TO APPEABrﬁ\I THE PROCEEDINGS OF THE IFIP WORKING CONFERENCE ON DECENTRALIZED SYSTEMS
e Durra Language and Runtime Environment: Loy, Frax

. 11-13 Dec. 89
Tools for PMS-Level Programming =
Mario R. Barbacci, Dennis L. Doubleday, Charles B. Weinstock, and Jeannette M. Wing

Software Engineering Institute and School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

1. Introduction

It is becoming commonplace to have a computing environment consisting of loosely-
connected networks of multiple special- and general-purpose processors. We call such
an environment a heterogeneous machine.” Users of heterogeneous machines are
concerned with allocating specialized resources to tasks of medium to large size. They
need to create processes, which are instances of tasks, allocate these processes to
processors, and specify the communication Batterns between processes. These
activities constitute Processor-Memory-Switch (PMS) Level Programming, in contrast
\?;gr,},}rfditic;nal programming activities, which take place at the Instruction Set Processor

evel.
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Figure 1: Binding Tasks to Resources

Currently, users of a heterogeneous machine follow the same pattern of program
development as users of conventional processors: Users write individual tasks as
separate programs, in the different programming languages (e.g., C, Lisp, Pascal)
supFoned bg the processors, and then hand code the allocation of resources to their
application by explicitly loading specific programs to run on specific processors at
specific times. As suggested in Figure 1, these programs are often written with built-in
knowledge about the cooperating programs, thus making them difficult to reuse in
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alternative applications, or with knowledge about the network structure, making them
difficult to reuse in a different environment. Tailoring the programs to the application or
the environment further complicates the development of applications whose structure
might change as a result of requirements of the application (e.g., mode changes in
signal processing) or to support fault-tolerance (e.g., restarting a program in a ditferent
processor after the original processor fails).

It is better to separate the concerns of the developers of the individual component
programs and those of the developers of the applications using these programs. We call
the activities of the former group /SP-level Programming and the activities of the latter
group PMS-level Programming. Developing software at the PMS-level is qualitatively
different from developing software at the ISP-level. It requires different kinds of
languages, tools, and methodologies; and in this paper we address some of these
issues by presenting a language, Durra, and its support tools.

2. The Durra Language

Durra [2, 4] is a language designed to support PMS-level programming. PMS stands for
Processor-Memory-Switch, the name of the highest level in the hierarchy of digital
systems introduced by Bell and Newell in [5]. An application or PMS-level program is
written in Durra as a set of task descriptions and type declarations that prescribes a way
to manage the resources of a heterogeneous machine network. The application
describes the tasks to be instantiated and executed as concurrent processes, the types
of data to be exchanged by the processes, and the intermediate queues required to
store the data as they move from producer to consumer processes. The result of
compiling a Durra application description is a set of resource allocation and scheduling
directives, as suggested in Figure 2.
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Figure 2: Compilation of a PMS-Level Program

2.1. Scenario for Developing an Application _ .
We see three distinct phases in the process of developing an application using Durra:
the creation of a library of tasks, the creation of an application using library tasks, and
the execution of the application. These three phases are illustrated in Figure 3.

During the first phase, the developer writes (in the appropriate programming languages)
the various tasks that will be executed as concurrent programs in the heterogeneous
machine. For each of these task implementations, the developer writes (in Durra) a
corresponding task description.
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Figure 3: Developing a Durra Application

Task descriptions are used to sgecify the groperties of a task implementation (a
program). For a given task, there may be many implementations, differinS in
erogrammmg language (e.g., C or Ada), processor type ée.g., Motorola 68020 or DEC

AX), performance characteristics, or other properties. For each implementation of a
task, a task description must be written in Durra, compiled, and entered in the library. A
task description includes specifications of a task implementation’s performance and
functionality, the types of data it produces or consumes, the ports it uses to
communicate with other tasks, and other miscellaneous attributes of the
implementation.

During the second phase, the user writes an application description. Syntactically, an
application description is a single task description and could be stored in the library as a
new task. This allows writin? of hierarchical application descriptions. When the
application description is compiled, the compiler generates a set of resource allocation
and scheduling commands to be interpreted by the executive.

During the last phase, the executive loads the task implementations i.e., programs
corresponding to the component tasks) into the processors and issues tnhe approprate
commands to execute the programs.

2.2. Task Descriptions o i

Task descriptions are the building blocks for applications. Task descriptions include the
following information (Figure 4): (1) its interface to other tasks (ports); (2) its
attributes; (3) its functional and timing behavior; and (4) its internal structure, thereby

allowing for hierarchical task descriptions.
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task task-name

ports ) -- Communication between tasks
port-declarations
attributes -- Miscellaneous properties of the task

attribute-value-pairs

behavior -- Functional and timing behavior of the task
requires predicate
ensures predicate
timing timing expression

structure -- Internal structure of the task
process-declarations -- Instances of internal subtasks
queue-declarations -- Communication between internal processes
reconfiguration-statements -- Dynamic modifications to the structure

end task-name
Figure 4: A Template for Task Descriptions

Interface information.- This portion defines the ports of the processes instantiated
from the task. A port declaration specifies the direction and type of data moving through
the port. An in port takes input data from a queue; an out port deposits data into a
queue:

ports
inl: In heads:;
outl, out2: out tails;

Attribute Information.- This portion specifies miscellaneous properties of a task.
Attributes are a means of indicating pragmas or hints to the compiler and/or executive.
In a task description, the developer of the task lists the actual value of a property; in a
task selection, the user of a task lists the desired value of the property. Example
attributes include author, version number, programming language, file name, and
processor type:

attributes
author = "jmw";
implementation = "program name";
Queue_Size = 25;

Behavioral Information.- This portion specifies functional and timing properties about
the task. The functional information part of a task description consists of a pre-condition
on what is required to be true of the data coming through the input r;:orts, and a post-
condition on what is guaranteed to be true of the data goinﬁ out through the output
ports. The timing expression describes the behavior of the task in terms of the
operations it performs on its input and output ports.

We do not prescribe a mechanism for determining a timing expression. The expression
could be derived by analysis of the task implementation, by observation of the task
execution profile, or by other means, and then written into the task description. A timing
expression is bound not only to a particular implementation (e.g., affected by the
algorithm or programming language), but also to a particular execution environment
(e.?., affected by the processor on which it executes). Thus, a task description that
includes a timing expression, must also specify any attributes necessary to identify the
exact task implementation whose behavior is given by the timing expression. = For
additional information about the syntax and semantics of the functional and timing
behavior description, see [1].

Structural Information.- This portion defines the component tasks and queues, their
interconnection, and the dynamic changes to the structure, if any.A process declaration
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of the form
process_name : task task_selection

creates a process as an instance of the specified task. The task is identified by a task
selection template, described later in this paper.

A queue declaration of the form
queue_name [queue_size]: port_name_1 > data_transformation > port name_z2

creates a queue through which data flow from an output port of a process
(port_name_1) into the input port of another process (port_name_2). Data
transformations are operations applied to data coming from a source port before they
are delivered to a destination port.

A reconfiguration statement of the form

if condition then
remove process-and-queue-names
process process-declarations
queues queue-declarations
reconnect queue-reconnections
exit condition

end if;

specifies changes in the current structure of the application, the conditions under which
these changes take effect, and the conditions under which the changes are undone,
thus reverting to a previous configuration. Typically, a number of existing processes
and queues are replaced by new processes and queues, which are then connected to
the remainder of the original structure. The reconfiguration and exit conditions are
Boolean expressions involving time values, queue sizes, signals raised by the
processes, and other information available to the executive at runtime.

2.3. Task Selections

Task selections are templates used to identify and retrieve task descriptions from the
task library. A given task, e.g., “feature_detection”, might have a number of different
implementations” that differ along dimensions such as algorithm used, code version,
performance, or processor type. in order to select among a number of alternative
implementations, the user provides a task selection as part of a process declaration.
This task selection lists the desirable features of a suitable implementation.

task task-name
ports -- OPTIONAL. Interface of the desired task
port-declarations

attributes -- OPTIONAL. Miscellaneous properties of the desired task
attribute-expression

behavior —- OPTIONAL. Behavior of the desired task
requires predicate
ensures predicate
timing timing expression
end task-name -- OPTIONAL.

Figure 5: A Template for Task Selections

Syntactically, a task selection looks somewhat like a task description without the
structure part, and all other comPonents except for the task name are optional. Figure 5
shows a template for a task selection. For brevity, if only the task name is given, the

-
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terminating “end task-name” is optional.

There are a number of rules used to identify and select a library task, depending on the
information provided in the task selection:

e Port directions and data types (but not necessarily port names) must be
identical.

» Behavior of the task selection must imply the behavior of task description.

e The attribute expression (predicate) of the task selection must be
“satisfied” by the attributes of task description.

The use of attributes to select a library task is illustrated in Figure 5. The task selection
specifies a task name (t) that, in this example, matches three different task descriptions
with the same name. The author and version attributes are used in an expression to
specify additional properties of the desired task. In the example, exactly one task
description matches all three requirements (task name, author, and version) and this is
the task selected by the Durra compiler. It is an error if more than one candidate or no
candidate task descriptions are left at the end of the matching operation.

Three initial candidates Two candlidates left One candidate left Sselected)
(same task name "T") (same author "jmw") (same version "45"

ask t
ports ...
attributes
author "jmw"
version 45

ask t
ports ..
attributes
author "jmw"
version 33

ask t
ports ...
attributes
author "mrb"

vggi;in ’ sign ... . stz}e cee
StrUCture. ) structure structure
rocess process . Proce:S e
° B queues ... queues ...
queues ... X and t
end t nd t

process p: task t attributes author = "jmw" and verslon = 45; end t;

Figure 6: Selecting a Task from the Task Description Library

3. A Durra Example

The following is a complete example of a Durra application. It consists of several type
declarations and component task descriptions and an application description using
these types and tasks. Figure 7 shows the structure of the application.

In this application, one task (Taska) sends out strings to broadcast task that in turn
sends them on to two other tasks (TaskB and TaskC). The application description
(main) cements all of the component tasks together. The example illustrates the use of
data transformations, specified as part of a queue declaration, and the use of a
predefined task, broadcast, which is implemented directly by the executive.
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Main
TaskA
Broadcast
% <- TaskD
TaskB TaskC

Figure 7: Durra Application Structure

Figure 8.a shows the type descriptions. Byte and integer are scalar types, 8 and 32
bits long respectively. String is an unbounded sequence of bytes. Figure 8.b shows
the main component task descriptions. TaskA has a single output por, outl, which
produces strings. It can run on any VAX processor and is implemented by the program
string producer. TaskB and TaskC both have a single input port, inl, which
consumé strings and integers, respectively. Figure 8.c shows two alternative task
descriptions for a task, TaskD, that has a single input pont, inl, which consumes
strings, and a single output port outl, which produces integers. The two task
descriptions are implemented by two different programs, string transformer vax
and string transformer sun, which execute on vax Or sun processors.” This
information is captured in the attributes of the task descriptions.

Figure 8.c, is the complete application description. It specifies the tasks that make up
the application, plus an instance of the predefined task broadcast. The structure part
specifies the interconnection of those four tasks.

One of the consumer tasks takes integers as input and thus, can not be connected
directly to the output of the broadcast task. An auxilliary process pd, which implements
some “suitable string-to-integer transformation operation is specified in the queue
declaration. Notice the use of attribute information in the declaration of pd. Of the two
alternative implementations of TaskD, the application descriptions selects the version
that will execute in the same processor as p3.

The declaration of queue gb3 specifies a data transformation process p4 that will
operate on the data while they reside in g3. In general, a queue declaration can specify
an arbitrary sequence of data transformation processes. Although these processes
must be declared as the other component processes of the application, their use is
syntactically simpler (the user does not need to specify intermediate queues; these are
generated automatically by the compiler.)

4. Application Execution _
The Durra runtime executives interpret the instructions generated by the Durra compiler.
As illustrated in Figure 9, the executives can run in master or server mode. There is one
server executive on each processor in the configuration and it is responsible for starting
all tasks assigned to that processor. There is one master executive for the entire
network and it is responsible for assigning tasks to servers, establishing communication
links, and controlling the execution of the application. The executives implement the
predefined tasks (broadcast, merge, and deal) built into the language, manage the
message queuses, and invoke the data transformation operations.
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type byte is size 8;

type integer is

size 32;

type string is array of byte;

task taska
ports
attributes
end taska:
task taskb
ports
attributes
end taskb;
task taskc
ports
attributes

end taskc:

task taskd
ports

attributes
end taskd;

task taskd
ports

attributes

end taskd;

task main

a -- Type Descriptions

outl: out string:;
processor = vax;
implementation = "string_producer";

inl: in string:;
processor = vax;
implementation = "string_ consumer";

inl: in integer:
processor = sun;
implementation = "integer_ consumer";

b -- Component Task Descriptions

inl: in string:;
outl: out integer;
processor = vax;

implementation = "string_ transformer_ vax";

inl: in string;
outl: out integer:
processor = sun;

implementation = "string transformer_sun";

¢ -- Transformation Task Descriptions

structure
process
Pl: task taska:
p2: task taskb;
p3: task taskc:
p4: task taskd
attributes processor = p3.processor;
end taskd;
pb: task broadcast
ports inl: in string;
outl, out2: out string;
end broadcast;
queues
glb: pl.outl > > pb.inl;
gb2: pb.outl > > p2.inl;
gb3: pb.out2 > p4 > p3.inl;

end main;

d -- Application Description
Figure 8: Durra Example
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Figure 9: The Durra Runtime Environment

4.1. Resource Allocation

The user can specify, via attributes, the specific processor (or processor class) on which
a process can execute. In the absence of further information, the executive attempts to
balance the load on the various processors by assigning equal number of processes to
each processor, ignoring the throughout requirements of the individual processes. A
better policy would be to let the executives use the timingbexpressions characterizing
the processes’ behavior to determine the load imposed by each process. With this
information, the executives could achieve a better processor allocation. Resource
allocation takes Tﬁlace only at the start of the application or as a result of a
reconfiguration. The executives will not reallocate resources otherwise. Admittedly,
allowing the user to assign processors to processes could prevent the executives from
doing a better job, with a potential loss in aplication throughput. From the onset of the
project, we have been motivated by real-time, embedded applications such as avionics,
robotics, and the like, in which the resources are dedicated to the application and in
which predictability of behavior is sometimes more important than speed. Dynamic load
balancing does not seem to be a critical issue in these domains.

4.2. Task Communications Interface .
The application tasks can be written in any language for which a Durra interface has
been provided. As of this writing, there are Durra interfaces for both C and Ada.

In the current implementation the executive takes advantage of Unix communication
primitives to allocate sockets for receiving remote procedures calls from the application
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tasks. From the point of view of the task implementation, this communication is
accomplished via procedure calls, which return only when the operation is completed.
The interface provides remote procedure calls (RPCs) to initialize and terminate
communications with the executive, to request port identifiers, to send and receive data
on specific ports, and to test the contents of the queues attached to the task ports.

Using this collection of interface calls, application tasks typically would exhibit the
following behavior:

1. Establish communication with the executive.

2. Request port identifiers. These are tokens or capabilities that uniquely
identify the ports.

3. Send and receive data.
4. Break communication with the executive.

4.3. _Debugging and Monitoring the Application

Testing and debugging programs running on a heterogeneous machine present many of
the same problems that are found with any collection of cooperating processes running
asynchronously. In our initial implementation, the problems are alleviated somewhat by
the (Ioglcallyh central executive, which controls the ?assage of information between
processes. Nevertheless, special-purpose tools must be provided to facilitate testing
and debugging.

The primary debugging facility provided by the Durra run-time environment is the
executive itself. It provides input and output ports, just like the normal processes, but
these ports are used to communicate with a special Durra debugger/monitor task. The
Durra debugger/monitor [8] is an interactive proggam which communicates with the
Durra executive at runtime to provide information about and control over the progress of
the application.

The debugger/monitor is an optional component of the Durra runtime environment. The
user may invoke it independently at any time during the execution of a Durra
application. Alternatively, the debugger/monitor may be activated as part of the runtime
environment start-up procedure.  As shown in Figure 9, the debugger/monitor
exchanges information with the master executive through a remote procedure call (rpc)
interface, just as Durra application tasks do. The debugger/monitor however, has its
own distinct set of procedure calls.

Using the debugger/monitor commands, the user can
¢ Watch the flow of data through queues.

e Observe the status of each process.
» Inspect and manipulate data coming into or going out of specific ports.
¢ Force reconfigurations

5. Building Application Prototypes

To support the development of application _|prototypes, we have developed a program
that acts as a “universal” task emulator. This program, MasterTask [3], can emulate
any task in an application by interpreting the timing expression describing the behavior
of the task, performing the input and output port operations in the proper sequence and

at the proper time (within the precision of Durra’s time values and the executive-
maintained clocks).

A Durra timing expression can contain concurrent events as well as loops and ?uards
e

that block execution until some condition is met (e.g., some amount of time has elapsed
since the start of the application, an input queue has a given number of data elements).
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When MasterTask starts, it reads the Durra timing expression for the task it wants to
emulate and assigns a number of concurrent, light-weight processes (Ada task objects
in the current implementation) to interpret the timing expression. These processes are
responsible for evaluating the guards and for invoking the queue operations. In general,
MasterTask exhibits the same input/output behavior as would the real Durra task
im [[etmentation, issuing the same type of procedure calls to the executive and at the
right time.

A PMS-level Iangu%ge like Durra provides natural support for sy{stem development
methodologies based on successive refinements, such as the Spiral method [7]. Users
of the spiral model selectively identify high-risk components of the product, establish
their requirements, and then carry out the design, coding, and testing phases. It is not
necessary that this process be carried out through the testing phase -- higher-risk
components might be identified in the process and these components must be given
higher priority, suspending the development process of the formerly riskier component.

Durra allows the designer to build mock-ups of an application, starting with a gross
decomposition into tasks specified by their interface and behavioral properties. Once
this is completed, the application can be emulated using MasterTask as a stand-in for
the yet-to-be written task implementations.

The result of the emulation would identify areas of risk in the form of tasks whose timing
expressions suggest are more critical or demanding. In other words, the purpose of this
initial emulation is to identify the component task more critical to the performance of the
entire sxstem. The designers can experiment with and evaluate proposed changes in
task behavior or performance by rewriting and reinterpreting the corresponding timing
expression. ,

The designers can then proceed by replacing the original task descriptions with more
detailed task descriptions, consisting of internal tasks and queues, using the structure
description features of Durra. These, more refined, application descriptions can again
be emulated, experimenting with alternative behavioral specifications of the internal
tasks, until a satisfactory internal structure (i.e., decomposition) has been achieved.
This process can be repeated as often as necessary, varying the degree of refinement
of the tasks, and even backtracking if a dead-end is reached. It is not necessary to start
coding a task until later, when its specifications are acceptable, and when it is decided
that it should not be further decomposed.

6. Conclusions

The Froblem of dynamic reconfi%uration of distributed systems is addressed in the
CONIC language and Toolkit [9, 12]. Initially CONIC restricted tasks to be programmed
in a fixed language (an extension to Pascal with message passing primitives) running
on homogeneous workstations but this restriction was later relaxed. RNET [6] is another
language designed for distributed real-time programs. An RNET program consists of a
configuration specification and the procedural code, which is compiled, linked with a
run-time kernel, and loaded onto the target system for execution. The language
provides facilities for specif in%1 real-time properties, such as deadlines and delags that
are used for monitoring and scheduling the processes. These.features place RNET at a
lower level of abstraction, and thus RNET cannot be compared directly to Durra.
Rather, it can be considered as a suitable language for developing the executives
B?qu‘i(rgd by Durra and other languages in which the concurrent tasks are treated as

ack boxes.

Interfacing heterogeneous machines or language environments is not a new problem.
Several techniques have been proposed to take high level specifications and generate
structure/type declarations and routines which perform the appropriate packing and
unpacking of the data[10, 11,13, 14]. These and other similar facilities could be
adopted by the application developers without difficulty as Durra operates at a higher
level of abstraction.

PMS-level programming, as implemented by Durra, lifts the level of programming at the
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code level to programming at the specification level. What then constitutes a
specification (e.g., Durra task description) and its satisfaction (e.g., Durra task selection)
determines the power of programming at the specification level. If a specification is just
a list of filenames and their version numbers, then a “program’ is simple, and
programming is not very powerful: selection of programs from a library indexed by
flename is trivial. If a specification includes semantic information, e.g., functional
behavior of a task, then programming is quite complex: selection of programs may
involve theorem-proving capability. e designed Durra with the ultimate goal of
exploiting the rich semantic information included in a task description. For our prototyf)e
implementation, however, we have sacrificed semantic complexity in favor of simpler
task selection based on interface and attribute information. We gain the advantage of
being able immediately to instantiate our general idea of PMS-level programming with a
real environment (Durra compiler, runtime executive, debugger/monitor, and task
emulator) that runs on a heterogeneous machine (various kinds of workstations
connected via an Ethernet). Hence instead of a paper design, we can claim the
existence of a working system.
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