A Study of Twelve Specifications
of the Library Problem

Jeannetts M. Wing
26 July 1987
- CMU-CS-87-142

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory under contract F33615-84-K-1520. Additional
support was provided in part by the National Science Foundation under grant DMC-8519254. '

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government. '

A Study of Tweive Specifications of the Library Problem
Jeannette M. Wing

Department of Computer Science
Carmnegie Mellon University
~~Pittsborgtt, PA 152138890
(412) 268-3068
wing@k.cs.cmu.edu

26 July 1987

Abstract

Tweive workshop papers [25] include an informal or formal specification of Kemmerer's library problem
[28]. The specifications range from being knowledge-based to logic-based to Prolog-based. Though the
statement of the informal requirements is short and “simple,” twelve different approaches led to twelve
different specifications. All twelve, however, address many of the same ambiguities and
incompletenasses, which we describe in detail, present in the library problem. We conclude that for a
given set of informal requirements, injecting domain knowledge helps to add reality and complexity to it,
and formal techniques help to identify its deficiencies and clarify its imprecisions.

A Study of Twelve Specifications of the Library Problem
Jeannette M. Wing

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890 -

26 July 1987

1 Introduction

The purpose of this paper is to summarize and compare twelve different papers that address the same
set of informal requirements—Kemmerer's library problem-—as assigned to participants of the Fourth
International Software Specification and Design Workshop held in Monterey, California in April 1987.
Some of the specifications contained in the papers are formal; some, informal. Some authors followed a
particular specification method or used a particular spacification language. This paper focuses on what
each of the methods or languages elucidates of the problem statement.

1.1 History of problem

.. Richard Kemmerer-first-posed.the library preblem.in 1981-as.pant.of-his-formal-specifications class at the
University of Califomnia at Santa Barbara. He introduced the problem to Susan Gerhart in 1982 when they
team taught an extension class at the University of California at Los Angeles. In 1984 Gerhart used the
problem as a focal point of discussion for the “tools” group during the second meeting of this workshop
(under a different title) that took place in Orlando, Florida [1]. In 1985 Kemmerer's IEEE Transactions on
Software Engineering paper on testing formal specifications included an Ina Jo specification of the
problem [12]. Finally, in 1986 in the Call for Papers [28], the organizers of the fourth workshop
encouraged authors to address a set of four problems, one of which was the library problem, in their
position papers. Of the final batch of papers published in the proceedings of the workshop [25], twelve
addressed the library problem. This paper discusses only those twelve, although other library
specifications have been written, in particular Kemmerer's in ina Jo, Gerhart’s in Affirm {20] (unpublished),
and King and Sorensen's in Z [31] (unpublished).

1.2 Informal Requirements

What follows is the statement of the library problem as it appears in the Call for Papers (K-Call) [28].
Consider a small library database with the following transactions:
1. Checkout a copy of a book / Return a copy of a book;

2. Add a copy of a book to the library / Remove a copy of a book from the library;
3. Get the list of books by a particular author or in a particular subject area;
4. Find out the list of books currently checked out by a particular borrower;
5. Find out what borrower last checked out a particular copy of a book.
There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4, and 5 are

restricted to staff users, except that ordinary borrowers can perform transaction 4 to find out the list of
books currently borrowed by themselves. The database must also satisfy the foilowing constraints:

1. All copies in the library must be available for chackout or be checked out.

2. No copy of the book may be both available and checked out at the same time.

Language/

Authors Formality | Lifecycle Phase | Key Idea Project

requirements- Structured Analysis
Kerth informal informal spec. and human interface

requirements-)
Fickas Al formal spec. usage scenarios KATE
Rich, Waters, requirements- _ Progran)mers
Reubenstein Al formal spec. Requirements Apprentice | Apprentice
Lubars. LAl -{.spec.-design . . .-{ design.schema
Dubois, requirements-
van Lamsweerde | logic formal spec. meta-specification

requirements-
Wing logic formal spec. benefits of formalism Larch
Rudnicki logic analysis testing and proving Ina Jo

sufficient-completeness

Yue logic analysis and pertinence GIST
Levy, Piganiol, logic and | requirements-
Souquieres executable | formal spec. muitiple methods SASCO
Terwilliger, logic and ' -
Campbell executable | design-code Anna and Prolog PLEASE

requirements-
Lee, Sluizer executable | formal spec. models of behavior SXL

‘ ' rapid prototyping and

Rueher executable | design-code graphical Prolog Prolog

Figure 1: Summary of the Papers

2.1.1 Formality

A specification is formal if it has a precise and unambiguous semantics. It is informal otherwise. A
precise and unambiguous semantics is given by mathematics, usually in the form of a set of definitions, a
set of logical formulae, or an abstract model. These three approaches to giving formal semantics roughly
correspond to the denotational, axiomatic, and operational approaches of giving semantics to programs.
if an abstract model of the specification is a machine-executable interpreter, e.g., a Prolog interpreter, we
consider the (formal) specification to be executable.!Usually a formal specification is written in a concrete
language, which is like adding “syntactic sugar” on top of mathematics. If this language has a precisely
defined syntax and semantics, then a specification written in it is formal.

Informality is introduced by the reliance on English and/or uninterpreted diagrams in writing and giving the
semantics of the specification. Of the four informal specifications presented in the papers, three use
domain knowledge (indicated as “Al” in the table). All four are presented with tool support in mind so that
some amount of machine processing, e.g., pattern-matching on keywords, could be performed on the

1L ess obvious is that a specification in logic may also be executable, aithough its ‘execution’ may involve the search of a solution

space, and hence may be infeasible for examples of nontrivial dimensions (1].” In this paper, we do not classify such specifications
as executable. .

functions are selected; and (3) a textual description of the operational behavior of a user interface,
including what normal or undesirable events occur when keystrokes are entered or mouse buttons are
clicked.

Fickas [7] describes the components of a system, KATE, used to automate the process of transforming
informal requirements into a formal specification. The paper shows how to criticize refinements of
informally stated requirements through the use of domain knowledge, usage scenarios, and intermediate
summaries. Fickas also relies on human experts, e.g., professional librarians, to aid in critiquing a
specification and to make KATE smarter by enlarging its knowledge dgtabase.

In the context of the ongoing Programmer's Apprentice research project, Rich, Waters, and
Reubenstein [26] discuss using a Requirements Apprentice (RA) to assist a user in converting an initial
informal requirement into a formal specification. The RA relies on simple deductive methods applied to
extensive domain knowledge represented as cliches. For example, the library example uses cliches
about repositories (where objects like books are stored), information systems (programs for storing and
reporting data), and tracking systems (programs for keeping track of the current state of objects like the
physical library repository).

Lubars [19] addresses design reusability by defining abstract graph representations of designs and then
. -instantiating them te-yield specific designs. In-particular,-he instantiates-an inventory-centrol schema with
domain knowledge (library databases) to model the library.

Dubois and van Lamsweerde [5] discuss the meta-issue of how to specify the process of specifying.
Based on a dual object-model and operation-model of specification, they suggest two meta-models in
which the process of specification is made explicit: the process-model captures the steps used by a
specifier while constructing a specification; and the method-mode/ captures the control information and
rationale used for the steps taken, yielding an overall specification strategy.

Wing [33] demonstrates the benefits of formal specifications by identifying numerous problems with
informal statements of requirements such as in the library example. She presents a specification of the

library using Larch, which combines algebraic and predicative specification techniques into one
framework.

Rudnicki [27] argues for detecting errors in specifications by both testing and proving properties about
them by hand (his emphasis). Each test case is related to some property that might best be simulated
through symbolic execution of the specification or might more easily be provable from the specification
itself. His specification is based on Kemmerer's Ina Jo specification.

Yue [34] formally defines two properties, sufficient completeness and pertinence, both with respect to a
set of goals. They capture the notion of whether a specification contains enough, but no more than
necessary, information to achieve the goals. He discusses how to analyze a specification in terms of
these properties, using a GIST specification of the library problem as an example.

Like Dubois and van Lamsweerde, Levy, Piganiol, and Souquieres [16] are interested in the
specification process itself. They briefly describe SASCO, a system for supporting the evolution of an
informal description into a formal specification. Through operations like refinement, enrichment, reuse,
and abstraction, SASCO supports a multi-method approach to specification, where method means a

Authors Orientation | Moduiarity | Readability
Kerth operation graphics
Fickas operation
Rich, Waters,
Reubenstein operation
Lubars operation schemata
Dubois,
van Lamsweerde | both yes
Wing data yes statecharts
Rudnicki operation
Yue operation
Levy, Piganiol,
- Souquieres operation yes
Terwilliger,
Campbell operation yes
Lee, Sluizer operation
Rueher ~ |data | graphics

Figure 2: Summary of the Specifications

and Rueher focus on data. Dubois and van Lamsweerde, and Wing specify the semantics of data in
terms of algebraic abstract data types. Since Rueher's ultimate concem is to transform a high-level
design into code, he generates from his Prolog specification a high-level design consisting of Ada
package definitions for types; data semantics are still in terms of Prolog predicates. The other
specifications focus more on specifying the effects of the operations, and not the properties of the data.
Note that this orientation could be attributed to the operational (transactional) presentation of K-Call, and
not on the particular orientation of the authors’ specification method.

in tact, the orientation of a specification method may be different from the orientation of a resulting
specification. For example, contrary to what the table may imply, two other specification methods could
be used in a way to generate specifications that are just data-oriented or both operation- and data-
oriented. As previously mentioned, Levy et al. support a muiti-method approach; the user is free to
choose one or design his or her own. Also, although Terwilliger and Campbell's actual specification

focuses only on the operations of interest, PLEASE’s use of Anna, and hence Ada, could be used in a
data-oriented manner.

For large, complex, and realistic systems, favoring one orientation over the other is likely to be too
simplistic. A dual specification method (Dubois and van Lamsweerde), or more generally, a muiti-
methods approach (Levy et al.), would be more appropriate. Giving a formal meaning to a specification

that results from a mix of methods remains a challenge and is of current interest in the research
community.

Authors library | user| book available | last checked out
Kerth yes =2 | book # copy
Fickas >2 redundant | last = current
Rich, Waters,
Reubenstein yes book # copy
Lubars yes last = current
Dubois,

. |vanlamsweerde |yes .>.2 .|books.copy | =>.inlibrary.
Wwing >2 | book = copy | = in library | last = current
Rudnicki =2 |book # copy | redundant
Yue yes book # copy
Levy, Piganiol, -
Souquieres yes =2 | book # copy | = in library
Terwilliger,
Campbell =2 | book = copy | = in library | last = current
Lee, Sluizer yes =2 |book # copy | => in library | last # current
Rueher yes |=2 |book=copy {=> in library |last # current

Figure 3: Ambiguities

3.1.1 What is a library?)

The table indicates with a “yes” which authors explicitly distinguish between a library database and the
entire library system. A library database includes records of books (e.g., author and title, and perhaps
copy number) and records of users (e.g., name and status). Transactions are performed on the database
explicitly by some implicit set of users. An entire library system includes not only a library database (also
called “inventory,” “repository,” or “card-catalog”), but also the people using the library, the books on the
shelves, and the transactions involving all these objects.

The distinction between a library database and a library system arises from deciding what of the concept
of the library is part of the specificand (the library) and what is part of the specificand’s environment[10].
If the library is just the “database,” then the environment must include the people who have access to the
database, i.e., the people who perform the transactions on it. If the library is the entire “system,”
including the people (and books), then the environment of the database becomes a part of the library
system itself; the library’s environment would then be the rest of the university (if a university library), or
the other public services (if a public town library). Though some of the authors discuss this ambiguity,
none of the specifications makes clear the distinction between the specificand and its environment. In

fact, the GIST specification language [6], used by Yue, models “closed-systems” which by definition both
a system and its immediate environment.

11

Another possibility exists (Wing): K-Call lacks Kemmerer's original fourth constraint which states that a
user may have only one copy of a book checked out at once. This constraint is consistent with the
informal statement of Transaction 4 in K-Call since now it would be clear that the transaction need not be
concerned with retuming copy numbers as well as book identities (author and title).

3.1.4 What does “‘available’” mean?
Two papers (Rudnicki, Fickas) consider Constraints 1 and 2 as stating the same thing (indicated as
“redundant” in the table). A book is either available or checked out; it cannot be both.

Other authors (see “=> in library” in the table), however, distinguish between not only whether a book is
available or not, but whether it is even associated with the library at all (it could be in a bookstore or
privately owned). Thus, if a book is available (or checked out), it must be associated with the library.
There may be books not associated with the library that are neither available nor checked out. This
interpretation is consistent with Constraints 1 and 2, yet do not cause one to be a restatement of the
other. -

As an aside, Fickas notes that besides being available or checked out, there are other states, such as
being lost or stolen, that a library book may be in.

3:1:5'What does “last checked out’’ mean? e

Fickas's professional librarian notes that of the books that are on the shelves it is not interesting to find
out who last borrowed them so “last” must mean “currently” (last = current). Three others authors also
equate the notion of “last checked out” with “currently checked out,” although a distinction is implied by
the difference in wording between Transactions 4 and 5. Equating the notions means that Transaction 5
returns a current borrower.

Lee and Sluizer, however, interpret “last checked out” to be different from “currently checked out” (last #
current) by making the set of books currently checked out a subset of books that are last checked out. If
someone currently has a book checked out, that person must aiso be the last person to have checked out
the book. Transaction 5 returns either the current borrower if the book is checked out, or the last
borrower if the book is not checked out.

Rueher also interprets “last checked out” to be different from “currently checked out.” His Transaction 5,

however, faithfully reflects the informal specification and retums the last borrower of only available books
(and no current borrowers).

3.2 Incompletenesses

There are many kinds of incompletenesses in the informal requirements. The table in Figure 4
summarizes the six different incompletenesses we discuss in detail below. We will not discuss undefined
terms like “title” or “subject,” which could also be classified as a kind of incompleteness.

3.2.1 Initialization

As the table indicates, three papers explicitly characterize what properties must hold in the initial state of
the system. In the state-transition model used by Lee and Sluizer and by Rudnicki, properties that must
hold in the initial state are explicitly written in the specification. Lee and Sluizer specify that initially there
exists a normal user, a staff user, an available book, and the book’s entry in a card catalog (the library

13

The following two operations are strictly not necessary. Without the first, however, there wouid be no
need to distinguish between two types of users, if the operation of adding a staff user is included as
above. Including the second makes the set of transactions more closely reflect reality, and more
symmetric, if adding users are included.

» Add a regular user (Wing).

* Remove a user (Wing).

3.2.3 Error Handling
- Fhe~informai-requirements--do-not- state-what - should -happen -if- an--ermor- or -undesired--situation -is
encountered, e.g., trying to return a book that has not been checked out. A specification could either
strengthen the precondition of a transaction in order to prevent the undesired situation from arising or it
could strengthen the postcondition by explicitly specifying behaviors for the exceptional cases. In
strengthening the postcondition, one could use a single “catchall” error or treat each exceptional case
individually. The table indicates whether the specification handles errors either by strengthening only the
precondition (“pre”), using a single catchall error (“error”), tuning error handling for different situations
(“signals”), or some combination (“pre + X") of preconditions and error handling.

Some of the undesired situations that the authors address include:3

« Checkout: Make sure.the. book being.checked out.is.not already checked out (Kerth, Lubars,
Wwing, Terwilliger and Campbell, Lee and Sluizer, Rueher). Make sure the book is part of the
set of library books (Rich et al., Wing, Terwilliger and Campbell, Lee and Sluizer).

= Raturn: Make sure the book is checked out by the user returning the book. (Wing, Rudnicki,
Rueher). Here, one could argue that this is not necessarily an undesired situation since it
may not matter who returns a book, just as long as it is returned.

e Add book: Make sure the book does not exist (Kerth, Yue, Rueher). If a distinction is made
between a book and a copy then adding a copy should check to see if the book exists (Levy
et al., Lee and Sluizer) or explicitly state that a new entity is added (Wing, Lee and Sluizer)

* Remove book: Make sure the book exists (Kerth) or is available, implying that it exists (Wing,
Terwilliger and Campbell, Lee and Sluizer, Rueher).

Finally, for compieteness, specifications should treat type errors. If an argument or result of an operation
is of the wrong type, then the specification contains an inconsistency. All of the methods do implicit
type-checking through the declarations of the types of an operation's arguments and results. This type
information is implicitly conjoined to the pre- and postconditions of individual operations or defined in the
underlying semantics by using predicate logic with typed variables.

3.2.4 Missing Constraints

In an informal sense, all authors added more “constraints” to K-Call, simply by (informally) elaborating the
requirements, or making them unambiguous and more precise. The Al papers added domain-specific
constraints, for instance by introducing knowledge about information retrieval systems for which a library
is a special instance.

In a more formal sense, however, a “constraint " can be defined to be a state invariant to be maintained

_3Recall that not all authors gave specifications of all transactions and for informal specifications, the authors may have only
discussed the problem in text.

15

process of testing his specification. Lee and Sluizer actually provide a limit (= 5) in their specification for
the purposes of making their specification concrete and hence “fully” executable. Note that Constraint 3
says “books,” not “copies,” which reraises the question of “what is the difference between a book and a
copy?”

Fickas discusses at length the implication of removing the borrowing limit constraint. For example, he
notes that placing a borrowing limit may prevent a user who needs more books than allowed from
achieving his goal. He also questions what “small” means. “Small library database” (K-Call) couid mean
a small-library database, a small library-database, a small-time system, or a simple problem involving a
library database. ' o

Three papers discuss progress as a desired liveness property of the library system. Lubars assumes that
the class of inventory system he instantiates to get a library system is one for which goods (books) are
returned as opposed to one for which they are not (like food in restaurants).

Yue explores the constraint on borrowers even further. He argues that progress couid be impeded if
either of the following problematic situations arises:

1. A user wants to check out a book and has a maximum number aiready. He is forced to
return a book first.

~2. A-user wants- 1o -eheck- out-a-book; -but: it- is -not- available - because -someone else has
checked it out.
To solve the second, the library couid simply keep adding books—an unrealistic solution. Thus, Yue
solves both probiems at once by adding the constraint that a borrower may not keep a book forever, later
refining “forever” to be “a pre-detined period of time."

Dubois and van Lamsweerde do not discuss liveness explicitly but introduce enough formalism, in
particular a sequence of times, so that they could characterize liveness properties. For instance, they use
these times to determine whether a book has been returned by checking to see that each returned date
associated with the book is less than the last checkout date.4

4 Discussion

Wae chose to compare the specifications according to how they address problems of the library example in
order to illustrate the imprecision of natural language specifications and how twelve different approaches
to the same set of informal requirements reveal many of the same problems. We admit that the revelation
of a problem may be due to the authors’ cleverness, and not to the particular approach they use;
however, each of the approaches used undoubtedly helps to prod each of the authors into considering
certain aspects of the informal requirements, and perhaps not others.

Our comparison highlights for the reader what issues should be addressed in refining an informal set of
requirements and how these issues are resolved in different specification approaches. Thus, for each of
the twelve cases, the interesting result of the specification exercise is not the specification itself, but the
insight gained about the specificand. This insight is evidence that benefits can be gained by a systematic
application of formal, or even informal, specification methods.

“This is an informal paraphrase of what they actually specify.

17

both the similarity among the state-transition modeis and that among the logic-based ones.> The popular,
and generally accepted, technique for specifying an operation’s effects is to use pre- and postconditions.
There is less of an agreement on how to specify data. Algebraic and set-theoretic approaches are
common, but the dominating approach of the twelve presented is model-oriented where one might model
a set of books by a list of books, and a book by a record of three components (title, author, copy number).
We can confidently conclude that existing formal specification techniques can be used:

« to identify many, but not all, deficiencies in a set of informally stated requirements;

« to handle “simple” and “small” problems; and
« to specify the functional behavior of sequential systems.

Except for perhaps the third, these are not new conclusions, but they are reassuring. Two broad
challenges remain and currently are of interest to those active in formal specifications: (1) demonstrating
that existing techniques scale up or scaling up the techniques themselves; and (2) specifying non-
functional behavior such as concurrency, reliability, performance, and human factors.

Finally, we conclude with a reminder to the authors: It is the responsibility of each of the advocates of a
particular specification method to tell potential users not only what the method is good for, but also what it
is not. Each method is often intended for use on a specific class of applications, e.g., databases, and for
specifying a specific class.of properties, .e.g.,.functionality.. if.so.the.method should.not be expected to be
suitable for classes of applications and properties outside of their intended ones. However, students of a
particular specification method shouid not be expected to guess what those suitable classes are; teachers
must state the limitations of their methods.

Acknowledgments

| thank Dick Kemmerer and Susan Gerhart for introducing the library problem, keeping it alive, and
relaying its history to me. 1 aiso thank Mehdi Harandi for encouraging me to write this paper based on the
oral summary | gave at the fourth workshop. Finally, | thank all the authors of the twelve papers for their
timely response to my appeal for comments on and corrections to an early draft of this paper.

SPerhaps we should not have been surprised since all formal techniques are based on some common set of mathematicai
concepts.

4]

(18]

[16]

(17]

(18]

(19]

(20}

[21]

(22]

(23]

[24]

[29]

(26]

[27]

19

S. Lee and S. Sluizer.
private communication.
1987.

S. Lee and S. Sluizer.

SXL: An Executable Specification Language.

In Proceedings of the Fourth International Workshop on Software Specification and Design, pages
231-235. Computer Society Press of the |EEE, April, 1987.

N. Levy, A. Piganiol and J. Souquieres.

Specifying With SACSO.

In Proceedings of the Fourth International Workshop on Software Specification and Design, pages
236-241. Computer Society Press of the [EEE, April, 1987.

B.H. Liskov, et al.
Lectura Notes in Computer Science. Volume 114: CLU Reference Manual.
Springer-Verlag, 1981.

B.H. Liskov and J.V. Guttag.
Abstraction and Specification in Program Development.
The MIT Press, 1986.

M.D. Lubars.

Schematic Techniques for High Level Support of Software Specification and Design.

In Proceedings of the Fourth International Workshop on Software Specification and Design, pages
~68-75.. Gomputer Society:Press ofthe-IEEE,-April, 1987.

D.R. Musser.
Abstract Data Type Specification in the Affirm System.
IEEE Transactions on Software Engineering 6(1):24-32, January, 1980.

C.H. Papadimitriou.
The serializability of concurrent database updates.
Journal of the ACM 26{4):631-653, October, 1979.

D.L. Pamnas.
On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12):1053-1058, December, 1972.

D.L. Pamnas.
The Use of Precise Specifications in the Development of Software.
in Information Processing 77, pages 861-867. IFIP, North-Holland, 1977.

D.L. Parnas.
Software Aspects of Strategic Defense Systems.
American Scientist :432-440, September-October, 1985.

|EEE Computer Society.
Proceedings of the 4th International Workshop on Software Specification and Design, |IEEE
Computer Society Press, 1987.

C. Rich, R.C. Waters, and H.B. Reubenstein.

Toward a Requirements Apprentice.

In Proceedings of the Fourth International Workshop on Software Specification and Design, pages
79-86. Computer Society Press of the IEEE, Aprif, 1987.

P. Rudnicki.

What Should Be Proved And Tested Symbolically In Formal Specifications?

In Proceedings of the Fourth International Workshop on Software Specification and Design, pages
190-195. Computer Society Press of the IEEE, April, 1987.

