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Overview

Technological advances are making multiprocessors more readily available, but despite impressive progress at the
hardware level, it is stll difficult 10 realize these machines’ potential for parallelism. In the sequential domain,
‘‘object-oriented’’ programming methodologies based on data abstraction are widely recognized as an effective
means of enhancing modularity, expressibility, and carrectess. Our paper describes the foundations for a new
approach to exiending object-oriented methodologies 1o highly-concurrent shared-memory multiprocessors.

The basic idea is the following: rather than communicating through low-level machine constructs such as bytes,
words, regisiers, €ic., processes communicate through abstract data structures called comcurrent objects. For
example, in a real-ime system consisting of a pool of sensor and actuator processes, the processes might
communicate via a first-in-first-out (FIFO) queue object in shared memory. When a sensor process detects a
condition requiring a response, it records the condition by enqueuing a record in the queue. Whenever an actator
process becomes idle, it dequenes the next item from the queue and takes appropriate action. While the correct
behavior of objects such as FIFO queues is weti-understood in the sequential domain, it is not so obvious how a
FIFO queue should behave when manipulated by concurrent processes. We advocate a new correcmess condition,
linearizability, for implementing and reasoning about concurrent objects.

We view a concurrent system as a collection of sequential processes that communicate through shared objects. Each
object has a fype, which defines a set of possible vaiues and a set of primitive operations that provide the only
means to create and manipulate that object. In the absence of concurrency, operations are executed one at a time,
and their meanings can be captured by simple pre- and posiconditions. In a concurrent program, however,
operations can be executed concurrently, thus it is necessary to find a new meaning for operations that may overiap
in time. Two requirements scem o make inmitive sense: First, each operation should appear to **take effect’”
instantaneously, and second, the order of non-concurrent operations should be preserved. We define a concurrent
compuation 10 be linearizable? if it is “‘cquivalent” 1o a legal sequential computation that satisfies these two
requirements.

Informaily, linearizability provides the illusion that each operation applied by concurrent processes takes effect
instantaneously at some point between its invocation and its response. This property implies that the effects of a
concusrent object’s operations can still be specified using pre- and post-conditions; however, we interpret a data
type’s sequential specification as permitting only linearizable interleavings. Thus, insiead of treating data as a mass
of hardware registers os single large database whose entities are uninterpreted, linearizability exploits the semantics
of abstract data types. It permits a high degree of concurrency, yet it permits programmers 0 specify and reason
about concurrent objects using known techniques from the sequential domain.

Using axiomatic specifications and our notion of linearizability, we can reason about two kinds of problems: (1) the
correctness of linearizable object implementations by using new techniques that generalize the sequential notions of
representation invariant and abstraction function to the concurrent domain; and (2) the correcmess of computations
that use linearizable objects by transforming assertions about concurrent computations into simpler assertions about
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Two Exampies: Queues and Registers

Consider some informal exampies 10 illustraze what we do and do not consider inmigively acceptable concurrent
behavior. Our first set of examples employs a FIFO queue, a simple data type that provides two operations: £ng
inserts an item in the queue, and Deg returns and remaoves the oldest item from the quene. Figure 1 shows four
different ways in which a FIFO queue might behave when manipulated by concurrent processes. Here, a time axis
runs from left to right, and each operation is associated with an interval. Overlapping intervals indicate concurrent
operations. We use *‘q E(x) A" ("*q D(x) A"*) to stand for the enqueue (dequeue) operation of item x by process A
on queue object q. ’

The behavior shown in H, (Figure 1.3) corresponds o ow intuitive notion of how & concurrent FIFO queue shouid
behave. In this scenario, processes A and B concurrently enqueue x and y onto q. Later, B dequeues x, and then A
dequeues y and begins enqueuing z. Since the dequene for x precedes the dequeue for y, the FIFO property implies
that their enquenes must have taken effect in the same order. In fact, their enqueues were concurrent, thus they
couid indeed have taken effect in that order. The uncompleted enqueue of z by A illustrates that we are interested in
behaviors in which processes are continually executing operations, perhaps forever.

The behavior shown in H,, however, is not intuitively acceptable. Here, it is clear to an external observer that x was
enqueued before y, yet y is dequeucd without x having been dequeued. To be consistent with our informal
requirements, A shouid have dequeued x. We consider the behavior shown in H, to be acceptable, even though x is

dequeued before its enqueuing operation has reumed. Inwitively, the enqueue of x took effect before it compieted.
Finally, H, is clearly unacceptabie because y is dequeued twice.

To decide whether a concurrent history is acceptable, it is necessary to take into account the object’s intended
semantics. For example, acceptable concurrent behaviors for FIFO queues would not be acceptable for stacks, sets,
directories, etc. When restricted to register objects providing read and write operations, our intuitive notion of
acceptability depends on an axiomatization of concurrent registers. For example, consider the register object x in
Figures l.e and 1.f. Hg is acceptable, but Hy isnot. These two behaviors differ at one point: In Hy, B reads a 0, and
in Hg, B reads a 1. The laner is intitively unacceptable because A did a previous read of a 1, implying that B's
write of 1 must have occurred before A's read. C’s subsequent write of 0, though concurrent with B's write of 1,
strictly follows A’s read of 1.

Significance of Linearizability

The role of linearizability for concurrent objects is analogous to the role of serializability® for data base theory: it
facilitates certain kinds of formal (and informal) reasoning by transforming assertions about complex concurrent
behavior into assertions about simpler sequential behavior. Like serializability, linearizability is a safety property; it
states that cenain interieavings cannot occur, but makes no guarantees about what must occur. Other techniques,
such as emporal logic must be used to reason about liveness properties like fairness or priority.

Unlike alternative correcmess conditions such as sequential consistency? or serializability, linearizability is a local
property.  Locality enhances modularity and concurrency, since objects can be implemented and verified
independently, and run-time scheduling can be completely decentralized. Linearizability is also a non-blocking
property. Non-blocking enhances concurrency and implies that linearizability is an appropriate condition for
systems for which real-time response is critical. Linearizability is a simple and intuitively appealing correciness
condition that generalizes and unifies a number of carrectness conditions both implicit and explicit in the literature.

Without lincarizability, the meaning of an operation may depend on how it is interieaved with concurrent operations.
Specifying such behavior would require a more complex specification language, as well as producing more complex
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Figure 1: Queue (a-d) and Register (e-f) Histories
specifications. An implementation of a concurrent object need not realize all interleavings permitted by
linearizability, but all interieavings it does realize must be linea:izable. The actual set of interleavings permitted by
a particular implementation may be quite difficult to specify at the abstract level, being the result of engineering
trade-offs at lower levels. As long as the object’s client relies only on linearizability to reason about safety
properties, the object’s implementor is free to support any fevel of concurrency that appears to be cost-effective.

Linearizability provides benefits for specifying, impiementing, and verifying concurrent objects in multiprocessor
systems. Rather than introducing complex new formatisms to reason directly about concurrent computations, we
feel it is more effective to transform problems in the concurrent domain into simpler problems in the sequential

domain.
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