects.

We view a concurrent system as a c~llectkm of sequendal pr~esses that communicate through shared objec~ Each
o b ~ has a ~y~e, which defines a sea of possible vahtes and a set of primitive operaaons that provide the only

to a-care and mampulam that object. In the absence of concun'ency, operations are executed one at a time,
~ l their meanings can be captur~ by simple pre- and postmndRions. In n cohere'rant program, however,
o~¢rations can be executed concun'eutly, thus it is ~,'y m find a new meaning for oper~ous that may overlap
in time. Two r e q ~ t s seem to make inmidve smse: First, each operation should appear to "take effect"
instantaneously, and second, the order of n o n - c o r o t operations should be preserved. We define a concurrent
~ p u ~ o n to ix: l iJ~ar i~l~ if it is "equivaleat" to a l ep l sequential computation that satisfies these two
~uirements.

Informally, lineari~hility provides the illusion dmZ each ol~:rmioa applied by cor£un'ent processes lakes effect
i~mn~_~usly ~ some point between its i n s and its reslmnse. This pmpeay implies that the effec~ of a

concurrent objecz's operaziem can still be specified u_qng pre- and post-conditi~_,~, however, we mmrprez a dam
type's sequendaJ specification as penniuing only iineanzable interleavings. Thus, instead of Ireadng data as a mass

of harciwar¢ ~giswas ~ single large database whose entities are u n h ~ e d , linearizability exploits the semantics
of ab~-~t data ty~e._~= It permits a high degn~ of c ~ , n c y , yet it permits programmers to specify and reason
about co~urr.~t objects using known techniques frcn~ ~he sequential domain.

Using axiomUc specifications and our s:~tion of I m b i I R y , we can reason about (wo kinds of problems: (I) tlm
of]ineerizable object implemenumo~ by using new techniques that generalize the sequential notions of

representation invariaut and abstraction function to the concun~nt domain; and (2) the correctness of computations
t i n u.~ finearizable objects by u-an~mming a.~.mmis about concur:e~ computations into simpler assenio~ about
t t~r sequeudM coenterpm'~

tThis geseaurch was spanmmd by IBM tad me De.from Advmmm P.mmun:h Pmjem Agency (DOD), ARPA Or&re" No. 4s64 (Ameadme~ 20),
~ ccmrs~ F33615.87-C-1499. m~ttmed by.the Av/~ies Lsbmmz~ny, Air Fzt'ce Wrilht Aemnauuc~d Latbmau~ru:s. Addifimuti stg)po~ Lot
L M. W'mS was Wevided m pan by ~ Nit Sdmm Feemtstiza m~ef |r~ O~R-g620027. "rha view and ccnc.hmzm czm~med ia this
dammem are t~au e/the ~ m/,haukt ~ be inuaPmm s, mpmmeuq the effteial po/i~ies, eaber es4mmed or unPlied, el the Ddem~
Advmam Rmeazm Projem ASency ~ m e US G o , m a i m .

2 1 W i l y deemed ia He&]zy ~ W'mg. "" Axtmm Let em~mmx cd~m/ ' 14~ ACM $ ~ ~ POP~ Jza~. l 1911'/, pp. 13-26,.

133

Two Examptes: Queues and Re~s~ers

Consider some informer examples ~o f l l u s ~ wha~ we do and do not conslder tnmi~vc~y acc~v~ablc cconcurrcn~
behavior. Our first set of examples exnp|oy~ a ~ queue, a shnpl~ daz~ ~ tha~ pro~dd~s two operauons: £a,~

inserts an item m the queue, and Deq returas mid ~oves lhe oldss~ item from the queue. Figure I shows four

different ways in which a FIFO queue might b~hav~ wh~ manipulated by co~urrcnt processes. Hem, a th~ a~ds

runs from left to n~hL and each opemUon ~ a ~ c ~ r , d with an in~rva~. Overlapping interv~s ind~cat~ concurr~n~

ol~rauons. We nsc "q E(x) A" ("q D(x) A") to s~aad for the enqueu~ (dcqucuc) operation of item x by proc~s A
on queue object q.

The behavior shown in H I (Figure l.a) corresponds to o~ intltitive notion of how a concurrent FIFO queue shot~

behave. In this scenario, ~esses A and B concurre~y ~qu~ x and y onto qo Later, B dequeues ~ and th~ A

dequeues y and begins enqu~g z. Since th~ dequeue for x precade.s the dequcue for y, the FIFO ~perty i~rrpli~

that their enqucue~ must have token effect m the same order. In fact the.~r enqueu~ wen concurrent, thus ~/

could indeed have ,~'~ effect in that order. The uncompleu~d enque~ of z by A illustrates that we are interes~.d

behaviors in which processes are continually executing opera~ons, ~rhaps forever.

The behavior shown in H 2, however, is not intmtively acceptable. Here, it is clear to an external observer that x was

enqueued before y, yet y is dequeucd without x having been de, queued. To be consistent with our inform~

requirements, A should have dequeued x. We consider the behavior shown in H 3 to be acceptable, even though x is
de.queued before its enqueuing operation has returned. Intuitively, the enqueuc of x took effect before it completed.
Finally, H 4 is ¢lcaHy unacceptable because y is de, queued twice,.

To decide whether a conctm~nt history is acceptable., it is necessary m take into account the object's in~,nd~i
semantics. For example, acceptable c o n c ~ t behavicas for FIFO queues would not be acceptable for ~ sea,
direcumes, etc. When msmcted to rcgmer objects providing read and ~ ol~ratious, our inmiuve notion of
acceptability depends on an axiomatization of concurrent regisl~rs. Fog example, consider ~ regis~x object x in
Figures l .eand l.f. H,j ts~cepmble, but H6 is not. Thesetwo behaviars diffe~ra~onepoinc InHs, B r e a d s a 0 , a ~ l
in H 6, B reads a 1. The Inner is intuitively ~ l e becau~ A did a previous read of a 1, implying that B's
wrim of 1 must have occun, ed before A's read. C's subsequent write of O, though concurrent with B's write of 1,
strictly follows A's read of I.

Significance of LinearizabiHty

The role of lincarizability for concurrent ob~' ts is analogous to the role of serializ~ility 3 for dam base theory:, it
facilitates certain kinds of formal (and informal) reasoning by transforming assertions about complex concturent
behavior into assenious about simpler sequential behavior. Like serializability, finearizability is a safety property;, it
stares that ce, nain interieavmgs cannot occur, but makes no guarantees abom what must occur. 0 ~ " techniques,

such as mmporal logic must be used to reason about fivaness properties like fairness or priority.

Unlike alternative cormcmess conditions such as sequential consistency 4 or serializability, linearizability is a local
property. Locality enhances modularity and concunv.~y, since objects can be implemented and verified
independently, and run-time scheduling can be completely decentralized. Liuearizability is also a non-blocking

pmperw. Non-blocking enhances concurrency and implies that lincarizability is an appropriate condition for
systems for which real-time response is critical. Linearizability is a simple and intuitively appealing correcmess

condition that generalizes and unifies a number of correcmess conditions both implick and explicit in the literature.

Without linearizability, the meaning of an o~ation may depend on how it is interleaved with concurrent operations.

Specifying such behavior would require a mc~'e complex speciFw.ation language, as well as producing more complex

3Pxp~Jummou, "ThJ ~ o~ ~ ~ mpdamm," JA~M, 26:4. O,x. 1979, pp. 631-653.

4 ~ H m ~ a ml~mx~N:Mr ~ that ~ t t y ~ , ~ , ~ m b i m e m protlTmm ,, l ~ W T r ~ . ~ Compsun, 211:9, Se ~
1979.

134

q E{xl A

q z {y)

I I

q D (x)

I I

q D(y) A q ~(~) A . . .
I I I

a. H I (acceptable).

q z (x)
l I

q D (y} A
I 1

q ¢ (y) B
I t

q ¢ (z) ~ . . .

q D{x) B
i

b . H 2 (noC & c c e p C a b l e) .

a. H 3 (a c c e p t a b l e) .

q E(x) A q D (y) A
t I t

q Z (y) a q V (y) C
I i I t

d. H 4 (n o t a c c e p t a b l e) .

x w (O) A x R(1) A z W (0) C
I i I I I i

z w (1) B
I . i

e . a s (a c ~ p C a b l e) .

: R (0) a
I I

x w(O) A x R(1) A = W(@) C
I t I ! i t

z w (1) B : R (1) B
I I I I

f . II s (n o t a c c e p t a b l e) .

Figure 1: Queue (a-d) and l~g is~r (~-O

specifications. An implemealation of a concurrem object need not realize all interieavings permiued by
linearizability, but all inteaieavin@ it does realize must be lineanzable. The ~mal set of interleavings permiued by
a particular implementation may be quite difficult to specify at the abstract level, being the result of engineering
tmde-offs at lower levels. As long as the object's client relies only on lineam~ility to reason about safety

properties, the object's implementor is f ee to support any level of concun~ncy that appears to be cost-eff~tive.

Linear~,~hility Im3vide~ benefits for specifying, i m p l o r i n g , and verifying concarrem objec~ in m u l d ~
systems. Rather than introducing complex new formalisms to reason directly about concurrent computations, we
feel it is more effective m wan~onn problems in the omlcunent domain rote simpler problems in the SeClUendal

domain.

135

