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Abstract

The paper develops model checking techniques to ex-
amine NetBill and Digicash. We show how model
checking can verify atomicity properties by analyzing
simplified versions of these protocols that retain cru-
cial security constraints. For our analysis we used
the FDR model checker.

1 Atomicity Properties

Correctness is a prime concern for electronic com-
merce protocols. How can we show that a given pro-
tocol is safe for use? Here we show how to use model
checking to test whether electronic commerce proto-
cols satisfy some given atomicity properties.

For verifying properties of protocols, model check-
ing is a dramatic improvement over doing hand
proofs, because it is mechanizable; it is a dra-
matic improvement over using state-of-the-art theo-
rem provers because it is automatic, fast, and requires
no human interaction. Moreover, we found a number
of problems in proposed electronic commerce proto-
cols using model checking. Model checking allows us
to focus on just those aspects of the protocol neces-
sary to guarantee desired properties. In doing so, we
can gain a better understanding of why the protocol
works and often can identify places of optimizing it.

For this paper, we have chosen to check atomicity
properties. [2] argue that these properties are central
to electronic commerce protocols.

In an atomic protocol, an electronic purchase either

e aborts with no transfer of money and goods; or
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e fully completes with money and goods ex-
changed.

Moreover, these atomic properties are preserved even
if communications fail between some of the parties,
because of failure of either a communications link or
a node (including the parties participating in the pro-
tocol.)

Tygar [22] gave informal descriptions of three pro-
tocol properties that appear to be related to atomic-
ity:

money atomicity Money should neither be created
nor destroyed by electronic commerce protocols.
For example, this protocol is not money atomic:

1. Consumer sends message to consumer’s
bank: transfer $value to merchant,

9. Consumer’s bank decrements consumer’s
balance by $value;

3. Consumer’s bank sends message to mer-
chant’s bank: increase merchant’s bank bal-
ance by $value;

4. Merchant’s bank
balance by $value.

increments merchant’s

If Message 3 is not received, then the consumer’s
balance will have lost money without the mer-
chant’s bank having received the money. Effec-
tively, money is destroyed.

goods atomicity A merchant should receive pay-
ment if and only if the consumer receives the
goods. Goods atomicity is particularly relevant
in the case of electronic goods (such as binary
files) that are delivered over the network. For
example this protocol is not goods atomic:

1. Consumer sends credit card number to mer-
chant; '

2. Merchant charges consumer’s credit card;



3. Merchant sends electronic goods to con-
sumer

Suppose Message 3 is not received by the con-
sumer; then she will not have received the goods
for which she was charged.

certified delivery In the case of electronic goods,
both the merchant and the consumer should be
able to give non-repudiable proof of the contents
of the delivered goods. (We do not consider cer-
tified delivery in this paper.)

In this paper, we discuss how to use mode] check-
ing to determine whether money atomicity and goods
atomicity hold of two classes of electronic commerce
protocols: account-based (e.g., NetBill [5, 21]) and
token-based (e.g., a simplified protocol inspired by
Chaum’s offline Digicash protocol [3, 4]). We used the
FDR model checker [15], though other model checkers
could have been used.

2 Model Checking

Model checking is a technique that determines
whether a property holds of a finite state machine.
The expression of the property and the machine could
be in different languages where the property is a log-
ical formula and the machine is described as a set
of states and a state transition function. Since the
machine has a finite number of states, an exhaustive
search (through a standard reachability algorithm)
is done to check that the logical formula holds at
every state. The model checker SMV uses this ap-
proach. Alternatively, as with FDR, the expression
of the property and the machine could be in the same
language. In this case, a test for language inclusion
is done to determine whether the property (one set of
traces) holds of the machine (the second set of traces).
Model checking is completely automatic, and usually
fast, at least in comparison to alternative techniques
like theorem proving.

An additional benefit that model checking provides
over other techniques such as theorem proving is that
if the property being checked does not hold, a coun-
terexample is produced. This feedback is an invalu-
able means of debugging. It also is a way to explore
the design space, perhaps finding ways to optimize a
design (e.g., by eliminating a message exchanged or
an extra encryption step).

In our context of using FDR as our model checker,
we describe the protocol that we wish to analyze

through a CSP [10] process, Imp. This is the “ma-
chine” we want to check. We describe the property,
e.g., money atomicity, that we wish to check of the
protocol as another CSP process, Spec. To determine
whether the protocol satisfies the property we test
whether Imp is a refinement (in the technical sense
used in CSP) of Spec. Roughly speaking, Imp’s set
of traces should be a subset of Spec’s set of traces;
thus, the machine is a trace refinement of the prop-
erty. In reality, for atomicity properties, we need the
failure refinement, which extends the trace refinement
to handle non-determinism.

Model checking is a demonstrated success in hard-
ware verification. Researchers and industrialists have
used checkers like SMV [17], Murphi [6], COSPAN [9]
and SPIN [11] to find bugs in published circuit de-
signs, floating point standards, and cache coherence
protocols for multiprocessors. It has been adopted
by the hardware community to complement the tra-
ditional validation method of hardware simulation.

Model checking has also recently gained the at-
tention of the software community. Notably, Atlee
and Gannon used SMV to check safety properties for
event-driven systems; Jackson uses his model enu-
meration method in Nitpick to check Z-like specifica-
tions [12]; and Vaziri-Farahani and Wing used SMV
to check cache coherence in distributed file systems
[23].

In the security domain, Roscoe [19] used FDR to
prove noninterference of a simple security high-low hi-
erarchy (after Bell-LaPadula’s model) and Lowe [14]
recently used FDR to debug and prove the correct-
ness of the Needham-Schroeder authentication proto-
cols [18]. Our work is the first to use model checking
for analyzing electronic commerce protocols and for
checking atomicity properties!.

3 Two Case Studies

We investigate NetBill and a simplified digital cash
protocol with respect to money atomicity and goods
atomicity. Money atomicity is concerned with the
conservation of money in the context of account bal-
ances and electronic coins. That is, electronic coins
should not be arbitrarily created or destroyed, and

1Uge of formal methods to demonstrate protocol security
has attracted wide attention — we cannot survey all the results
in a brief paper such as this. However, electronic commerce
protocols have received less attention — two important papers
on formal (non-model checking) methods for electronic com-
merce are [1, 13].



fund transfers and conversions between funds and
coins should be consistent. In other words, if we have
a system formed by a consumer C' and a merchant M
who have accounts at a bank, the sum given by the
formula

C’s account balance + C’s coins (1)
+ M’s account balance + M’s coins
should be conserved. In the context of electronic
coins, another component of money atomicity is that
rightful possession of a coin should entitle the owner
to spend the coin or deposit it in an account. This
“cash property” will play an important role in our
analysis of a simplified digital cash protocol.

Goods atomicity is concerned with the integrity of
a sale: we want to guarantee that goods are trans-
ferred exactly when money is transferred. A con-
sumer only wants to pay for goods received. A mer-
chant wants to be payed for goods delivered.

Assumptions

Our analysis focuses on the atomicity aspects of pro-
tocols. We do not, for example, consider the crypto-
graphic details of the protocol—in fact our modeling
of a protocol completely hides these details. We also
do not model multiple interleaved runs of a protocol
(in which, for example, a single agent could partic-
ipate as a consumer in one run and a merchant in
another). Instead we consider a single run of the
protocol with one consumer, one merchant, and one
bank. We discuss these abstractions further in Sec-
tion 4.

Perhaps the most important assumption we make
is about the failure model used in our analysis. First,
consider the bank. In the context of bank failure,
few if any atomicity properties can be guaranteed.
In practice, banks go to great lengths to ensure re-
liable, fail-safe service. We model this by assuming
that the bank never fails. Next, consider commu-
nication with the bank. This may take place over
some unreliable medium such as a telephone line or
the Internet. However, as a last resort, anyone can
physically go to the bank to deposit funds or present
purchase orders. In effect, every agent has a fail-safe
communication line with the bank.

Now consider agents other than the bank. We al-
low communication between non-bank agents to fail
arbitrarily. However, we only allow limited failures
at non-bank agents because arbitrary failure would
compromise atomicity properties. For example, sup-

pose that a merchant receives an electronic coin in ex-
change for goods, and then immediately fails before
depositing the coin at the bank. The coin is effec-
tively lost and money atomicity fails. Note, however,
that the only party to suffer was the party that failed;
there is no loss to the consumer nor the bank.

Qur failure model for agents, other than banks, will
be based upon the notion of commitment points, as
used in standard database transactions [7, 16, 8]. We
assume that each agent (other than the bank) has a
particular point in the protocol at which that agent
commits. Before this point is reached, we allow an
agent to abort the protocol freely. After the commit-
ment point, we consider only failures in an agent if
the failure can potentially affect the outcome of the
protocol for another agent. In particular, we ignore
failures that can affect only the agent’s own outcome.
In Section 5 we outline a more comprehensive failure
model that expands these ideas.

3.1 NetBill

NetBill [5, 21] is designed to support very low-cost
transactions involving electronic goods. One central
and distinguished claim of the NetBill protocol is that
it satisfies goods atomicity, and this will be the focus
of our analysis. In NetBill, all money-related activ-
ities are centralized at the bank and take the form
of transfers between accounts; consequently, arguing
money atomicity is straightforward.

Here, we use an abstracted and simplified version of
the protocol that captures atomicity properties. For
full details on the protocol see [5, 22].

The Protocol

The consumer C starts the protocol (Figure 1) by
sending the merchant M a goods request, to which
M responds with the goods encrypted with a one-
time key K. At step 3, C sends M an electronic
payment order (EPO) signed with C’s private key.
This EPO constitutes a fund transfer authorization,
and sending it to M marks C’s commit point. M
checks the validity of this EPO, endorses it, appends
K toit, and sends it to the bank B. This is the point
where M commits to the transaction. Including K
with the endorsed EPO is central to ensuring goods
atomicity. At step 5, B sends to M a receipt of the
fund transfer (which includes K). Then M forwards
this message to C. In case M does not forward the
message (either because of failure, bad management,



1. C— M: goods request
2. M->C:
3. C—-M:
4, M—B:
5, B> M:
6

M-C:

goods, encrypted with a kzy K

signed EPO (electronic payment order)
endorsed signed EPO, signed K

signed receipt (including K)

signed receipt (including K)

If C does not receive the signed receipt, C may contact B directly:

7. C—->B:

8. B—(C: signed receipt

transaction inquiry

Figure 1: The simplified NetBill protocol.

or attempted fraud), C can go to the bank for a copy
of this message, and hence obtain K?2.

NetBill in FDR

To model NetBill, we view each agent as a finite state
machine, and use CSP processes to encode them. A
CSP process denotes a set of sequences of events,
where an event represents a state transition of the
state machine; states are implicit.

Figures 2, 3, and 4 present simplified versions of
the consumer, the merchant, and the bank processes
respectively. Note that > is a form of sequential com-
position, |1 and [] are choice operators (with | |, the
choice is completely arbitrary, whereas [1 gives pref-
erence to unblocked processes), STOP denotes process
termination, ! and ? are the communication primi-
tives (for example, coutm!goodsReq sends the mes-
sage goodsReq on the channel coutm, and cinm?x
receives a message from channel cinm, and binds the
variable x to the message).

CSP uses a synchronous model of communication
between processes. Since we are modeling a dis-
tributed system, we need to simulate asynchronous
communication. For communication from agent a to
agent b, we use two channels aoutb and bina, and

2What if a corrupt merchant sends a bogus K7 In the
Netbill protocol, in step 4, the merchant sends a signed version
of K to the bank. Previously, in step 2, the merchant has sent
the goods (encrypted with K) to the consumer, and the hash
of those has been included in the EPO and signed by both the
merchant and the consumer. Hence, after the fact, the fraud
and responsible party can be detected and proven to other
parties. This is treated at length in [5, 22). Our analysis in
this paper does not consider the impact of bogus keys.

a process that reads anything from the first channel
and writes it to the second. This process can be eas-
ily modified to introduce communication failures as
needed.

Processes ABORT, SUCCESS, ERROR, NO_FUNDS,
NO_TRANSACTION, END and FAIL are mapped to the
CSP STOP process. We use them to improve read-
ability of the code.

Money and Goods Atomicity for NetBill

Recall the money conservation property given by the
sum in Formula 1 at the start of this section. Since
we do not have electronic coins, and we have only
have one run of the protocol, this property is satisfied
exactly when a debit is matched by a credit, or vice-
versa. In CSP, this can be specified as:

SPEC1 = STOP ||
((debitC -> creditM -> STOP) []
(creditM -> debitC -> STOP))

Note that the third component of the specifica-
tion, creditM —-> debitC -> STOP, could be omit-
ted, since in our specification of NetBill a debitC
always happens before creditM, if they ever hap-
pen. To check this specification using FDR, we first
combine the consumer, merchant and the bank pro-
cesses with an appropriate communication process,
and then hide all of the irrelevant events (the Ap-
pendix gives the details of the communication pro-
cess, process combination and event hiding); call the
resulting system SYSTEM1. Finally, we check that
SYSTEM1 is a refinement of SPEC1 with the FDR com-
mand line:



CONSUMER = ABORT || coutm !'goodsReq -> GOODS_REQ_SENT

GOODS_REQ_SENT = ABORT || cinm ?7x ->
(if x==encryptedGoods then ENCRYPTED_GOODS_REC
else ERROR)

ENCRYPTED_GOODS_REC = ABORT || coutm !epo -> EPO_SENT

EPO_SENT = (cinm ?x -> (if (x==paymentSlip) then SUCCESS
else if (x==noPayment) then NO_FUNDS
else ERROR)) []
(timeoutEvent —> coutb !transactionEnquiry -> BANK_QUERIED)

BANK_QUERIED = cinb ?x -> (if (x==paymentSlip) then SUCCESS
else if (x==noPayment) then NO_FUNDS
else (if (x==noRecord) then NO_TRANSACTION
else ERROR))

Figure 2: The consumer process.

MERCHANT = ABORT || (minc ?x -> (it x==goodsReq then GOODS_REQ_REC
else ERROR))

GOODS_REQ_REC = ABORT || (moutc !'encryptedGoods —> ENCRYPTED_GOODS_SENT)

ENCRYPTED_GOODS_SENT = ABORT || minc ?x —> (if x==epo then EPO_REC
else ERROR)

EPO_REC = ABORT || (moutb !endorsedEpo -> ENDORSED_EPO_SENT)

ENDORSED_EPO_SENT = FAIL ||
(mind ?x ->
(if (x==paymentSlip) or (x==noPayment) then
(FAIL ||
moutc 'x -> END)
else ERROR))

Figure 3: The merchant process.



BANK = WAIT_ENDORSED_EPO

WAIT_ENDORSED_EPO = binm ?x ->

(if x==endorsedEpo then
(OK_TRANSACTION ||
NOK_TRANSACTION)

else WAIT_ENDORSED_EPO)

OK_TRANSACTION = debitC -> creditM ->
boutm !paymentSlip —-> FINAL_BANK(paymentSlip)

NOK_TRANSACTION = boutm !'noPayment -> FINAL_BANK(noPayment)

FINAL_BANK(x) = binc 7y ->

(if y==transactionEnquiry then
boutc !x —> FINAL_BANK(x)
else FINAL_BANK(x))

Figure 4: The bank process.

Checkl "“SPEC1" "SYSTEM1"

Checkl is a two argument command that determines
whether its second argument is a failure/divergence
refinement of its first.

Goods atomicity for NetBill is more complex and
involves reasoning about the messages’ send and re-
ceive synchronization events: cinm.encryptedGoods
(this indicates C’s receipt of the message with
the encyptedGoods), cinm.paymentSlip (this in-
dicates C’s receipt of the paymentSlip message),
and cinb.paymentSlip (this indicates M’s receipt
of the paymentSlip message). Now, in order for
C to “receive” the goods, C must receive both the
encryptedGoods message and the encryption key (in-
cluded in the paymentSlip message). We can now
specify goods atomicity as follows:

SPEC2 =
STOP ||
(cinm.encryptedGoods —>
(stop ||
(debitC ->

creditM ->
((cinb.paymentSlip -> STOP) ||
(cinm.paymentSlip —-> STOP)))))

For simplicity, this specification is somewhat less
general than our previous definition of goods atomic-
ity (in particular, the above specification says that

goods must be paid for before they are received,
whereas the previous definition stated that goods are
received if and only if they are paid for and that the
order of receipt and payment does not matter).

Our NetBill model satisfies both SPEC1 and SPEC2;
the full FDR code and excerpts from the model check-
ing session appear in the Appendix.

3.2 A Simplified Digital Cash Proto-
col

The second example we investigate is a simplified
digital cash protocol based on the offline Digicash
protocols [3, 4]. (We have abstracted away a num-
ber of crucial components from the Digicash proto-
col.) In this protocol, electronic coins are withdrawn
from and deposited into bank accounts and used for
payments. Moreover, these payments are anonymous
for the consumer, because coins are “blinded” during
withdrawal. In contrast to NetBill, money atomicity
for this protocol is non-trivial, because money is not
centralized at the bank. We will focus our analysis on
money atomicity. We do not provide a formal anal-
ysis of goods atomicity since the protocol actually
violates this property (which we explain below).

The Protocol

Figure 5 contains our simplified digital cash proto-
col. The protocol consists of three parts: withdrawal



goods request with blinded coin
challenge for the blinded coin

response for the challenge

blinded coin + response for the challenge

1. C = B: withdrawal request
2. B=>C: coin

3. C—-M:

4. M —>C:

5, C—->M:

6. M —>C: goods

7. M- B:

8. B — M: deposit slip

Figure 5: Simplified digital cash protocol.

of the coin (steps 1 — 2), spending of the coin (steps
3 - 6), and coin deposit (steps 7 ~ 8). We now de-
scribe each step in turn. The consumer C starts the
protocol by requesting a withdrawal from the bank.
The bank B responds with an electronic coin of the
requested value. Before spending it, C' “blinds” the
coin to prevent the bank from tracing her payments.
To spend the coin, C sends the coin to merchant M,
and then responds to a challenge randomly selected
by M (importantly, C maintains certain secret infor-
mation about the coin so that only C can correctly
respond to a random challenge). M locally verifies
the consistency of the challenge/response pair, and
then sends the goods. Finally, M deposits the coin
by sending the coin and challenge/response pair to
B, who responds with a deposit slip, assuming the
coin is valid.

Observe that the essential part of spending the coin
is not sending the coin to M, but responding to M’s
challenge. A consumer must take care not to respond
to two different challenges for the same coin, because
this will be considered evidence of fraudulent double
spending: two challenge/response pairs for one coin
are (with very high probability) sufficient for the bank
to recover the identity of the consumer.

The protocol is clearly not goods atomic because M
can omit step 6 but still deposit the coin. Also, note
that the withdrawal part of the protocol (the first
two messages) actually consists of a cut-and-choose
protocol that involves a large number of message ex-
changes. These details are irrelevant for our analysis
and are omitted.

The Simplified Digital Cash Protocol in FDR

Figures 6, 7, and 8 present the consumer, merchant,
and bank processes in FDR. To provide a more realis-
tic modeling of the operation of the protocol, we have
expanded the protocol behavior outlined in Figure 5
to include:

e coin returns: the consumer may choose to return
coins to the bank for refund,

e fraud: the consumer and merchant can attempt
double spending and multiple presentation of the
same coin to the bank, and

e coin retention: the consumer may choose not to
spend a coin and instead keep it for future use.

Unfortunately, in the context of this slightly more
realistic system, a serious ambiguity arises. Consider
the following scenerio. A consumer withdraws a coin
from the bank and attempts to use the coin to pay
a merchant. However, as the consumer’s response
to the merchant’s challenge was in transit, the com-
munication network fails. The consumer is left in
an uncertain situation. Has the coin been spent? If
the merchant actually receives the response, then the
consumer should consider the coin spent, but if not,
then the coin is unspent. This is a critical issue for
money atomicity, because if the consumer makes the
wrong guess, then either money will be lost or she
could be accused of double spending. To establish
money atomicity, we allow the consumer to go to the
bank in this situation and see if the coin has been
spent; if it has not, she is eligible for a refund on the
coin. Of course this leads to a problem: the consumer
can spend the coin and then immediately go to the



bank and claim the coin may have been lost in tran-
sit and obtain a refund, and then moments later the
merchant appears coin in hand. In practice this issue
could be addressed by timeout/coin-lifetime manage-
ment. In our model, we abstract the details of how
this is solved and enter an “arbitration” state.

There are, however, two well-defined kinds of frand
that are detected and resolved in our model. The first
is when a consumer attempts to double spend a coin,
and the second is when a merchant attempts to de-
posit a coin twice. Both cases are detected by the
bank and respective events cFraud and mFraud are
triggered by the bank process. This is important,
because it allows us to talk about money atomic-
ity properties: in short, money atomicity holds when
there are no cFraud and mFraud events. We elaborate
further when we discuss money atomicity.

Our model includes only two challenge/response
pairs, whereas there are really billions of possi-
ble such pairs. However, the specific identities of
challenge/response pairs are immaterial: the criti-
cal property is the number of different challenges
to which the customer responds (in fact there are
only three important cases corresponding to zero,
one, or more than one consumer response). Hence
we consider just two “symbolic” challenge response
pairs. We also abstract the statistical arguments,
and simply state that if both of the symbolic chal-
lenge/response pairs are sent to the bank, then the
bank has proof of consumer double spending.

We remark that the bank process is somewhat com-
plicated because the bank must record information as
it proceeds. This is somewhat cumbersome in FDR,
and involves using process parameters. The main
process involved here is WAIT, which has three pa-
rameters, the first indicating whether the coin has
been deposited or returned, and the second and third
indicating which challenge/response pairs have been
seen.

Money Atomicity for Simplified Digital Cash
Protocol

Recall the money conservancy property given by the
sum in Formula 1. The following CSP specification
expresses this property in the context of the simplified
digital cash protocol:

SPEC3 = STOP ||
(debitC -> ((depositC ~> STOP) ||
(cKeepsToken -> STOP) ||
(depositM -> STOP)))

This specification holds in the presence of non-bank
communication failures and limited non-bank agent
failures. Surprisingly, it even holds in the presence of
consumer and merchant fraud.

Next consider the cash property component of
money atomicity. This states that possession of a
coin gives the possessor the right to spend and/or
deposit the coin. For C, this can be stated as:

SPECcashc =
STOP ||
(cinb.token -> ((tokenSpent -> STOP) ||
(cKeepsToken -> STOP) ||
(depositC —> STOP))).

and for M we have:

SPECcashm =
STOP ||
(mGetsToken —>
((depositM-> STOP) ||
(mGetsRefundSlip -> STOP))).

C’s cash property does in fact hold in the presence
of fraud (that is, fraud by M cannot affect C’s cash
property; M can fail to deliver the goods, but that
is not a violation of the cash property, but of goods
atomicity). However, M’s cash property does not
hold: it can be violated by C’s fraud. When FDR is
applied to this specification, it generates the following
counterexample:

coutb.tokenReq, binc.tokenReq, debitC,
boutc.token, cinb.token, coutm.goodsReq,
minc.goodsReq, moutc.challengeA,
cinm.challengeAl, coutm.responseAl,
minc.responseA, mGetsToken, moutc.goods,
moutb.responseA, binm.responsei, depositM,
boutm.depositSlip, minb.depositSlip,
cinm.goods, coutm.goodsReq, minc.goodsReq,
moutc.challengeB, cinm.challengeB,
coutm.responseB, minc.responseB, mGetsToken,
moutc.goods, moutb.responseB,
binm.responseB, boutm.alreadyDeposited,
¢Fraud, minb.alreadyDeposited, cinm.goods,
tokenSpent

This sequence of events corresponds to the scenario
where a consumer double spends a coin: after finish-
ing a successful transaction with the merchant (shown
by events mGetsToken, deposith, and cinm.goods),
the consumer uses the coin again (mGetsToken), gets
the goods (cinm.goods), but instead of successfully



CONSUMER = ABORT || (coutb !tokenReq -> TOKEN_REQ_SENT)

TOKEN_REQ_SENT = cinb ?x ->
it x==token then (USE_TOKEN [] RETURN_TOKEN [ XEEP_TOKEN)
else ERROR

USE_TOKEN = coutm !goodsReq —-> GOODS_REQ_SENT
KEEP_TOKEN = cKeepsToken -> END

GOODS_REQ_SENT = cinm ?x -> (if (x==challengeA) then
(coutm !'responseA -> TOKEN_USED)
else (if (x==challengeB) then
(coutm !responseB -> TOKEN_USED)
else RETURN_TOKEN)) []
timeoutEvent —-> RETURN_TOKEN

TOKEN_USED = (cinm 7x ->
(if x==goods then (tokenSpent —> C_MAY_BE_FRAUD)
else RETURN_TOKEN)) []
(timeoutEvent —-> RETURN_TOKEN)

RETURN_TOKEN = coutb !token -> cinb 7x —->
(if x==refundSlip then REFUND_RECEIVED
else if x==depositSlip then (tokenSpent —> ARBITRATION)

else ERROR)

C_MAY_BE_FRAUD = END || USE_TOKEN

Figure 6: The consumer process for the simplified digital cash protocol.



MERCHANT = ABORT || WAITING_GOODS_REQ(none)

WAITING_GOODS_REQ(previousResponse) = minc 7x ->
(if (x==goodsReq) then
(if previousResponse==none then (CHALLENGE_A [0 CHALLENGE_B)
else if previousResponse==responseA then CHALLENGE_B
' else CHALLENGE_A)
else ERROR)

CHALLENGE_A

moutc !challengeA-> WAIT_FOR_RESPONSE(responseA)

CHALLENGE_B

moutc !challengeB-> WAIT_FOR_RESPONSE(responseB)
WAIT_FOR_RESPONSE(response) =

minc ?x -> (if x==response then (mGetsToken —> SEND_GOODS(x))
else moutc !'badResponse —> NO_TRANSACTION)

SEND_GDODS (response) = (moutc !goods —> DEPOSIT_TOKEN(response)) []
DEPOSIT_TOKEN(response)

DEPOSIT_TOKEN(response) = moutb !response -> WAIT_FOR_BANK(response)

WAIT_FOR_BANK(response) = minb ?x ->
if x==depositSlip then M_MAY_BE_FRAUD(response)
else if x==refundSlip then (mGetsRefundSlip —-> STOP)
else if x==alreadyDeposited then FRAUD_DISCOVERED
else ERROR

M_MAY_BE_FRAUD(response) = END ||

DEPOSIT_TOKEN(response) ||
WAITING_GOODS_REQ(response)

Figure 7: The merchant process for the simplified digital cash protocol.



BANK = binc 7x ->
(if x==tokenReq then (boutc !badBalance -> STOP []
debitC -> boutc !token —> WAIT(O, 0, 0))

else ERROR)

WAIT(cashedFlag, responseA, responseB) =
binc 7x ->
(if (x==token) then
(it (cashedFlag==0) then
(depositC -> boutc !refundSlip —> WAIT(1, 0, 0))
else if (responseA==1 or responseB==1) then
(arbitration -> boutc !depositSlip —>
WAIT(cashedFlag, responseA, responseB))
else WAIT(cashedFlag, responseA, responseB))
else WAIT(cashedFlag, responseA, responseB)) []
binm ?x ~>
(if (x==responseA) then
(if (cashedFlag==0) then
(depositM -> boutm !depositSlip ->
WAIT(1, 1, responseB))
else if (responseA==1) then
(boutm !'alreadyDeposited —> mFraud ->
WAIT(cashedFlag, responseA, responseB))
else if (responseB==1) then
boutm !alreadyDeposited-> cFraud ->
WAIT(cashedFlag,responseA,responseB)
else (arbitration -> boutm !refundSlip ->
WAIT(cashedFlag, responseA,responseB)))
else if (x==responseB) then
(it (cashedFlag==0) then
(depositM -> boutm !depositSlip —>
WAIT(1, responseA, 1))
else if (responseB==1) then
(boutm 'alreadyDeposited —> mFraud ->
WAIT(cashedFlag, responseA, responseB))
else if (responseA==1) then
(boutm 'alreadyDeposited -> cFraud ->
WAIT(cashedFlag,responseA, responseB))
else (arbitration -> boutm !'refundSlip ->
WAIT(cashedFlag,responseA,responseB)))
else WAIT(cashedFlag, responseA, responseB))

Figure 8: The bank process for the simplified digital cash protocol.



depositing the coin, the merchant receives a mes-
sage indicating that the coin in question had been
spent before (boutm.alreadyDeposited), and con-
sumer fraud (cFraud) is revealed. (For further de-
tails, see the Appendix.)

However, in the absence of revealed fraud (i.e. in
the case where there are no (cFraud) or (mFraud)
events), M’s cash property is satisfied. We express
this as follows:

SPECcashm’ =
STOP |1
((mGetsToken ->
((depositM -> STOP) ||
(mGetsRefundSlip -> STOP))) ||
FRAUD)

where FRAUD denotes processes that contain at least
one fraud event, cFraud or mFraud, and are otherwise
arbitrary. Using FDR we checked that indeed the
unmodified protocol satisfies this modified property.

4 Summary and Discussion of
Our Contributions

We have presented a model checking approach for
verifying atomicity properties of electronic commerce
protocols. Until now, such properties have been rea-
soned about using informal and ad hoc methods.
However, these methods have not been adequate and
numerous significant errors have been made in the
design of electronic commerce protocols. Not only
are the protocols themselves moderately complex and
subtle, but the properties expected and/or desired
are often only partially specified and not fully un-
derstood. Model checkers can address both aspects
of this problem: we can write precise definitions of
the behavior of a protocol (at any desired level of
abstraction) and then formulate protocol properties
and test that they are satisfied. If a property is not
satisfied, a model checker will give a counterexample,
which we can use to step through the execution of
the protocol to better understand its behavior. This
kind of interactive experimentation is a very power-
ful tool for debugging and modifying both protocols
and the properties we expect to hold. In our expe-
rience, the most obvious specification of a property
is often incorrect or inadequately expresses the prop-
erty, and that by experimenting, we frequently obtain
more precise and stronger properties.

We have discussed here two properties: money
atomicity and goods atomicity. We believe that these
techniques will extend to other properties such as
anonymity, transactional properties (consistency, iso-
lation, durability), nonrepudiation, certified delivery,
etc. Similarly, though we demonstrated our approach
on only two protocols, they are radically different
from each other; model checking atomicity and other
properties should easily be applicable to other elec-
tronic commerce protocols.

In our modeling of NetBill and the simple digital
cash protocol, we have employed a number of abstrac-
tions. For example, we have ignored the low-level de-
tails of the the underlying cryptographic mechanisms
and just treated them as a blackbox (this is the stan-
dard “perfect encryption” assumption). In fact our
model goes one step further: we have chosen not to
even mention encryption/decryption/signature oper-
ations so that we could develop as simple a model as
possible and focus on atomicity properties.

A second example of a reasonable abstraction we
applied is in modeling the challenge/response pairs in
the electronic cash protocol: many billions of different
pairs were represented as just two pairs. As a third
example, recall that we modeled NetBill and the elec-
tronic cash protocol assuming just a small number of
players: there was only one bank, one consumer, and
one merchant; moreover, we consider only one run of
the protocol. In practice, we would expect these pro-
tocols to be used in huge networks with large numbers
of consumers, merchants and banks, with multiple
interleaved runs of the protocols. Roscoe and Mac-
Carthy justify similar simplifications in their work us-
ing FDR to model check data-independent properties
of concurrent processes [20].

In summary, finding the right abstractions is essen-
tial to finding an effective representation of a protocol
for model checking. The goal is to map an intractable
problem into a tractable abstracted problem in such
a way that proving something about the abstracted
problem says something meaningful about the real
problem at hand.

5 Future Work

We plan to investigate some of the assumptions made
and abstractions used in our modeling of NetBill and
the electronic cash protocol. For example, suppose we
consider multiple merchants, consumers, and banks?
Multiple runs of a protocol? Multiple transaction



values? What number (of players, runs, values) is
too large for current model checking technology to
handle?

Could we provide a formal justification for some of
the abstractions we used? For example, can we prove
that if goods atomicity holds for one merchant and
one consumer, then it holds for multiple merchants
and consumers? We treated the cryptographic com-
ponent of the protocol as orthogonal to our analysis
for atomicity. We doubt that analyzing an enriched
FDR model to include the cryptographic component
would be tractable; however, we believe that it may
be possible to use other model checking methods to
address some cryptographic aspects. Then, we may
be able to factor the problem of whether, say, NetBill
is goods atomic, into two problems: (a) determining
whether the cryptographic aspects of NetBill are se-
cure, and (b) determining whether Netbill is goods
atomic, assuming its cryptographic aspects are secure
(which is essentially what we have proved in this pa-
per).

Finally, we plan to provide more comprehensive
failure modeling. In this paper we have used the fol-
lowing informal principle: failures by one agent can
interfere with that agent’s atomicity properties, but
they must not interfere with another agent’s proper-
ties. We can formulate this is a more precise manner
as follows. First, we analyze the atomicity properties
that we wish to establish, and associate components
of these properties with individual agents. For ex-
ample, goods atomicity can be stated as: “if the con-
sumer pays then the consumer gets the goods” and “if
the consumer gets the goods then the merchant gets
paid”. The first part of this statement is the con-
sumer’s property, and the second is the merchant’s.
Then, for each agent, we consider a model in which
the agent does not fail but other agents fail arbitrar-
ily, and we seek to establish those components of the
atomicity properties associated with the non-failed
agent. Even more ambitiously, limited bank failure
is another important—and realistic—aspect to model
for future work.
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A Appendix

We present the full code for our model of NetBill and
the digital cash protocol (lines beginning with “-” are
comments). We also give some excerpts of the FDR
verifications.

A.1 NetBill

-- The data types DATAxy are the set of data
-- that are transmitted from the principal x
~-- to the principal y;

DATAmc = {noPayment, paymentSlip,
encryptedGoods}

DATAbc = {noPayment, paymentSlip, noRecord}

DATAcm = {goodsReq, epo}

DATAcb = {transactionEnquiry}

DATAbm = {paymentSlip, noPayment}

DATAmb = {endorsedEpo}

—— The names of the channels are of the form

x(in/out)y, where in/out refers to the
direction (relative to x), and y is the
other party of the communication;

pragma channel coutm : DATAcm
pragma channel coutb : DATAcb
pragma channel moutc : DATAmc
pragma channel moutdb : DATAmb
pragma channel boutc : DATAbc
pragma channel boutm : DATAbm
pragma channel minc : DATAcm
pragma channel binc : DATAcb
pragma channel cinm : DATAmc
pragma channel binm : DATAmb
pragma channel cinb : DATAbc
pragma channel minb : DATAbm

pragma channel creditM, debitC, timeoutEvent

[The consumer process CONSUMER:
as given in the paper.]

[The merchant process MERCHANT:
as given in the paper.]

[The bank process BANK:
as given in the paper.]

SUCCESS = STOP
ERROR = STOP



NO_FUNDS = STOP
NO_TRANSACTION = STOP

END = STOP
ABORT = STOP
FAIL = STOP

—- The communication channels: only those
-- involving the bank are reliable.

COMMcm = [Jx: DATAcm €
(coutm ?7x ->
(COMMcm []
(minc !x -> COMMcm)))
[Dx: DATAcb €
(coutb 7x ->
((binc 'x -> COMMcb)))
[(Ix: DATAmc ©
{moutc 7x —>
(COMMmc []
(cinm !'x -> COMMmc)))
[Ox: DATAmb ©
(moutb 7x ->
((binm 'x -> COMMmb)))
[Jx: DATAbc €
(boutc ?x —>
((cinb !x -> COMMbc)))
[Ix: DATAbm €
(boutm ?x ->
((minb !x -> COMMbm)))

COMMcDb

COMMmc

COMMmb

]

COMMbc

COMMbm

COMM = COMMcm [1{}!] COMMcb [|{}|] COMMmc
C1{¥1] coMMmb [I{}I1] COMMbc
CI1{}!] cOMMbm

-- The Whole Netbill System

c10 = {| coutm, coutb, cinm, cinb |}

MIO = {| moutc, moutb, minc, minb |}

BIO = {| boutc, boutm, binc, binm |}

BINT = {debitC, creditM}

BTOT = union(BIO, BINT)

COMMIO = union(CIO, union(MIO, BID))

COMMIO’ = diff(COMMIO,

{cinm.encryptedGoods,

cinm.paymentSlip,
cinb.paymentSlip})

1

SYSTEM1 =

((CONSUMER [|{}!] MERCHANT [|{}|] BANK)

{1 cOMMIO |] COMM)
\ union(COMMIO, {timeoutEvent})

SYSTEM2 =
((CONSUMER [|{}|] MERCHANT [I{}|] BANK)
[ cOMMIO |] COMM)
\ union(MIO,
union(BIO,
union({|coutm, coutb |},
{cinm.noPayment,
cinb.noPayment,
cinb.noRecord,
timeoutEvent})))

SPEC1 = STOP |~|
((debitC -> creditM -> STOP) []
(creditM -> debitC -> STOP))

SPEC2 = (STOP |~|
(cinm.encryptedGoods -> (STOP |~|
(debitC -> creditM ->
((cinb.paymentSlip -> STOP) |~|

(cinm.paymentSlip -> STOP))))))

The check of SPEC1 generated the following FDR

output:

£dr> Checkl "SPEC1" "SYSTEM1";

SPEC1 ....(5 states)

CONSUMER .......... (10 states)
MERCHANT ..........c000n (15 states)
BANK ......... (10 states)

COMMcnm . (3 states)
COMMcb . (2 states)
COMMmc . (4 states)
COMMmb . (2 states)
COMMbc . (4 states)
COMMbm . (3 states)
readalphabet: :
Alphabet contains 3 events [up to 998]
6 configuration masks in 6 transitions
3
6 reachable configurations
0
nfcompact :
compacting 4 state normal form:
now 4 states
87 configuration masks in 67 transitions
139
199 reachable configurations
1 The implementation does indeed
refine the normal form.
Checked 199 pairs.
Refinement check succeeded



No failure in this context! cI0 = {| coutm, cinm, coutb, cinb |}
val it = - : (label,selector,cause) Context MIO = {| moutc, minc, moutb, minb |}
fdr> BIO = {| boutc, boutm, binc, binm |}
COMMIO = union(CIO, union(MIO, BIO))
COMMIO’ = diff(COMMIO, {cinb.token})

A.2 A Simplified Digital Cash Proto- __ 5. 04e1 for Money Atomicity
col
SYSTEM3 =
((CONSUMER [|{}!] MERCHANT [|{}|] BANK)
[l COMMIO |] COMM)
\ union(COMMIO,
{goodsReceived, mGetsRefundSlip,
mGetsToken, tokenSpent, mFraud,
cFraud, timeoutEvent,

-~ The data types DATAxy are the set of data
—— that are transmitted from the principal x
-- to the principal y;

DATAcb = {tokenReq, token}

DATAcm = {responseA, responseB, goodsReq}
DATAbc = {token, badBalance, badToken,

depositSlip, refundSlip} arbitration})

DATAbm = {refundSlip, depositSlip, .
alreadyDeposited} SYSTEMc =

DATAmc = {goods, badResponse, challengeA, ((CONSUMER [1{}1] MERCHANT [|{}|] BANK)
challengeB} [l cqnulo 11 coMM)

DATAmb = {responseA, responseB} \ union(COMMIOQ’,

{goodsReceived, debitC,
depositM, mGetsToken,
mGetsRefundSlip, timeoutEvent,
arbitration, mFraud, cFraud})

[Communication channels:
as given for NetBill.]

SYSTEMm =
((CONSUMER [|{}|] MERCHANT [|{}|] BANK)
[l COMMID |] COMM)
\ union(COMMIO,

{goodsReceived, debitC, depositC,
tokenSpent, cKeepsToken,
timeoutEvent, arbitration,
mFraud, cFraud})

pragma channel goodsReceived, debitC,
depositC, depositM, mFraud, cFraud,
mGetsRefundSlip, tokenSpent,
mGetsToken, cKeepsToken,
timeoutEvent, arbitration

{The consumer process CONSUMER:
as given in the paper.]

SYSTEMm’ =
((CONSUMER [1{}1] MERCHANT [I{}|] BANK)
[l coMMIO |1 COMM)
\ union(COMMIO,
{goodsReceived, debitC, depositC,
tokenSpent, cKeepsToken,
timeoutEvent, arbitration})

[The merchant process MERCHANT:
as given in the paper.]

[The bank process BANK:
as given in the paper.]

ABORT = STOP

END = STOP )

REFUND_RECEIVED = STOP SPEC3 =
STOP |~|

ERROR = STOP

ARBITRATION = arbitration —> STOP
NO_TRANSACTION = STOP
FRAUD_DISCOVERED = STOP

(debitC -> ((depositC -> STOP) 1=
(cKeepsToken —> STOP) |~|
(depositM -> STOP)))

SPECcashc =
sTOP -1
(cinb.token -> ((tokenSpent -> STOP) |~|

[COMM: as given for NetBill.]

—- The communication events



(cKeepsToken -> STOP) |~|
(depositC -> STOP)))
SPECcashm =
STOP |~ |
(mGetsToken ->
((depositM-> SPECcashm) |~|
(mGetsRefundSlip -> SPECcashm)))

SPECcashm’ =
STOP |-|
((mGetsToken ->
((depositM-> STOP) |~ |
(mGetsRefundSlip —> STOP)))
[~| FRAUDM)

FRAUDM = (mGetsToken -> FRAUDM) |~|
(mGetsRefundSlip —> FRAUDM) 17|
(depositM -> FRAUDM) |~|
(mFraud -> ANYM) [~|
(cFraud -> ANYM)

ANYM = (mGetsToken —> ANYM) |~|
(mGetsRefundSlip —> ANYM) |~|
(depositM —-> ANYM) |~|
(mFraud -> ANYM) [~|
(cFraud -> ANYM) |~|
STOP

The check of SPEC1 generated the following FDR
output (and counter-example):

£dr> Checkl "SPECcashm" "SYSTEMm";

SPECcashm ....(6 states)

CONSUMER ......covvnvecone- (16 states)
MERCHANT ....c.vtveeenncnncnnns (24 states)
BANK ....ccvvivvernnns (19 states)
COMMcm . (4 states)

COMMcb .(3 states)

COMMmc . (5 states)

COMMmb . (3 states)

COMMbc . (6 states)

COMMbm . (4 states)

readalphabet:

Alphabet contains 4 events [up to 998]
7 configuration masks in 7 transitions
3
6 reachable configurations
0
nfcompact :

compacting 2 state normal form:

now 2 states
174 configuration masks in 149 transitions
120
1002 reachable configurations
1

SYSTEMm
Interface={|{ldepositM,mGetsRefundSlip,
mGetsToken,tick|}1}
has behaviour
After <tau,tau,tau,tau,tau,tau,tau,tau,tau,
taun,tau,tau,tau,mGetsToken,tau,tau,
tau,depositM,tau,tau,tau,tau,tau,
tau,tau,tau,tau,tau,tau,mGetsToken,
tau,tau,tau,tau,tau,tau,tau,tau,tau>
refuses {|{|depositM,mGetsRefundSlip,
mGetsToken,tick|}|}
Accepts only {{l1}1}
Contributions:
Component 1
((CONSUMERL!{| |} | JMERCHANT)
[1{11}1]1BANK)
[1{|coutdb, coutm,moutc,moutb,boutc, boutm,
cinb,cinm,minc,minb,binc,binm|}|]COMM
Interface={|{|coutb, coutm,moutc,moutb,boutc,
boutm,cinb,cinm,minc,minb,
binc,binm,debitC,depositC,
depositH,mFraud,cFraud,
mGetsRefundSlip, tokenSpent,
mGetsToken, cKeepsToken,
timeoutEvent,arbitration,
tick|}}
has behaviour
After <tau,tau,coutb.tokenReq,binc.tokenReq,
debitC,boutc.token,cinb.token,
coutm.goodsReq,minc.goodsReq,
moutc.challengeA,cinm.challengeA,
coutm.responsel,minc.responsei,
mGetsToken,moutc.goods,
moutb.responsel,binm.responsel,
depositM,boutm.depositSlip,
minb.depositSlip,tau,cinm.goods,tau,
coutm.goodsReq,minc.goodsReq,
moutc.challengeB,cinm.challengeB,
coutm.responseB,minc.responseB,
mGetsToken,moutc.goods,
moutb.responseB,binm.responseB,
boutm.alreadyDeposited,cFraud,
minb.alreadyDeposited,cinm.goods,tau,
tokenSpent>
refuses {|{|coutb,coutm,moutc,moutb,boutc,



boutm,cinb,cinm,minc,minb,binc,
binm,debitC,depositC,deposith,
mFraud, cFraud ,mGetsRefundSlip,
tokenSpent ,mGetsToken,
cKeepsToken,timeoutEvent,
arbitration,tick|}|}

Accepts only {{lI}!}

it = - : (label,selector,cause) Context

£dr>



